summaryrefslogtreecommitdiffstats
path: root/kernel/sched.c
diff options
context:
space:
mode:
authorBalbir Singh <balbir@linux.vnet.ibm.com>2008-09-05 18:12:23 +0200
committerIngo Molnar <mingo@elte.hu>2008-09-05 18:14:35 +0200
commit49048622eae698e5c4ae61f7e71200f265ccc529 (patch)
treee568595fe5329e1293eafc3a3cc833dfe89ffbf2 /kernel/sched.c
parent56c7426b3951e4f35a71d695f1c982989399d6fd (diff)
downloadlinux-49048622eae698e5c4ae61f7e71200f265ccc529.tar.gz
linux-49048622eae698e5c4ae61f7e71200f265ccc529.tar.bz2
linux-49048622eae698e5c4ae61f7e71200f265ccc529.zip
sched: fix process time monotonicity
Spencer reported a problem where utime and stime were going negative despite the fixes in commit b27f03d4bdc145a09fb7b0c0e004b29f1ee555fa. The suspected reason for the problem is that signal_struct maintains it's own utime and stime (of exited tasks), these are not updated using the new task_utime() routine, hence sig->utime can go backwards and cause the same problem to occur (sig->utime, adds tsk->utime and not task_utime()). This patch fixes the problem TODO: using max(task->prev_utime, derived utime) works for now, but a more generic solution is to implement cputime_max() and use the cputime_gt() function for comparison. Reported-by: spencer@bluehost.com Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/sched.c')
-rw-r--r--kernel/sched.c59
1 files changed, 59 insertions, 0 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
index 9a1ddb84e26d..1a5f73c1fcdc 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -4179,6 +4179,65 @@ void account_steal_time(struct task_struct *p, cputime_t steal)
}
/*
+ * Use precise platform statistics if available:
+ */
+#ifdef CONFIG_VIRT_CPU_ACCOUNTING
+cputime_t task_utime(struct task_struct *p)
+{
+ return p->utime;
+}
+
+cputime_t task_stime(struct task_struct *p)
+{
+ return p->stime;
+}
+#else
+cputime_t task_utime(struct task_struct *p)
+{
+ clock_t utime = cputime_to_clock_t(p->utime),
+ total = utime + cputime_to_clock_t(p->stime);
+ u64 temp;
+
+ /*
+ * Use CFS's precise accounting:
+ */
+ temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
+
+ if (total) {
+ temp *= utime;
+ do_div(temp, total);
+ }
+ utime = (clock_t)temp;
+
+ p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
+ return p->prev_utime;
+}
+
+cputime_t task_stime(struct task_struct *p)
+{
+ clock_t stime;
+
+ /*
+ * Use CFS's precise accounting. (we subtract utime from
+ * the total, to make sure the total observed by userspace
+ * grows monotonically - apps rely on that):
+ */
+ stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
+ cputime_to_clock_t(task_utime(p));
+
+ if (stime >= 0)
+ p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
+
+ return p->prev_stime;
+}
+#endif
+
+inline cputime_t task_gtime(struct task_struct *p)
+{
+ return p->gtime;
+}
+
+/*
* This function gets called by the timer code, with HZ frequency.
* We call it with interrupts disabled.
*