summaryrefslogtreecommitdiffstats
path: root/kernel/cgroup_freezer.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2014-04-03 13:05:42 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2014-04-03 13:05:42 -0700
commit32d01dc7be4e725ab85ce1d74e8f4adc02ad68dd (patch)
tree213fe7d76b315413fe551332423fb2f6dfae59b9 /kernel/cgroup_freezer.c
parent68114e5eb862ad0a7a261b91497281b026102715 (diff)
parent1ec41830e087cda1f62dda4182c2b62811eb0ffc (diff)
downloadlinux-32d01dc7be4e725ab85ce1d74e8f4adc02ad68dd.tar.gz
linux-32d01dc7be4e725ab85ce1d74e8f4adc02ad68dd.tar.bz2
linux-32d01dc7be4e725ab85ce1d74e8f4adc02ad68dd.zip
Merge branch 'for-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo: "A lot updates for cgroup: - The biggest one is cgroup's conversion to kernfs. cgroup took after the long abandoned vfs-entangled sysfs implementation and made it even more convoluted over time. cgroup's internal objects were fused with vfs objects which also brought in vfs locking and object lifetime rules. Naturally, there are places where vfs rules don't fit and nasty hacks, such as credential switching or lock dance interleaving inode mutex and cgroup_mutex with object serial number comparison thrown in to decide whether the operation is actually necessary, needed to be employed. After conversion to kernfs, internal object lifetime and locking rules are mostly isolated from vfs interactions allowing shedding of several nasty hacks and overall simplification. This will also allow implmentation of operations which may affect multiple cgroups which weren't possible before as it would have required nesting i_mutexes. - Various simplifications including dropping of module support, easier cgroup name/path handling, simplified cgroup file type handling and task_cg_lists optimization. - Prepatory changes for the planned unified hierarchy, which is still a patchset away from being actually operational. The dummy hierarchy is updated to serve as the default unified hierarchy. Controllers which aren't claimed by other hierarchies are associated with it, which BTW was what the dummy hierarchy was for anyway. - Various fixes from Li and others. This pull request includes some patches to add missing slab.h to various subsystems. This was triggered xattr.h include removal from cgroup.h. cgroup.h indirectly got included a lot of files which brought in xattr.h which brought in slab.h. There are several merge commits - one to pull in kernfs updates necessary for converting cgroup (already in upstream through driver-core), others for interfering changes in the fixes branch" * 'for-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (74 commits) cgroup: remove useless argument from cgroup_exit() cgroup: fix spurious lockdep warning in cgroup_exit() cgroup: Use RCU_INIT_POINTER(x, NULL) in cgroup.c cgroup: break kernfs active_ref protection in cgroup directory operations cgroup: fix cgroup_taskset walking order cgroup: implement CFTYPE_ONLY_ON_DFL cgroup: make cgrp_dfl_root mountable cgroup: drop const from @buffer of cftype->write_string() cgroup: rename cgroup_dummy_root and related names cgroup: move ->subsys_mask from cgroupfs_root to cgroup cgroup: treat cgroup_dummy_root as an equivalent hierarchy during rebinding cgroup: remove NULL checks from [pr_cont_]cgroup_{name|path}() cgroup: use cgroup_setup_root() to initialize cgroup_dummy_root cgroup: reorganize cgroup bootstrapping cgroup: relocate setting of CGRP_DEAD cpuset: use rcu_read_lock() to protect task_cs() cgroup_freezer: document freezer_fork() subtleties cgroup: update cgroup_transfer_tasks() to either succeed or fail cgroup: drop task_lock() protection around task->cgroups cgroup: update how a newly forked task gets associated with css_set ...
Diffstat (limited to 'kernel/cgroup_freezer.c')
-rw-r--r--kernel/cgroup_freezer.c40
1 files changed, 29 insertions, 11 deletions
diff --git a/kernel/cgroup_freezer.c b/kernel/cgroup_freezer.c
index 6c3154e477f6..2bc4a2256444 100644
--- a/kernel/cgroup_freezer.c
+++ b/kernel/cgroup_freezer.c
@@ -52,7 +52,7 @@ static inline struct freezer *css_freezer(struct cgroup_subsys_state *css)
static inline struct freezer *task_freezer(struct task_struct *task)
{
- return css_freezer(task_css(task, freezer_subsys_id));
+ return css_freezer(task_css(task, freezer_cgrp_id));
}
static struct freezer *parent_freezer(struct freezer *freezer)
@@ -84,8 +84,6 @@ static const char *freezer_state_strs(unsigned int state)
return "THAWED";
};
-struct cgroup_subsys freezer_subsys;
-
static struct cgroup_subsys_state *
freezer_css_alloc(struct cgroup_subsys_state *parent_css)
{
@@ -189,7 +187,7 @@ static void freezer_attach(struct cgroup_subsys_state *new_css,
* current state before executing the following - !frozen tasks may
* be visible in a FROZEN cgroup and frozen tasks in a THAWED one.
*/
- cgroup_taskset_for_each(task, new_css, tset) {
+ cgroup_taskset_for_each(task, tset) {
if (!(freezer->state & CGROUP_FREEZING)) {
__thaw_task(task);
} else {
@@ -216,6 +214,16 @@ static void freezer_attach(struct cgroup_subsys_state *new_css,
}
}
+/**
+ * freezer_fork - cgroup post fork callback
+ * @task: a task which has just been forked
+ *
+ * @task has just been created and should conform to the current state of
+ * the cgroup_freezer it belongs to. This function may race against
+ * freezer_attach(). Losing to freezer_attach() means that we don't have
+ * to do anything as freezer_attach() will put @task into the appropriate
+ * state.
+ */
static void freezer_fork(struct task_struct *task)
{
struct freezer *freezer;
@@ -224,14 +232,26 @@ static void freezer_fork(struct task_struct *task)
freezer = task_freezer(task);
/*
- * The root cgroup is non-freezable, so we can skip the
- * following check.
+ * The root cgroup is non-freezable, so we can skip locking the
+ * freezer. This is safe regardless of race with task migration.
+ * If we didn't race or won, skipping is obviously the right thing
+ * to do. If we lost and root is the new cgroup, noop is still the
+ * right thing to do.
*/
if (!parent_freezer(freezer))
goto out;
+ /*
+ * Grab @freezer->lock and freeze @task after verifying @task still
+ * belongs to @freezer and it's freezing. The former is for the
+ * case where we have raced against task migration and lost and
+ * @task is already in a different cgroup which may not be frozen.
+ * This isn't strictly necessary as freeze_task() is allowed to be
+ * called spuriously but let's do it anyway for, if nothing else,
+ * documentation.
+ */
spin_lock_irq(&freezer->lock);
- if (freezer->state & CGROUP_FREEZING)
+ if (freezer == task_freezer(task) && (freezer->state & CGROUP_FREEZING))
freeze_task(task);
spin_unlock_irq(&freezer->lock);
out:
@@ -422,7 +442,7 @@ static void freezer_change_state(struct freezer *freezer, bool freeze)
}
static int freezer_write(struct cgroup_subsys_state *css, struct cftype *cft,
- const char *buffer)
+ char *buffer)
{
bool freeze;
@@ -473,13 +493,11 @@ static struct cftype files[] = {
{ } /* terminate */
};
-struct cgroup_subsys freezer_subsys = {
- .name = "freezer",
+struct cgroup_subsys freezer_cgrp_subsys = {
.css_alloc = freezer_css_alloc,
.css_online = freezer_css_online,
.css_offline = freezer_css_offline,
.css_free = freezer_css_free,
- .subsys_id = freezer_subsys_id,
.attach = freezer_attach,
.fork = freezer_fork,
.base_cftypes = files,