diff options
author | Mark Fasheh <mark.fasheh@oracle.com> | 2007-02-09 20:24:12 -0800 |
---|---|---|
committer | Mark Fasheh <mark.fasheh@oracle.com> | 2007-04-26 15:02:08 -0700 |
commit | 9517bac6cc7a7aa4fee63cb38a32cb6014e264c7 (patch) | |
tree | 3cac0c18d0cacc316e0e8a60f483282d6f991779 /fs/ocfs2/aops.c | |
parent | 89488984ac23b0580f959b9ee549f2fcb1c2f194 (diff) | |
download | linux-9517bac6cc7a7aa4fee63cb38a32cb6014e264c7.tar.gz linux-9517bac6cc7a7aa4fee63cb38a32cb6014e264c7.tar.bz2 linux-9517bac6cc7a7aa4fee63cb38a32cb6014e264c7.zip |
ocfs2: teach ocfs2_file_aio_write() about sparse files
Unfortunately, ocfs2 can no longer make use of generic_file_aio_write_nlock()
because allocating writes will require zeroing of pages adjacent to the I/O
for cluster sizes greater than page size.
Implement a custom file write here, which can order page locks for zeroing.
This also has the advantage that cluster locks can easily be ordered outside
of the page locks.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Diffstat (limited to 'fs/ocfs2/aops.c')
-rw-r--r-- | fs/ocfs2/aops.c | 679 |
1 files changed, 663 insertions, 16 deletions
diff --git a/fs/ocfs2/aops.c b/fs/ocfs2/aops.c index f3b0cc5cba1a..5ffb3702b5e9 100644 --- a/fs/ocfs2/aops.c +++ b/fs/ocfs2/aops.c @@ -24,6 +24,7 @@ #include <linux/highmem.h> #include <linux/pagemap.h> #include <asm/byteorder.h> +#include <linux/swap.h> #define MLOG_MASK_PREFIX ML_FILE_IO #include <cluster/masklog.h> @@ -37,6 +38,7 @@ #include "file.h" #include "inode.h" #include "journal.h" +#include "suballoc.h" #include "super.h" #include "symlink.h" @@ -645,23 +647,27 @@ static ssize_t ocfs2_direct_IO(int rw, mlog_entry_void(); - /* - * We get PR data locks even for O_DIRECT. This allows - * concurrent O_DIRECT I/O but doesn't let O_DIRECT with - * extending and buffered zeroing writes race. If they did - * race then the buffered zeroing could be written back after - * the O_DIRECT I/O. It's one thing to tell people not to mix - * buffered and O_DIRECT writes, but expecting them to - * understand that file extension is also an implicit buffered - * write is too much. By getting the PR we force writeback of - * the buffered zeroing before proceeding. - */ - ret = ocfs2_data_lock(inode, 0); - if (ret < 0) { - mlog_errno(ret); - goto out; + if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) { + /* + * We get PR data locks even for O_DIRECT. This + * allows concurrent O_DIRECT I/O but doesn't let + * O_DIRECT with extending and buffered zeroing writes + * race. If they did race then the buffered zeroing + * could be written back after the O_DIRECT I/O. It's + * one thing to tell people not to mix buffered and + * O_DIRECT writes, but expecting them to understand + * that file extension is also an implicit buffered + * write is too much. By getting the PR we force + * writeback of the buffered zeroing before + * proceeding. + */ + ret = ocfs2_data_lock(inode, 0); + if (ret < 0) { + mlog_errno(ret); + goto out; + } + ocfs2_data_unlock(inode, 0); } - ocfs2_data_unlock(inode, 0); ret = blockdev_direct_IO_no_locking(rw, iocb, inode, inode->i_sb->s_bdev, iov, offset, @@ -673,6 +679,647 @@ out: return ret; } +static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, + u32 cpos, + unsigned int *start, + unsigned int *end) +{ + unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; + + if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { + unsigned int cpp; + + cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); + + cluster_start = cpos % cpp; + cluster_start = cluster_start << osb->s_clustersize_bits; + + cluster_end = cluster_start + osb->s_clustersize; + } + + BUG_ON(cluster_start > PAGE_SIZE); + BUG_ON(cluster_end > PAGE_SIZE); + + if (start) + *start = cluster_start; + if (end) + *end = cluster_end; +} + +/* + * 'from' and 'to' are the region in the page to avoid zeroing. + * + * If pagesize > clustersize, this function will avoid zeroing outside + * of the cluster boundary. + * + * from == to == 0 is code for "zero the entire cluster region" + */ +static void ocfs2_clear_page_regions(struct page *page, + struct ocfs2_super *osb, u32 cpos, + unsigned from, unsigned to) +{ + void *kaddr; + unsigned int cluster_start, cluster_end; + + ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); + + kaddr = kmap_atomic(page, KM_USER0); + + if (from || to) { + if (from > cluster_start) + memset(kaddr + cluster_start, 0, from - cluster_start); + if (to < cluster_end) + memset(kaddr + to, 0, cluster_end - to); + } else { + memset(kaddr + cluster_start, 0, cluster_end - cluster_start); + } + + kunmap_atomic(kaddr, KM_USER0); +} + +/* + * Some of this taken from block_prepare_write(). We already have our + * mapping by now though, and the entire write will be allocating or + * it won't, so not much need to use BH_New. + * + * This will also skip zeroing, which is handled externally. + */ +static int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, + struct inode *inode, unsigned int from, + unsigned int to, int new) +{ + int ret = 0; + struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; + unsigned int block_end, block_start; + unsigned int bsize = 1 << inode->i_blkbits; + + if (!page_has_buffers(page)) + create_empty_buffers(page, bsize, 0); + + head = page_buffers(page); + for (bh = head, block_start = 0; bh != head || !block_start; + bh = bh->b_this_page, block_start += bsize) { + block_end = block_start + bsize; + + /* + * Ignore blocks outside of our i/o range - + * they may belong to unallocated clusters. + */ + if (block_start >= to || + (block_start + bsize) <= from) { + if (PageUptodate(page)) + set_buffer_uptodate(bh); + continue; + } + + /* + * For an allocating write with cluster size >= page + * size, we always write the entire page. + */ + + if (buffer_new(bh)) + clear_buffer_new(bh); + + if (!buffer_mapped(bh)) { + map_bh(bh, inode->i_sb, *p_blkno); + unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); + } + + if (PageUptodate(page)) { + if (!buffer_uptodate(bh)) + set_buffer_uptodate(bh); + } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && + (block_start < from || block_end > to)) { + ll_rw_block(READ, 1, &bh); + *wait_bh++=bh; + } + + *p_blkno = *p_blkno + 1; + } + + /* + * If we issued read requests - let them complete. + */ + while(wait_bh > wait) { + wait_on_buffer(*--wait_bh); + if (!buffer_uptodate(*wait_bh)) + ret = -EIO; + } + + if (ret == 0 || !new) + return ret; + + /* + * If we get -EIO above, zero out any newly allocated blocks + * to avoid exposing stale data. + */ + bh = head; + block_start = 0; + do { + void *kaddr; + + block_end = block_start + bsize; + if (block_end <= from) + goto next_bh; + if (block_start >= to) + break; + + kaddr = kmap_atomic(page, KM_USER0); + memset(kaddr+block_start, 0, bh->b_size); + flush_dcache_page(page); + kunmap_atomic(kaddr, KM_USER0); + set_buffer_uptodate(bh); + mark_buffer_dirty(bh); + +next_bh: + block_start = block_end; + bh = bh->b_this_page; + } while (bh != head); + + return ret; +} + +/* + * This will copy user data from the iovec in the buffered write + * context. + */ +int ocfs2_map_and_write_user_data(struct inode *inode, + struct ocfs2_write_ctxt *wc, u64 *p_blkno, + unsigned int *ret_from, unsigned int *ret_to) +{ + int ret; + unsigned int to, from, cluster_start, cluster_end; + unsigned long bytes, src_from; + char *dst; + struct ocfs2_buffered_write_priv *bp = wc->w_private; + const struct iovec *cur_iov = bp->b_cur_iov; + char __user *buf; + struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); + + ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start, + &cluster_end); + + buf = cur_iov->iov_base + bp->b_cur_off; + src_from = (unsigned long)buf & ~PAGE_CACHE_MASK; + + from = wc->w_pos & (PAGE_CACHE_SIZE - 1); + + /* + * This is a lot of comparisons, but it reads quite + * easily, which is important here. + */ + /* Stay within the src page */ + bytes = PAGE_SIZE - src_from; + /* Stay within the vector */ + bytes = min(bytes, + (unsigned long)(cur_iov->iov_len - bp->b_cur_off)); + /* Stay within count */ + bytes = min(bytes, (unsigned long)wc->w_count); + /* + * For clustersize > page size, just stay within + * target page, otherwise we have to calculate pos + * within the cluster and obey the rightmost + * boundary. + */ + if (wc->w_large_pages) { + /* + * For cluster size < page size, we have to + * calculate pos within the cluster and obey + * the rightmost boundary. + */ + bytes = min(bytes, (unsigned long)(osb->s_clustersize + - (wc->w_pos & (osb->s_clustersize - 1)))); + } else { + /* + * cluster size > page size is the most common + * case - we just stay within the target page + * boundary. + */ + bytes = min(bytes, PAGE_CACHE_SIZE - from); + } + + to = from + bytes; + + if (wc->w_this_page_new) + ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode, + cluster_start, cluster_end, 1); + else + ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode, + from, to, 0); + if (ret) { + mlog_errno(ret); + goto out; + } + + BUG_ON(from > PAGE_CACHE_SIZE); + BUG_ON(to > PAGE_CACHE_SIZE); + BUG_ON(from > osb->s_clustersize); + BUG_ON(to > osb->s_clustersize); + + dst = kmap(wc->w_this_page); + memcpy(dst + from, bp->b_src_buf + src_from, bytes); + kunmap(wc->w_this_page); + + /* + * XXX: This is slow, but simple. The caller of + * ocfs2_buffered_write_cluster() is responsible for + * passing through the iovecs, so it's difficult to + * predict what our next step is in here after our + * initial write. A future version should be pushing + * that iovec manipulation further down. + * + * By setting this, we indicate that a copy from user + * data was done, and subsequent calls for this + * cluster will skip copying more data. + */ + wc->w_finished_copy = 1; + + *ret_from = from; + *ret_to = to; +out: + + return bytes ? (unsigned int)bytes : ret; +} + +/* + * Map, fill and write a page to disk. + * + * The work of copying data is done via callback. Newly allocated + * pages which don't take user data will be zero'd (set 'new' to + * indicate an allocating write) + * + * Returns a negative error code or the number of bytes copied into + * the page. + */ +int ocfs2_write_data_page(struct inode *inode, handle_t *handle, + u64 *p_blkno, struct page *page, + struct ocfs2_write_ctxt *wc, int new) +{ + int ret, copied = 0; + unsigned int from = 0, to = 0; + unsigned int cluster_start, cluster_end; + unsigned int zero_from = 0, zero_to = 0; + + ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos, + &cluster_start, &cluster_end); + + if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index + && !wc->w_finished_copy) { + + wc->w_this_page = page; + wc->w_this_page_new = new; + ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to); + if (ret < 0) { + mlog_errno(ret); + goto out; + } + + copied = ret; + + zero_from = from; + zero_to = to; + if (new) { + from = cluster_start; + to = cluster_end; + } + } else { + /* + * If we haven't allocated the new page yet, we + * shouldn't be writing it out without copying user + * data. This is likely a math error from the caller. + */ + BUG_ON(!new); + + from = cluster_start; + to = cluster_end; + + ret = ocfs2_map_page_blocks(page, p_blkno, inode, + cluster_start, cluster_end, 1); + if (ret) { + mlog_errno(ret); + goto out; + } + } + + /* + * Parts of newly allocated pages need to be zero'd. + * + * Above, we have also rewritten 'to' and 'from' - as far as + * the rest of the function is concerned, the entire cluster + * range inside of a page needs to be written. + * + * We can skip this if the page is up to date - it's already + * been zero'd from being read in as a hole. + */ + if (new && !PageUptodate(page)) + ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), + wc->w_cpos, zero_from, zero_to); + + flush_dcache_page(page); + + if (ocfs2_should_order_data(inode)) { + ret = walk_page_buffers(handle, + page_buffers(page), + from, to, NULL, + ocfs2_journal_dirty_data); + if (ret < 0) + mlog_errno(ret); + } + + /* + * We don't use generic_commit_write() because we need to + * handle our own i_size update. + */ + ret = block_commit_write(page, from, to); + if (ret) + mlog_errno(ret); +out: + + return copied ? copied : ret; +} + +/* + * Do the actual write of some data into an inode. Optionally allocate + * in order to fulfill the write. + * + * cpos is the logical cluster offset within the file to write at + * + * 'phys' is the physical mapping of that offset. a 'phys' value of + * zero indicates that allocation is required. In this case, data_ac + * and meta_ac should be valid (meta_ac can be null if metadata + * allocation isn't required). + */ +static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle, + struct buffer_head *di_bh, + struct ocfs2_alloc_context *data_ac, + struct ocfs2_alloc_context *meta_ac, + struct ocfs2_write_ctxt *wc) +{ + int ret, i, numpages = 1, new; + unsigned int copied = 0; + u32 tmp_pos; + u64 v_blkno, p_blkno; + struct address_space *mapping = file->f_mapping; + struct inode *inode = mapping->host; + unsigned int cbits = OCFS2_SB(inode->i_sb)->s_clustersize_bits; + unsigned long index, start; + struct page **cpages; + + new = phys == 0 ? 1 : 0; + + /* + * Figure out how many pages we'll be manipulating here. For + * non-allocating write, or any writes where cluster size is + * less than page size, we only need one page. Otherwise, + * allocating writes of cluster size larger than page size + * need cluster size pages. + */ + if (new && !wc->w_large_pages) + numpages = (1 << cbits) / PAGE_SIZE; + + cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS); + if (!cpages) { + ret = -ENOMEM; + mlog_errno(ret); + return ret; + } + + /* + * Fill our page array first. That way we've grabbed enough so + * that we can zero and flush if we error after adding the + * extent. + */ + if (new) { + start = ocfs2_align_clusters_to_page_index(inode->i_sb, + wc->w_cpos); + v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos); + } else { + start = wc->w_pos >> PAGE_CACHE_SHIFT; + v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits; + } + + for(i = 0; i < numpages; i++) { + index = start + i; + + cpages[i] = grab_cache_page(mapping, index); + if (!cpages[i]) { + ret = -ENOMEM; + mlog_errno(ret); + goto out; + } + } + + if (new) { + /* + * This is safe to call with the page locks - it won't take + * any additional semaphores or cluster locks. + */ + tmp_pos = wc->w_cpos; + ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode, + &tmp_pos, 1, di_bh, handle, + data_ac, meta_ac, NULL); + /* + * This shouldn't happen because we must have already + * calculated the correct meta data allocation required. The + * internal tree allocation code should know how to increase + * transaction credits itself. + * + * If need be, we could handle -EAGAIN for a + * RESTART_TRANS here. + */ + mlog_bug_on_msg(ret == -EAGAIN, + "Inode %llu: EAGAIN return during allocation.\n", + (unsigned long long)OCFS2_I(inode)->ip_blkno); + if (ret < 0) { + mlog_errno(ret); + goto out; + } + } + + ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL); + if (ret < 0) { + + /* + * XXX: Should we go readonly here? + */ + + mlog_errno(ret); + goto out; + } + + BUG_ON(p_blkno == 0); + + for(i = 0; i < numpages; i++) { + ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i], + wc, new); + if (ret < 0) { + mlog_errno(ret); + goto out; + } + + copied += ret; + } + +out: + for(i = 0; i < numpages; i++) { + unlock_page(cpages[i]); + mark_page_accessed(cpages[i]); + page_cache_release(cpages[i]); + } + kfree(cpages); + + return copied ? copied : ret; +} + +static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc, + struct ocfs2_super *osb, loff_t pos, + size_t count, ocfs2_page_writer *cb, + void *cb_priv) +{ + wc->w_count = count; + wc->w_pos = pos; + wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits; + wc->w_finished_copy = 0; + + if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) + wc->w_large_pages = 1; + else + wc->w_large_pages = 0; + + wc->w_write_data_page = cb; + wc->w_private = cb_priv; +} + +/* + * Write a cluster to an inode. The cluster may not be allocated yet, + * in which case it will be. This only exists for buffered writes - + * O_DIRECT takes a more "traditional" path through the kernel. + * + * The caller is responsible for incrementing pos, written counts, etc + * + * For file systems that don't support sparse files, pre-allocation + * and page zeroing up until cpos should be done prior to this + * function call. + * + * Callers should be holding i_sem, and the rw cluster lock. + * + * Returns the number of user bytes written, or less than zero for + * error. + */ +ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos, + size_t count, ocfs2_page_writer *actor, + void *priv) +{ + int ret, credits = OCFS2_INODE_UPDATE_CREDITS; + ssize_t written = 0; + u32 phys; + struct inode *inode = file->f_mapping->host; + struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); + struct buffer_head *di_bh = NULL; + struct ocfs2_dinode *di; + struct ocfs2_alloc_context *data_ac = NULL; + struct ocfs2_alloc_context *meta_ac = NULL; + handle_t *handle; + struct ocfs2_write_ctxt wc; + + ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv); + + ret = ocfs2_meta_lock(inode, &di_bh, 1); + if (ret) { + mlog_errno(ret); + goto out; + } + di = (struct ocfs2_dinode *)di_bh->b_data; + + /* + * Take alloc sem here to prevent concurrent lookups. That way + * the mapping, zeroing and tree manipulation within + * ocfs2_write() will be safe against ->readpage(). This + * should also serve to lock out allocation from a shared + * writeable region. + */ + down_write(&OCFS2_I(inode)->ip_alloc_sem); + + ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL); + if (ret) { + mlog_errno(ret); + goto out_meta; + } + + /* phys == 0 means that allocation is required. */ + if (phys == 0) { + ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac); + if (ret) { + mlog_errno(ret); + goto out_meta; + } + + credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1); + } + + ret = ocfs2_data_lock(inode, 1); + if (ret) { + mlog_errno(ret); + goto out_meta; + } + + handle = ocfs2_start_trans(osb, credits); + if (IS_ERR(handle)) { + ret = PTR_ERR(handle); + mlog_errno(ret); + goto out_data; + } + + written = ocfs2_write(file, phys, handle, di_bh, data_ac, + meta_ac, &wc); + if (written < 0) { + ret = written; + mlog_errno(ret); + goto out_commit; + } + + ret = ocfs2_journal_access(handle, inode, di_bh, + OCFS2_JOURNAL_ACCESS_WRITE); + if (ret) { + mlog_errno(ret); + goto out_commit; + } + + pos += written; + if (pos > inode->i_size) { + i_size_write(inode, pos); + mark_inode_dirty(inode); + } + inode->i_blocks = ocfs2_align_bytes_to_sectors((u64)(i_size_read(inode))); + di->i_size = cpu_to_le64((u64)i_size_read(inode)); + inode->i_mtime = inode->i_ctime = CURRENT_TIME; + di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); + di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); + + ret = ocfs2_journal_dirty(handle, di_bh); + if (ret) + mlog_errno(ret); + +out_commit: + ocfs2_commit_trans(osb, handle); + +out_data: + ocfs2_data_unlock(inode, 1); + +out_meta: + up_write(&OCFS2_I(inode)->ip_alloc_sem); + ocfs2_meta_unlock(inode, 1); + +out: + brelse(di_bh); + if (data_ac) + ocfs2_free_alloc_context(data_ac); + if (meta_ac) + ocfs2_free_alloc_context(meta_ac); + + return written ? written : ret; +} + const struct address_space_operations ocfs2_aops = { .readpage = ocfs2_readpage, .writepage = ocfs2_writepage, |