summaryrefslogtreecommitdiffstats
path: root/include/asm-generic/word-at-a-time.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2012-05-26 10:43:17 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2012-05-26 11:33:40 -0700
commit36126f8f2ed8168eb13aa0662b9b9585cba100a9 (patch)
tree543f6b6ab60dd3e47af931142aa84f0ba7749d43 /include/asm-generic/word-at-a-time.h
parent4ae73f2d53255c388d50bf83c1681112a6f9cba1 (diff)
downloadlinux-36126f8f2ed8168eb13aa0662b9b9585cba100a9.tar.gz
linux-36126f8f2ed8168eb13aa0662b9b9585cba100a9.tar.bz2
linux-36126f8f2ed8168eb13aa0662b9b9585cba100a9.zip
word-at-a-time: make the interfaces truly generic
This changes the interfaces in <asm/word-at-a-time.h> to be a bit more complicated, but a lot more generic. In particular, it allows us to really do the operations efficiently on both little-endian and big-endian machines, pretty much regardless of machine details. For example, if you can rely on a fast population count instruction on your architecture, this will allow you to make your optimized <asm/word-at-a-time.h> file with that. NOTE! The "generic" version in include/asm-generic/word-at-a-time.h is not truly generic, it actually only works on big-endian. Why? Because on little-endian the generic algorithms are wasteful, since you can inevitably do better. The x86 implementation is an example of that. (The only truly non-generic part of the asm-generic implementation is the "find_zero()" function, and you could make a little-endian version of it. And if the Kbuild infrastructure allowed us to pick a particular header file, that would be lovely) The <asm/word-at-a-time.h> functions are as follows: - WORD_AT_A_TIME_CONSTANTS: specific constants that the algorithm uses. - has_zero(): take a word, and determine if it has a zero byte in it. It gets the word, the pointer to the constant pool, and a pointer to an intermediate "data" field it can set. This is the "quick-and-dirty" zero tester: it's what is run inside the hot loops. - "prep_zero_mask()": take the word, the data that has_zero() produced, and the constant pool, and generate an *exact* mask of which byte had the first zero. This is run directly *outside* the loop, and allows the "has_zero()" function to answer the "is there a zero byte" question without necessarily getting exactly *which* byte is the first one to contain a zero. If you do multiple byte lookups concurrently (eg "hash_name()", which looks for both NUL and '/' bytes), after you've done the prep_zero_mask() phase, the result of those can be or'ed together to get the "either or" case. - The result from "prep_zero_mask()" can then be fed into "find_zero()" (to find the byte offset of the first byte that was zero) or into "zero_bytemask()" (to find the bytemask of the bytes preceding the zero byte). The existence of zero_bytemask() is optional, and is not necessary for the normal string routines. But dentry name hashing needs it, so if you enable DENTRY_WORD_AT_A_TIME you need to expose it. This changes the generic strncpy_from_user() function and the dentry hashing functions to use these modified word-at-a-time interfaces. This gets us back to the optimized state of the x86 strncpy that we lost in the previous commit when moving over to the generic version. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'include/asm-generic/word-at-a-time.h')
-rw-r--r--include/asm-generic/word-at-a-time.h52
1 files changed, 52 insertions, 0 deletions
diff --git a/include/asm-generic/word-at-a-time.h b/include/asm-generic/word-at-a-time.h
new file mode 100644
index 000000000000..3f21f1b72e45
--- /dev/null
+++ b/include/asm-generic/word-at-a-time.h
@@ -0,0 +1,52 @@
+#ifndef _ASM_WORD_AT_A_TIME_H
+#define _ASM_WORD_AT_A_TIME_H
+
+/*
+ * This says "generic", but it's actually big-endian only.
+ * Little-endian can use more efficient versions of these
+ * interfaces, see for example
+ * arch/x86/include/asm/word-at-a-time.h
+ * for those.
+ */
+
+#include <linux/kernel.h>
+
+struct word_at_a_time {
+ const unsigned long high_bits, low_bits;
+};
+
+#define WORD_AT_A_TIME_CONSTANTS { REPEAT_BYTE(0xfe) + 1, REPEAT_BYTE(0x7f) }
+
+/* Bit set in the bytes that have a zero */
+static inline long prep_zero_mask(unsigned long val, unsigned long rhs, const struct word_at_a_time *c)
+{
+ unsigned long mask = (val & c->low_bits) + c->low_bits;
+ return ~(mask | rhs);
+}
+
+#define create_zero_mask(mask) (mask)
+
+static inline long find_zero(unsigned long mask)
+{
+ long byte = 0;
+#ifdef CONFIG_64BIT
+ if (mask >> 32)
+ mask >>= 32;
+ else
+ byte = 4;
+#endif
+ if (mask >> 16)
+ mask >>= 16;
+ else
+ byte += 2;
+ return (mask >> 8) ? byte : byte + 1;
+}
+
+static inline bool has_zero(unsigned long val, unsigned long *data, const struct word_at_a_time *c)
+{
+ unsigned long rhs = val | c->low_bits;
+ *data = rhs;
+ return (val + c->high_bits) & ~rhs;
+}
+
+#endif /* _ASM_WORD_AT_A_TIME_H */