summaryrefslogtreecommitdiffstats
path: root/include/linux/pipe_fs_i.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2014-04-12 14:49:50 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2014-04-12 14:49:50 -0700
commit5166701b368caea89d57b14bf41cf39e819dad51 (patch)
treec73b9d4860809e3afa9359be9d03ba2d8d98a18e /include/linux/pipe_fs_i.h
parent0a7418f5f569512e98789c439198eed4b507cce3 (diff)
parenta786c06d9f2719203c00b3d97b21f9a96980d0b5 (diff)
downloadlinux-5166701b368caea89d57b14bf41cf39e819dad51.tar.gz
linux-5166701b368caea89d57b14bf41cf39e819dad51.tar.bz2
linux-5166701b368caea89d57b14bf41cf39e819dad51.zip
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs updates from Al Viro: "The first vfs pile, with deep apologies for being very late in this window. Assorted cleanups and fixes, plus a large preparatory part of iov_iter work. There's a lot more of that, but it'll probably go into the next merge window - it *does* shape up nicely, removes a lot of boilerplate, gets rid of locking inconsistencie between aio_write and splice_write and I hope to get Kent's direct-io rewrite merged into the same queue, but some of the stuff after this point is having (mostly trivial) conflicts with the things already merged into mainline and with some I want more testing. This one passes LTP and xfstests without regressions, in addition to usual beating. BTW, readahead02 in ltp syscalls testsuite has started giving failures since "mm/readahead.c: fix readahead failure for memoryless NUMA nodes and limit readahead pages" - might be a false positive, might be a real regression..." * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits) missing bits of "splice: fix racy pipe->buffers uses" cifs: fix the race in cifs_writev() ceph_sync_{,direct_}write: fix an oops on ceph_osdc_new_request() failure kill generic_file_buffered_write() ocfs2_file_aio_write(): switch to generic_perform_write() ceph_aio_write(): switch to generic_perform_write() xfs_file_buffered_aio_write(): switch to generic_perform_write() export generic_perform_write(), start getting rid of generic_file_buffer_write() generic_file_direct_write(): get rid of ppos argument btrfs_file_aio_write(): get rid of ppos kill the 5th argument of generic_file_buffered_write() kill the 4th argument of __generic_file_aio_write() lustre: don't open-code kernel_recvmsg() ocfs2: don't open-code kernel_recvmsg() drbd: don't open-code kernel_recvmsg() constify blk_rq_map_user_iov() and friends lustre: switch to kernel_sendmsg() ocfs2: don't open-code kernel_sendmsg() take iov_iter stuff to mm/iov_iter.c process_vm_access: tidy up a bit ...
Diffstat (limited to 'include/linux/pipe_fs_i.h')
-rw-r--r--include/linux/pipe_fs_i.h19
1 files changed, 0 insertions, 19 deletions
diff --git a/include/linux/pipe_fs_i.h b/include/linux/pipe_fs_i.h
index 4d9389c79e61..eb8b8ac6df3c 100644
--- a/include/linux/pipe_fs_i.h
+++ b/include/linux/pipe_fs_i.h
@@ -83,23 +83,6 @@ struct pipe_buf_operations {
int can_merge;
/*
- * ->map() returns a virtual address mapping of the pipe buffer.
- * The last integer flag reflects whether this should be an atomic
- * mapping or not. The atomic map is faster, however you can't take
- * page faults before calling ->unmap() again. So if you need to eg
- * access user data through copy_to/from_user(), then you must get
- * a non-atomic map. ->map() uses the kmap_atomic slot for
- * atomic maps, you have to be careful if mapping another page as
- * source or destination for a copy.
- */
- void * (*map)(struct pipe_inode_info *, struct pipe_buffer *, int);
-
- /*
- * Undoes ->map(), finishes the virtual mapping of the pipe buffer.
- */
- void (*unmap)(struct pipe_inode_info *, struct pipe_buffer *, void *);
-
- /*
* ->confirm() verifies that the data in the pipe buffer is there
* and that the contents are good. If the pages in the pipe belong
* to a file system, we may need to wait for IO completion in this
@@ -150,8 +133,6 @@ struct pipe_inode_info *alloc_pipe_info(void);
void free_pipe_info(struct pipe_inode_info *);
/* Generic pipe buffer ops functions */
-void *generic_pipe_buf_map(struct pipe_inode_info *, struct pipe_buffer *, int);
-void generic_pipe_buf_unmap(struct pipe_inode_info *, struct pipe_buffer *, void *);
void generic_pipe_buf_get(struct pipe_inode_info *, struct pipe_buffer *);
int generic_pipe_buf_confirm(struct pipe_inode_info *, struct pipe_buffer *);
int generic_pipe_buf_steal(struct pipe_inode_info *, struct pipe_buffer *);