summaryrefslogtreecommitdiffstats
path: root/fs/xfs/Makefile
diff options
context:
space:
mode:
authorDarrick J. Wong <djwong@kernel.org>2024-02-22 12:43:40 -0800
committerDarrick J. Wong <djwong@kernel.org>2024-02-22 12:43:40 -0800
commit18a1e644b094a12e5417c386b850aaa85bdca51f (patch)
treea1d0304a75694df4d50043a94e3e4db956ce517c /fs/xfs/Makefile
parent7e1b84b24d257700e417bc9cd724c1efdff653d7 (diff)
downloadlinux-18a1e644b094a12e5417c386b850aaa85bdca51f.tar.gz
linux-18a1e644b094a12e5417c386b850aaa85bdca51f.tar.bz2
linux-18a1e644b094a12e5417c386b850aaa85bdca51f.zip
xfs: define an in-memory btree for storing refcount bag info during repairs
Create a new in-memory btree type so that we can store refcount bag info in a much more memory-efficient and performant format. Recall that the refcount recordset regenerator computes the new recordset from browsing the rmap records. Let's say that the rmap records are: {agbno: 10, length: 40, ...} {agbno: 11, length: 3, ...} {agbno: 12, length: 20, ...} {agbno: 15, length: 1, ...} It is convenient to have a data structure that could quickly tell us the refcount for an arbitrary agbno without wasting memory. An array or a list could do that pretty easily. List suck because of the pointer overhead. xfarrays are a lot more compact, but we want to minimize sparse holes in the xfarray to constrain memory usage. Maintaining any kind of record order isn't needed for correctness, so I created the "rcbag", which is shorthand for an unordered list of (excerpted) reverse mappings. So we add the first rmap to the rcbag, and it looks like: 0: {agbno: 10, length: 40} The refcount for agbno 10 is 1. Then we move on to block 11, so we add the second rmap: 0: {agbno: 10, length: 40} 1: {agbno: 11, length: 3} The refcount for agbno 11 is 2. We move on to block 12, so we add the third: 0: {agbno: 10, length: 40} 1: {agbno: 11, length: 3} 2: {agbno: 12, length: 20} The refcount for agbno 12 and 13 is 3. We move on to block 14, and remove the second rmap: 0: {agbno: 10, length: 40} 1: NULL 2: {agbno: 12, length: 20} The refcount for agbno 14 is 2. We move on to block 15, and add the last rmap. But we don't care where it is and we don't want to expand the array so we put it in slot 1: 0: {agbno: 10, length: 40} 1: {agbno: 15, length: 1} 2: {agbno: 12, length: 20} The refcount for block 15 is 3. Notice how order doesn't matter in this list? That's why repair uses an unordered list, or "bag". The data structure is not a set because it does not guarantee uniqueness. That said, adding and removing specific items is now an O(n) operation because we have no idea where that item might be in the list. Overall, the runtime is O(n^2) which is bad. I realized that I could easily refactor the btree code and reimplement the refcount bag with an xfbtree. Adding and removing is now O(log2 n), so the runtime is at least O(n log2 n), which is much faster. In the end, the rcbag becomes a sorted list, but that's merely a detail of the implementation. The repair code doesn't care. (Note: That horrible xfs_db bmap_inflate command can be used to exercise this sort of rcbag insanity by cranking up refcounts quickly.) Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
Diffstat (limited to 'fs/xfs/Makefile')
-rw-r--r--fs/xfs/Makefile1
1 files changed, 1 insertions, 0 deletions
diff --git a/fs/xfs/Makefile b/fs/xfs/Makefile
index 6de02b2573c3..cca169bd9617 100644
--- a/fs/xfs/Makefile
+++ b/fs/xfs/Makefile
@@ -198,6 +198,7 @@ xfs-y += $(addprefix scrub/, \
inode_repair.o \
newbt.o \
nlinks_repair.o \
+ rcbag_btree.o \
reap.o \
refcount_repair.o \
repair.o \