diff options
author | Dave Chinner <dchinner@redhat.com> | 2022-11-29 09:09:17 +1100 |
---|---|---|
committer | Dave Chinner <david@fromorbit.com> | 2022-11-29 09:09:17 +1100 |
commit | d7b64041164ca177170191d2ad775da074ab2926 (patch) | |
tree | 812735ea58fc9549b84944e76f143c28262eaf8d /include/linux/iomap.h | |
parent | 7348b322332d8602a4133f0b861334ea021b134a (diff) | |
download | linux-d7b64041164ca177170191d2ad775da074ab2926.tar.gz linux-d7b64041164ca177170191d2ad775da074ab2926.tar.bz2 linux-d7b64041164ca177170191d2ad775da074ab2926.zip |
iomap: write iomap validity checks
A recent multithreaded write data corruption has been uncovered in
the iomap write code. The core of the problem is partial folio
writes can be flushed to disk while a new racing write can map it
and fill the rest of the page:
writeback new write
allocate blocks
blocks are unwritten
submit IO
.....
map blocks
iomap indicates UNWRITTEN range
loop {
lock folio
copyin data
.....
IO completes
runs unwritten extent conv
blocks are marked written
<iomap now stale>
get next folio
}
Now add memory pressure such that memory reclaim evicts the
partially written folio that has already been written to disk.
When the new write finally gets to the last partial page of the new
write, it does not find it in cache, so it instantiates a new page,
sees the iomap is unwritten, and zeros the part of the page that
it does not have data from. This overwrites the data on disk that
was originally written.
The full description of the corruption mechanism can be found here:
https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/
To solve this problem, we need to check whether the iomap is still
valid after we lock each folio during the write. We have to do it
after we lock the page so that we don't end up with state changes
occurring while we wait for the folio to be locked.
Hence we need a mechanism to be able to check that the cached iomap
is still valid (similar to what we already do in buffered
writeback), and we need a way for ->begin_write to back out and
tell the high level iomap iterator that we need to remap the
remaining write range.
The iomap needs to grow some storage for the validity cookie that
the filesystem provides to travel with the iomap. XFS, in
particular, also needs to know some more information about what the
iomap maps (attribute extents rather than file data extents) to for
the validity cookie to cover all the types of iomaps we might need
to validate.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Diffstat (limited to 'include/linux/iomap.h')
-rw-r--r-- | include/linux/iomap.h | 43 |
1 files changed, 35 insertions, 8 deletions
diff --git a/include/linux/iomap.h b/include/linux/iomap.h index 0698c4b8ce0e..0983dfc9a203 100644 --- a/include/linux/iomap.h +++ b/include/linux/iomap.h @@ -49,26 +49,35 @@ struct vm_fault; * * IOMAP_F_BUFFER_HEAD indicates that the file system requires the use of * buffer heads for this mapping. + * + * IOMAP_F_XATTR indicates that the iomap is for an extended attribute extent + * rather than a file data extent. */ -#define IOMAP_F_NEW 0x01 -#define IOMAP_F_DIRTY 0x02 -#define IOMAP_F_SHARED 0x04 -#define IOMAP_F_MERGED 0x08 -#define IOMAP_F_BUFFER_HEAD 0x10 -#define IOMAP_F_ZONE_APPEND 0x20 +#define IOMAP_F_NEW (1U << 0) +#define IOMAP_F_DIRTY (1U << 1) +#define IOMAP_F_SHARED (1U << 2) +#define IOMAP_F_MERGED (1U << 3) +#define IOMAP_F_BUFFER_HEAD (1U << 4) +#define IOMAP_F_ZONE_APPEND (1U << 5) +#define IOMAP_F_XATTR (1U << 6) /* * Flags set by the core iomap code during operations: * * IOMAP_F_SIZE_CHANGED indicates to the iomap_end method that the file size * has changed as the result of this write operation. + * + * IOMAP_F_STALE indicates that the iomap is not valid any longer and the file + * range it covers needs to be remapped by the high level before the operation + * can proceed. */ -#define IOMAP_F_SIZE_CHANGED 0x100 +#define IOMAP_F_SIZE_CHANGED (1U << 8) +#define IOMAP_F_STALE (1U << 9) /* * Flags from 0x1000 up are for file system specific usage: */ -#define IOMAP_F_PRIVATE 0x1000 +#define IOMAP_F_PRIVATE (1U << 12) /* @@ -89,6 +98,7 @@ struct iomap { void *inline_data; void *private; /* filesystem private */ const struct iomap_page_ops *page_ops; + u64 validity_cookie; /* used with .iomap_valid() */ }; static inline sector_t iomap_sector(const struct iomap *iomap, loff_t pos) @@ -128,6 +138,23 @@ struct iomap_page_ops { int (*page_prepare)(struct inode *inode, loff_t pos, unsigned len); void (*page_done)(struct inode *inode, loff_t pos, unsigned copied, struct page *page); + + /* + * Check that the cached iomap still maps correctly to the filesystem's + * internal extent map. FS internal extent maps can change while iomap + * is iterating a cached iomap, so this hook allows iomap to detect that + * the iomap needs to be refreshed during a long running write + * operation. + * + * The filesystem can store internal state (e.g. a sequence number) in + * iomap->validity_cookie when the iomap is first mapped to be able to + * detect changes between mapping time and whenever .iomap_valid() is + * called. + * + * This is called with the folio over the specified file position held + * locked by the iomap code. + */ + bool (*iomap_valid)(struct inode *inode, const struct iomap *iomap); }; /* |