diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/jffs2/nodemgmt.c | |
download | linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.gz linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.bz2 linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'fs/jffs2/nodemgmt.c')
-rw-r--r-- | fs/jffs2/nodemgmt.c | 838 |
1 files changed, 838 insertions, 0 deletions
diff --git a/fs/jffs2/nodemgmt.c b/fs/jffs2/nodemgmt.c new file mode 100644 index 000000000000..2651135bdf42 --- /dev/null +++ b/fs/jffs2/nodemgmt.c @@ -0,0 +1,838 @@ +/* + * JFFS2 -- Journalling Flash File System, Version 2. + * + * Copyright (C) 2001-2003 Red Hat, Inc. + * + * Created by David Woodhouse <dwmw2@infradead.org> + * + * For licensing information, see the file 'LICENCE' in this directory. + * + * $Id: nodemgmt.c,v 1.115 2004/11/22 11:07:21 dwmw2 Exp $ + * + */ + +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/compiler.h> +#include <linux/sched.h> /* For cond_resched() */ +#include "nodelist.h" + +/** + * jffs2_reserve_space - request physical space to write nodes to flash + * @c: superblock info + * @minsize: Minimum acceptable size of allocation + * @ofs: Returned value of node offset + * @len: Returned value of allocation length + * @prio: Allocation type - ALLOC_{NORMAL,DELETION} + * + * Requests a block of physical space on the flash. Returns zero for success + * and puts 'ofs' and 'len' into the appriopriate place, or returns -ENOSPC + * or other error if appropriate. + * + * If it returns zero, jffs2_reserve_space() also downs the per-filesystem + * allocation semaphore, to prevent more than one allocation from being + * active at any time. The semaphore is later released by jffs2_commit_allocation() + * + * jffs2_reserve_space() may trigger garbage collection in order to make room + * for the requested allocation. + */ + +static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len); + +int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio) +{ + int ret = -EAGAIN; + int blocksneeded = c->resv_blocks_write; + /* align it */ + minsize = PAD(minsize); + + D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize)); + down(&c->alloc_sem); + + D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n")); + + spin_lock(&c->erase_completion_lock); + + /* this needs a little more thought (true <tglx> :)) */ + while(ret == -EAGAIN) { + while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) { + int ret; + uint32_t dirty, avail; + + /* calculate real dirty size + * dirty_size contains blocks on erase_pending_list + * those blocks are counted in c->nr_erasing_blocks. + * If one block is actually erased, it is not longer counted as dirty_space + * but it is counted in c->nr_erasing_blocks, so we add it and subtract it + * with c->nr_erasing_blocks * c->sector_size again. + * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks + * This helps us to force gc and pick eventually a clean block to spread the load. + * We add unchecked_size here, as we hopefully will find some space to use. + * This will affect the sum only once, as gc first finishes checking + * of nodes. + */ + dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size; + if (dirty < c->nospc_dirty_size) { + if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { + printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"); + break; + } + D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n", + dirty, c->unchecked_size, c->sector_size)); + + spin_unlock(&c->erase_completion_lock); + up(&c->alloc_sem); + return -ENOSPC; + } + + /* Calc possibly available space. Possibly available means that we + * don't know, if unchecked size contains obsoleted nodes, which could give us some + * more usable space. This will affect the sum only once, as gc first finishes checking + * of nodes. + + Return -ENOSPC, if the maximum possibly available space is less or equal than + * blocksneeded * sector_size. + * This blocks endless gc looping on a filesystem, which is nearly full, even if + * the check above passes. + */ + avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size; + if ( (avail / c->sector_size) <= blocksneeded) { + if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { + printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"); + break; + } + + D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n", + avail, blocksneeded * c->sector_size)); + spin_unlock(&c->erase_completion_lock); + up(&c->alloc_sem); + return -ENOSPC; + } + + up(&c->alloc_sem); + + D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n", + c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size, + c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size)); + spin_unlock(&c->erase_completion_lock); + + ret = jffs2_garbage_collect_pass(c); + if (ret) + return ret; + + cond_resched(); + + if (signal_pending(current)) + return -EINTR; + + down(&c->alloc_sem); + spin_lock(&c->erase_completion_lock); + } + + ret = jffs2_do_reserve_space(c, minsize, ofs, len); + if (ret) { + D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret)); + } + } + spin_unlock(&c->erase_completion_lock); + if (ret) + up(&c->alloc_sem); + return ret; +} + +int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len) +{ + int ret = -EAGAIN; + minsize = PAD(minsize); + + D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize)); + + spin_lock(&c->erase_completion_lock); + while(ret == -EAGAIN) { + ret = jffs2_do_reserve_space(c, minsize, ofs, len); + if (ret) { + D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret)); + } + } + spin_unlock(&c->erase_completion_lock); + return ret; +} + +/* Called with alloc sem _and_ erase_completion_lock */ +static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len) +{ + struct jffs2_eraseblock *jeb = c->nextblock; + + restart: + if (jeb && minsize > jeb->free_size) { + /* Skip the end of this block and file it as having some dirty space */ + /* If there's a pending write to it, flush now */ + if (jffs2_wbuf_dirty(c)) { + spin_unlock(&c->erase_completion_lock); + D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n")); + jffs2_flush_wbuf_pad(c); + spin_lock(&c->erase_completion_lock); + jeb = c->nextblock; + goto restart; + } + c->wasted_size += jeb->free_size; + c->free_size -= jeb->free_size; + jeb->wasted_size += jeb->free_size; + jeb->free_size = 0; + + /* Check, if we have a dirty block now, or if it was dirty already */ + if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) { + c->dirty_size += jeb->wasted_size; + c->wasted_size -= jeb->wasted_size; + jeb->dirty_size += jeb->wasted_size; + jeb->wasted_size = 0; + if (VERYDIRTY(c, jeb->dirty_size)) { + D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", + jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); + list_add_tail(&jeb->list, &c->very_dirty_list); + } else { + D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", + jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); + list_add_tail(&jeb->list, &c->dirty_list); + } + } else { + D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", + jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); + list_add_tail(&jeb->list, &c->clean_list); + } + c->nextblock = jeb = NULL; + } + + if (!jeb) { + struct list_head *next; + /* Take the next block off the 'free' list */ + + if (list_empty(&c->free_list)) { + + if (!c->nr_erasing_blocks && + !list_empty(&c->erasable_list)) { + struct jffs2_eraseblock *ejeb; + + ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list); + list_del(&ejeb->list); + list_add_tail(&ejeb->list, &c->erase_pending_list); + c->nr_erasing_blocks++; + jffs2_erase_pending_trigger(c); + D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Triggering erase of erasable block at 0x%08x\n", + ejeb->offset)); + } + + if (!c->nr_erasing_blocks && + !list_empty(&c->erasable_pending_wbuf_list)) { + D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n")); + /* c->nextblock is NULL, no update to c->nextblock allowed */ + spin_unlock(&c->erase_completion_lock); + jffs2_flush_wbuf_pad(c); + spin_lock(&c->erase_completion_lock); + /* Have another go. It'll be on the erasable_list now */ + return -EAGAIN; + } + + if (!c->nr_erasing_blocks) { + /* Ouch. We're in GC, or we wouldn't have got here. + And there's no space left. At all. */ + printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n", + c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no", + list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no"); + return -ENOSPC; + } + + spin_unlock(&c->erase_completion_lock); + /* Don't wait for it; just erase one right now */ + jffs2_erase_pending_blocks(c, 1); + spin_lock(&c->erase_completion_lock); + + /* An erase may have failed, decreasing the + amount of free space available. So we must + restart from the beginning */ + return -EAGAIN; + } + + next = c->free_list.next; + list_del(next); + c->nextblock = jeb = list_entry(next, struct jffs2_eraseblock, list); + c->nr_free_blocks--; + + if (jeb->free_size != c->sector_size - c->cleanmarker_size) { + printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size); + goto restart; + } + } + /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has + enough space */ + *ofs = jeb->offset + (c->sector_size - jeb->free_size); + *len = jeb->free_size; + + if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size && + !jeb->first_node->next_in_ino) { + /* Only node in it beforehand was a CLEANMARKER node (we think). + So mark it obsolete now that there's going to be another node + in the block. This will reduce used_size to zero but We've + already set c->nextblock so that jffs2_mark_node_obsolete() + won't try to refile it to the dirty_list. + */ + spin_unlock(&c->erase_completion_lock); + jffs2_mark_node_obsolete(c, jeb->first_node); + spin_lock(&c->erase_completion_lock); + } + + D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n", *len, *ofs)); + return 0; +} + +/** + * jffs2_add_physical_node_ref - add a physical node reference to the list + * @c: superblock info + * @new: new node reference to add + * @len: length of this physical node + * @dirty: dirty flag for new node + * + * Should only be used to report nodes for which space has been allocated + * by jffs2_reserve_space. + * + * Must be called with the alloc_sem held. + */ + +int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new) +{ + struct jffs2_eraseblock *jeb; + uint32_t len; + + jeb = &c->blocks[new->flash_offset / c->sector_size]; + len = ref_totlen(c, jeb, new); + + D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n", ref_offset(new), ref_flags(new), len)); +#if 1 + if (jeb != c->nextblock || (ref_offset(new)) != jeb->offset + (c->sector_size - jeb->free_size)) { + printk(KERN_WARNING "argh. node added in wrong place\n"); + jffs2_free_raw_node_ref(new); + return -EINVAL; + } +#endif + spin_lock(&c->erase_completion_lock); + + if (!jeb->first_node) + jeb->first_node = new; + if (jeb->last_node) + jeb->last_node->next_phys = new; + jeb->last_node = new; + + jeb->free_size -= len; + c->free_size -= len; + if (ref_obsolete(new)) { + jeb->dirty_size += len; + c->dirty_size += len; + } else { + jeb->used_size += len; + c->used_size += len; + } + + if (!jeb->free_size && !jeb->dirty_size) { + /* If it lives on the dirty_list, jffs2_reserve_space will put it there */ + D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", + jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); + if (jffs2_wbuf_dirty(c)) { + /* Flush the last write in the block if it's outstanding */ + spin_unlock(&c->erase_completion_lock); + jffs2_flush_wbuf_pad(c); + spin_lock(&c->erase_completion_lock); + } + + list_add_tail(&jeb->list, &c->clean_list); + c->nextblock = NULL; + } + ACCT_SANITY_CHECK(c,jeb); + D1(ACCT_PARANOIA_CHECK(jeb)); + + spin_unlock(&c->erase_completion_lock); + + return 0; +} + + +void jffs2_complete_reservation(struct jffs2_sb_info *c) +{ + D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n")); + jffs2_garbage_collect_trigger(c); + up(&c->alloc_sem); +} + +static inline int on_list(struct list_head *obj, struct list_head *head) +{ + struct list_head *this; + + list_for_each(this, head) { + if (this == obj) { + D1(printk("%p is on list at %p\n", obj, head)); + return 1; + + } + } + return 0; +} + +void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref) +{ + struct jffs2_eraseblock *jeb; + int blocknr; + struct jffs2_unknown_node n; + int ret, addedsize; + size_t retlen; + + if(!ref) { + printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n"); + return; + } + if (ref_obsolete(ref)) { + D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref))); + return; + } + blocknr = ref->flash_offset / c->sector_size; + if (blocknr >= c->nr_blocks) { + printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset); + BUG(); + } + jeb = &c->blocks[blocknr]; + + if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) && + !(c->flags & JFFS2_SB_FLAG_MOUNTING)) { + /* Hm. This may confuse static lock analysis. If any of the above + three conditions is false, we're going to return from this + function without actually obliterating any nodes or freeing + any jffs2_raw_node_refs. So we don't need to stop erases from + happening, or protect against people holding an obsolete + jffs2_raw_node_ref without the erase_completion_lock. */ + down(&c->erase_free_sem); + } + + spin_lock(&c->erase_completion_lock); + + if (ref_flags(ref) == REF_UNCHECKED) { + D1(if (unlikely(jeb->unchecked_size < ref_totlen(c, jeb, ref))) { + printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n", + ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size); + BUG(); + }) + D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref))); + jeb->unchecked_size -= ref_totlen(c, jeb, ref); + c->unchecked_size -= ref_totlen(c, jeb, ref); + } else { + D1(if (unlikely(jeb->used_size < ref_totlen(c, jeb, ref))) { + printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n", + ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size); + BUG(); + }) + D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref))); + jeb->used_size -= ref_totlen(c, jeb, ref); + c->used_size -= ref_totlen(c, jeb, ref); + } + + // Take care, that wasted size is taken into concern + if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + ref_totlen(c, jeb, ref))) && jeb != c->nextblock) { + D1(printk("Dirtying\n")); + addedsize = ref_totlen(c, jeb, ref); + jeb->dirty_size += ref_totlen(c, jeb, ref); + c->dirty_size += ref_totlen(c, jeb, ref); + + /* Convert wasted space to dirty, if not a bad block */ + if (jeb->wasted_size) { + if (on_list(&jeb->list, &c->bad_used_list)) { + D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n", + jeb->offset)); + addedsize = 0; /* To fool the refiling code later */ + } else { + D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n", + jeb->wasted_size, jeb->offset)); + addedsize += jeb->wasted_size; + jeb->dirty_size += jeb->wasted_size; + c->dirty_size += jeb->wasted_size; + c->wasted_size -= jeb->wasted_size; + jeb->wasted_size = 0; + } + } + } else { + D1(printk("Wasting\n")); + addedsize = 0; + jeb->wasted_size += ref_totlen(c, jeb, ref); + c->wasted_size += ref_totlen(c, jeb, ref); + } + ref->flash_offset = ref_offset(ref) | REF_OBSOLETE; + + ACCT_SANITY_CHECK(c, jeb); + + D1(ACCT_PARANOIA_CHECK(jeb)); + + if (c->flags & JFFS2_SB_FLAG_MOUNTING) { + /* Mount in progress. Don't muck about with the block + lists because they're not ready yet, and don't actually + obliterate nodes that look obsolete. If they weren't + marked obsolete on the flash at the time they _became_ + obsolete, there was probably a reason for that. */ + spin_unlock(&c->erase_completion_lock); + /* We didn't lock the erase_free_sem */ + return; + } + + if (jeb == c->nextblock) { + D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset)); + } else if (!jeb->used_size && !jeb->unchecked_size) { + if (jeb == c->gcblock) { + D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset)); + c->gcblock = NULL; + } else { + D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset)); + list_del(&jeb->list); + } + if (jffs2_wbuf_dirty(c)) { + D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n")); + list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list); + } else { + if (jiffies & 127) { + /* Most of the time, we just erase it immediately. Otherwise we + spend ages scanning it on mount, etc. */ + D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); + list_add_tail(&jeb->list, &c->erase_pending_list); + c->nr_erasing_blocks++; + jffs2_erase_pending_trigger(c); + } else { + /* Sometimes, however, we leave it elsewhere so it doesn't get + immediately reused, and we spread the load a bit. */ + D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); + list_add_tail(&jeb->list, &c->erasable_list); + } + } + D1(printk(KERN_DEBUG "Done OK\n")); + } else if (jeb == c->gcblock) { + D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset)); + } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) { + D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset)); + list_del(&jeb->list); + D1(printk(KERN_DEBUG "...and adding to dirty_list\n")); + list_add_tail(&jeb->list, &c->dirty_list); + } else if (VERYDIRTY(c, jeb->dirty_size) && + !VERYDIRTY(c, jeb->dirty_size - addedsize)) { + D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset)); + list_del(&jeb->list); + D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n")); + list_add_tail(&jeb->list, &c->very_dirty_list); + } else { + D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n", + jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); + } + + spin_unlock(&c->erase_completion_lock); + + if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c)) { + /* We didn't lock the erase_free_sem */ + return; + } + + /* The erase_free_sem is locked, and has been since before we marked the node obsolete + and potentially put its eraseblock onto the erase_pending_list. Thus, we know that + the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet + by jffs2_free_all_node_refs() in erase.c. Which is nice. */ + + D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref))); + ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); + if (ret) { + printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret); + goto out_erase_sem; + } + if (retlen != sizeof(n)) { + printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen); + goto out_erase_sem; + } + if (PAD(je32_to_cpu(n.totlen)) != PAD(ref_totlen(c, jeb, ref))) { + printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), ref_totlen(c, jeb, ref)); + goto out_erase_sem; + } + if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) { + D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype))); + goto out_erase_sem; + } + /* XXX FIXME: This is ugly now */ + n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE); + ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); + if (ret) { + printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret); + goto out_erase_sem; + } + if (retlen != sizeof(n)) { + printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen); + goto out_erase_sem; + } + + /* Nodes which have been marked obsolete no longer need to be + associated with any inode. Remove them from the per-inode list. + + Note we can't do this for NAND at the moment because we need + obsolete dirent nodes to stay on the lists, because of the + horridness in jffs2_garbage_collect_deletion_dirent(). Also + because we delete the inocache, and on NAND we need that to + stay around until all the nodes are actually erased, in order + to stop us from giving the same inode number to another newly + created inode. */ + if (ref->next_in_ino) { + struct jffs2_inode_cache *ic; + struct jffs2_raw_node_ref **p; + + spin_lock(&c->erase_completion_lock); + + ic = jffs2_raw_ref_to_ic(ref); + for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino)) + ; + + *p = ref->next_in_ino; + ref->next_in_ino = NULL; + + if (ic->nodes == (void *)ic) { + D1(printk(KERN_DEBUG "inocache for ino #%u is all gone now. Freeing\n", ic->ino)); + jffs2_del_ino_cache(c, ic); + jffs2_free_inode_cache(ic); + } + + spin_unlock(&c->erase_completion_lock); + } + + + /* Merge with the next node in the physical list, if there is one + and if it's also obsolete and if it doesn't belong to any inode */ + if (ref->next_phys && ref_obsolete(ref->next_phys) && + !ref->next_phys->next_in_ino) { + struct jffs2_raw_node_ref *n = ref->next_phys; + + spin_lock(&c->erase_completion_lock); + + ref->__totlen += n->__totlen; + ref->next_phys = n->next_phys; + if (jeb->last_node == n) jeb->last_node = ref; + if (jeb->gc_node == n) { + /* gc will be happy continuing gc on this node */ + jeb->gc_node=ref; + } + spin_unlock(&c->erase_completion_lock); + + jffs2_free_raw_node_ref(n); + } + + /* Also merge with the previous node in the list, if there is one + and that one is obsolete */ + if (ref != jeb->first_node ) { + struct jffs2_raw_node_ref *p = jeb->first_node; + + spin_lock(&c->erase_completion_lock); + + while (p->next_phys != ref) + p = p->next_phys; + + if (ref_obsolete(p) && !ref->next_in_ino) { + p->__totlen += ref->__totlen; + if (jeb->last_node == ref) { + jeb->last_node = p; + } + if (jeb->gc_node == ref) { + /* gc will be happy continuing gc on this node */ + jeb->gc_node=p; + } + p->next_phys = ref->next_phys; + jffs2_free_raw_node_ref(ref); + } + spin_unlock(&c->erase_completion_lock); + } + out_erase_sem: + up(&c->erase_free_sem); +} + +#if CONFIG_JFFS2_FS_DEBUG >= 2 +void jffs2_dump_block_lists(struct jffs2_sb_info *c) +{ + + + printk(KERN_DEBUG "jffs2_dump_block_lists:\n"); + printk(KERN_DEBUG "flash_size: %08x\n", c->flash_size); + printk(KERN_DEBUG "used_size: %08x\n", c->used_size); + printk(KERN_DEBUG "dirty_size: %08x\n", c->dirty_size); + printk(KERN_DEBUG "wasted_size: %08x\n", c->wasted_size); + printk(KERN_DEBUG "unchecked_size: %08x\n", c->unchecked_size); + printk(KERN_DEBUG "free_size: %08x\n", c->free_size); + printk(KERN_DEBUG "erasing_size: %08x\n", c->erasing_size); + printk(KERN_DEBUG "bad_size: %08x\n", c->bad_size); + printk(KERN_DEBUG "sector_size: %08x\n", c->sector_size); + printk(KERN_DEBUG "jffs2_reserved_blocks size: %08x\n",c->sector_size * c->resv_blocks_write); + + if (c->nextblock) { + printk(KERN_DEBUG "nextblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", + c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->unchecked_size, c->nextblock->free_size); + } else { + printk(KERN_DEBUG "nextblock: NULL\n"); + } + if (c->gcblock) { + printk(KERN_DEBUG "gcblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", + c->gcblock->offset, c->gcblock->used_size, c->gcblock->dirty_size, c->gcblock->wasted_size, c->gcblock->unchecked_size, c->gcblock->free_size); + } else { + printk(KERN_DEBUG "gcblock: NULL\n"); + } + if (list_empty(&c->clean_list)) { + printk(KERN_DEBUG "clean_list: empty\n"); + } else { + struct list_head *this; + int numblocks = 0; + uint32_t dirty = 0; + + list_for_each(this, &c->clean_list) { + struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); + numblocks ++; + dirty += jeb->wasted_size; + printk(KERN_DEBUG "clean_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); + } + printk (KERN_DEBUG "Contains %d blocks with total wasted size %u, average wasted size: %u\n", numblocks, dirty, dirty / numblocks); + } + if (list_empty(&c->very_dirty_list)) { + printk(KERN_DEBUG "very_dirty_list: empty\n"); + } else { + struct list_head *this; + int numblocks = 0; + uint32_t dirty = 0; + + list_for_each(this, &c->very_dirty_list) { + struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); + numblocks ++; + dirty += jeb->dirty_size; + printk(KERN_DEBUG "very_dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", + jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); + } + printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n", + numblocks, dirty, dirty / numblocks); + } + if (list_empty(&c->dirty_list)) { + printk(KERN_DEBUG "dirty_list: empty\n"); + } else { + struct list_head *this; + int numblocks = 0; + uint32_t dirty = 0; + + list_for_each(this, &c->dirty_list) { + struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); + numblocks ++; + dirty += jeb->dirty_size; + printk(KERN_DEBUG "dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", + jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); + } + printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n", + numblocks, dirty, dirty / numblocks); + } + if (list_empty(&c->erasable_list)) { + printk(KERN_DEBUG "erasable_list: empty\n"); + } else { + struct list_head *this; + + list_for_each(this, &c->erasable_list) { + struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); + printk(KERN_DEBUG "erasable_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", + jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); + } + } + if (list_empty(&c->erasing_list)) { + printk(KERN_DEBUG "erasing_list: empty\n"); + } else { + struct list_head *this; + + list_for_each(this, &c->erasing_list) { + struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); + printk(KERN_DEBUG "erasing_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", + jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); + } + } + if (list_empty(&c->erase_pending_list)) { + printk(KERN_DEBUG "erase_pending_list: empty\n"); + } else { + struct list_head *this; + + list_for_each(this, &c->erase_pending_list) { + struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); + printk(KERN_DEBUG "erase_pending_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", + jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); + } + } + if (list_empty(&c->erasable_pending_wbuf_list)) { + printk(KERN_DEBUG "erasable_pending_wbuf_list: empty\n"); + } else { + struct list_head *this; + + list_for_each(this, &c->erasable_pending_wbuf_list) { + struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); + printk(KERN_DEBUG "erasable_pending_wbuf_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", + jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); + } + } + if (list_empty(&c->free_list)) { + printk(KERN_DEBUG "free_list: empty\n"); + } else { + struct list_head *this; + + list_for_each(this, &c->free_list) { + struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); + printk(KERN_DEBUG "free_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", + jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); + } + } + if (list_empty(&c->bad_list)) { + printk(KERN_DEBUG "bad_list: empty\n"); + } else { + struct list_head *this; + + list_for_each(this, &c->bad_list) { + struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); + printk(KERN_DEBUG "bad_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", + jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); + } + } + if (list_empty(&c->bad_used_list)) { + printk(KERN_DEBUG "bad_used_list: empty\n"); + } else { + struct list_head *this; + + list_for_each(this, &c->bad_used_list) { + struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); + printk(KERN_DEBUG "bad_used_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", + jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); + } + } +} +#endif /* CONFIG_JFFS2_FS_DEBUG */ + +int jffs2_thread_should_wake(struct jffs2_sb_info *c) +{ + int ret = 0; + uint32_t dirty; + + if (c->unchecked_size) { + D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n", + c->unchecked_size, c->checked_ino)); + return 1; + } + + /* dirty_size contains blocks on erase_pending_list + * those blocks are counted in c->nr_erasing_blocks. + * If one block is actually erased, it is not longer counted as dirty_space + * but it is counted in c->nr_erasing_blocks, so we add it and subtract it + * with c->nr_erasing_blocks * c->sector_size again. + * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks + * This helps us to force gc and pick eventually a clean block to spread the load. + */ + dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size; + + if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger && + (dirty > c->nospc_dirty_size)) + ret = 1; + + D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x: %s\n", + c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, ret?"yes":"no")); + + return ret; +} |