summaryrefslogtreecommitdiffstats
path: root/fs
diff options
context:
space:
mode:
authorKees Cook <keescook@chromium.org>2012-07-25 17:29:07 -0700
committerAl Viro <viro@zeniv.linux.org.uk>2012-07-29 21:37:58 +0400
commit800179c9b8a1e796e441674776d11cd4c05d61d7 (patch)
tree5760992f4453c35b57b2686d8b8d5caee239b637 /fs
parent3134f37e931d75931bdf6d4eacd82a3fd26eca7c (diff)
downloadlinux-800179c9b8a1e796e441674776d11cd4c05d61d7.tar.gz
linux-800179c9b8a1e796e441674776d11cd4c05d61d7.tar.bz2
linux-800179c9b8a1e796e441674776d11cd4c05d61d7.zip
fs: add link restrictions
This adds symlink and hardlink restrictions to the Linux VFS. Symlinks: A long-standing class of security issues is the symlink-based time-of-check-time-of-use race, most commonly seen in world-writable directories like /tmp. The common method of exploitation of this flaw is to cross privilege boundaries when following a given symlink (i.e. a root process follows a symlink belonging to another user). For a likely incomplete list of hundreds of examples across the years, please see: http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=/tmp The solution is to permit symlinks to only be followed when outside a sticky world-writable directory, or when the uid of the symlink and follower match, or when the directory owner matches the symlink's owner. Some pointers to the history of earlier discussion that I could find: 1996 Aug, Zygo Blaxell http://marc.info/?l=bugtraq&m=87602167419830&w=2 1996 Oct, Andrew Tridgell http://lkml.indiana.edu/hypermail/linux/kernel/9610.2/0086.html 1997 Dec, Albert D Cahalan http://lkml.org/lkml/1997/12/16/4 2005 Feb, Lorenzo Hernández García-Hierro http://lkml.indiana.edu/hypermail/linux/kernel/0502.0/1896.html 2010 May, Kees Cook https://lkml.org/lkml/2010/5/30/144 Past objections and rebuttals could be summarized as: - Violates POSIX. - POSIX didn't consider this situation and it's not useful to follow a broken specification at the cost of security. - Might break unknown applications that use this feature. - Applications that break because of the change are easy to spot and fix. Applications that are vulnerable to symlink ToCToU by not having the change aren't. Additionally, no applications have yet been found that rely on this behavior. - Applications should just use mkstemp() or O_CREATE|O_EXCL. - True, but applications are not perfect, and new software is written all the time that makes these mistakes; blocking this flaw at the kernel is a single solution to the entire class of vulnerability. - This should live in the core VFS. - This should live in an LSM. (https://lkml.org/lkml/2010/5/31/135) - This should live in an LSM. - This should live in the core VFS. (https://lkml.org/lkml/2010/8/2/188) Hardlinks: On systems that have user-writable directories on the same partition as system files, a long-standing class of security issues is the hardlink-based time-of-check-time-of-use race, most commonly seen in world-writable directories like /tmp. The common method of exploitation of this flaw is to cross privilege boundaries when following a given hardlink (i.e. a root process follows a hardlink created by another user). Additionally, an issue exists where users can "pin" a potentially vulnerable setuid/setgid file so that an administrator will not actually upgrade a system fully. The solution is to permit hardlinks to only be created when the user is already the existing file's owner, or if they already have read/write access to the existing file. Many Linux users are surprised when they learn they can link to files they have no access to, so this change appears to follow the doctrine of "least surprise". Additionally, this change does not violate POSIX, which states "the implementation may require that the calling process has permission to access the existing file"[1]. This change is known to break some implementations of the "at" daemon, though the version used by Fedora and Ubuntu has been fixed[2] for a while. Otherwise, the change has been undisruptive while in use in Ubuntu for the last 1.5 years. [1] http://pubs.opengroup.org/onlinepubs/9699919799/functions/linkat.html [2] http://anonscm.debian.org/gitweb/?p=collab-maint/at.git;a=commitdiff;h=f4114656c3a6c6f6070e315ffdf940a49eda3279 This patch is based on the patches in Openwall and grsecurity, along with suggestions from Al Viro. I have added a sysctl to enable the protected behavior, and documentation. Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Diffstat (limited to 'fs')
-rw-r--r--fs/namei.c122
1 files changed, 122 insertions, 0 deletions
diff --git a/fs/namei.c b/fs/namei.c
index afa087649ddb..3861d85f8488 100644
--- a/fs/namei.c
+++ b/fs/namei.c
@@ -650,6 +650,119 @@ static inline void put_link(struct nameidata *nd, struct path *link, void *cooki
path_put(link);
}
+int sysctl_protected_symlinks __read_mostly = 1;
+int sysctl_protected_hardlinks __read_mostly = 1;
+
+/**
+ * may_follow_link - Check symlink following for unsafe situations
+ * @link: The path of the symlink
+ *
+ * In the case of the sysctl_protected_symlinks sysctl being enabled,
+ * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
+ * in a sticky world-writable directory. This is to protect privileged
+ * processes from failing races against path names that may change out
+ * from under them by way of other users creating malicious symlinks.
+ * It will permit symlinks to be followed only when outside a sticky
+ * world-writable directory, or when the uid of the symlink and follower
+ * match, or when the directory owner matches the symlink's owner.
+ *
+ * Returns 0 if following the symlink is allowed, -ve on error.
+ */
+static inline int may_follow_link(struct path *link, struct nameidata *nd)
+{
+ const struct inode *inode;
+ const struct inode *parent;
+
+ if (!sysctl_protected_symlinks)
+ return 0;
+
+ /* Allowed if owner and follower match. */
+ inode = link->dentry->d_inode;
+ if (current_cred()->fsuid == inode->i_uid)
+ return 0;
+
+ /* Allowed if parent directory not sticky and world-writable. */
+ parent = nd->path.dentry->d_inode;
+ if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
+ return 0;
+
+ /* Allowed if parent directory and link owner match. */
+ if (parent->i_uid == inode->i_uid)
+ return 0;
+
+ path_put_conditional(link, nd);
+ path_put(&nd->path);
+ return -EACCES;
+}
+
+/**
+ * safe_hardlink_source - Check for safe hardlink conditions
+ * @inode: the source inode to hardlink from
+ *
+ * Return false if at least one of the following conditions:
+ * - inode is not a regular file
+ * - inode is setuid
+ * - inode is setgid and group-exec
+ * - access failure for read and write
+ *
+ * Otherwise returns true.
+ */
+static bool safe_hardlink_source(struct inode *inode)
+{
+ umode_t mode = inode->i_mode;
+
+ /* Special files should not get pinned to the filesystem. */
+ if (!S_ISREG(mode))
+ return false;
+
+ /* Setuid files should not get pinned to the filesystem. */
+ if (mode & S_ISUID)
+ return false;
+
+ /* Executable setgid files should not get pinned to the filesystem. */
+ if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
+ return false;
+
+ /* Hardlinking to unreadable or unwritable sources is dangerous. */
+ if (inode_permission(inode, MAY_READ | MAY_WRITE))
+ return false;
+
+ return true;
+}
+
+/**
+ * may_linkat - Check permissions for creating a hardlink
+ * @link: the source to hardlink from
+ *
+ * Block hardlink when all of:
+ * - sysctl_protected_hardlinks enabled
+ * - fsuid does not match inode
+ * - hardlink source is unsafe (see safe_hardlink_source() above)
+ * - not CAP_FOWNER
+ *
+ * Returns 0 if successful, -ve on error.
+ */
+static int may_linkat(struct path *link)
+{
+ const struct cred *cred;
+ struct inode *inode;
+
+ if (!sysctl_protected_hardlinks)
+ return 0;
+
+ cred = current_cred();
+ inode = link->dentry->d_inode;
+
+ /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
+ * otherwise, it must be a safe source.
+ */
+ if (cred->fsuid == inode->i_uid || safe_hardlink_source(inode) ||
+ capable(CAP_FOWNER))
+ return 0;
+
+ return -EPERM;
+}
+
static __always_inline int
follow_link(struct path *link, struct nameidata *nd, void **p)
{
@@ -1818,6 +1931,9 @@ static int path_lookupat(int dfd, const char *name,
while (err > 0) {
void *cookie;
struct path link = path;
+ err = may_follow_link(&link, nd);
+ if (unlikely(err))
+ break;
nd->flags |= LOOKUP_PARENT;
err = follow_link(&link, nd, &cookie);
if (err)
@@ -2778,6 +2894,9 @@ static struct file *path_openat(int dfd, const char *pathname,
error = -ELOOP;
break;
}
+ error = may_follow_link(&link, nd);
+ if (unlikely(error))
+ break;
nd->flags |= LOOKUP_PARENT;
nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
error = follow_link(&link, nd, &cookie);
@@ -3421,6 +3540,9 @@ SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
error = -EXDEV;
if (old_path.mnt != new_path.mnt)
goto out_dput;
+ error = may_linkat(&old_path);
+ if (unlikely(error))
+ goto out_dput;
error = security_path_link(old_path.dentry, &new_path, new_dentry);
if (error)
goto out_dput;