diff options
author | Peter Zijlstra <a.p.zijlstra@chello.nl> | 2011-11-15 17:14:39 +0100 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2011-11-17 12:20:22 +0100 |
commit | 391e43da797a96aeb65410281891f6d0b0e9611c (patch) | |
tree | 0ce6784525a5a8f75b377170cf1a7d60abccea29 /kernel/sched/cpupri.c | |
parent | 029632fbb7b7c9d85063cc9eb470de6c54873df3 (diff) | |
download | linux-391e43da797a96aeb65410281891f6d0b0e9611c.tar.gz linux-391e43da797a96aeb65410281891f6d0b0e9611c.tar.bz2 linux-391e43da797a96aeb65410281891f6d0b0e9611c.zip |
sched: Move all scheduler bits into kernel/sched/
There's too many sched*.[ch] files in kernel/, give them their own
directory.
(No code changed, other than Makefile glue added.)
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/sched/cpupri.c')
-rw-r--r-- | kernel/sched/cpupri.c | 241 |
1 files changed, 241 insertions, 0 deletions
diff --git a/kernel/sched/cpupri.c b/kernel/sched/cpupri.c new file mode 100644 index 000000000000..b0d798eaf130 --- /dev/null +++ b/kernel/sched/cpupri.c @@ -0,0 +1,241 @@ +/* + * kernel/sched/cpupri.c + * + * CPU priority management + * + * Copyright (C) 2007-2008 Novell + * + * Author: Gregory Haskins <ghaskins@novell.com> + * + * This code tracks the priority of each CPU so that global migration + * decisions are easy to calculate. Each CPU can be in a state as follows: + * + * (INVALID), IDLE, NORMAL, RT1, ... RT99 + * + * going from the lowest priority to the highest. CPUs in the INVALID state + * are not eligible for routing. The system maintains this state with + * a 2 dimensional bitmap (the first for priority class, the second for cpus + * in that class). Therefore a typical application without affinity + * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit + * searches). For tasks with affinity restrictions, the algorithm has a + * worst case complexity of O(min(102, nr_domcpus)), though the scenario that + * yields the worst case search is fairly contrived. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; version 2 + * of the License. + */ + +#include <linux/gfp.h> +#include "cpupri.h" + +/* Convert between a 140 based task->prio, and our 102 based cpupri */ +static int convert_prio(int prio) +{ + int cpupri; + + if (prio == CPUPRI_INVALID) + cpupri = CPUPRI_INVALID; + else if (prio == MAX_PRIO) + cpupri = CPUPRI_IDLE; + else if (prio >= MAX_RT_PRIO) + cpupri = CPUPRI_NORMAL; + else + cpupri = MAX_RT_PRIO - prio + 1; + + return cpupri; +} + +/** + * cpupri_find - find the best (lowest-pri) CPU in the system + * @cp: The cpupri context + * @p: The task + * @lowest_mask: A mask to fill in with selected CPUs (or NULL) + * + * Note: This function returns the recommended CPUs as calculated during the + * current invocation. By the time the call returns, the CPUs may have in + * fact changed priorities any number of times. While not ideal, it is not + * an issue of correctness since the normal rebalancer logic will correct + * any discrepancies created by racing against the uncertainty of the current + * priority configuration. + * + * Returns: (int)bool - CPUs were found + */ +int cpupri_find(struct cpupri *cp, struct task_struct *p, + struct cpumask *lowest_mask) +{ + int idx = 0; + int task_pri = convert_prio(p->prio); + + if (task_pri >= MAX_RT_PRIO) + return 0; + + for (idx = 0; idx < task_pri; idx++) { + struct cpupri_vec *vec = &cp->pri_to_cpu[idx]; + int skip = 0; + + if (!atomic_read(&(vec)->count)) + skip = 1; + /* + * When looking at the vector, we need to read the counter, + * do a memory barrier, then read the mask. + * + * Note: This is still all racey, but we can deal with it. + * Ideally, we only want to look at masks that are set. + * + * If a mask is not set, then the only thing wrong is that we + * did a little more work than necessary. + * + * If we read a zero count but the mask is set, because of the + * memory barriers, that can only happen when the highest prio + * task for a run queue has left the run queue, in which case, + * it will be followed by a pull. If the task we are processing + * fails to find a proper place to go, that pull request will + * pull this task if the run queue is running at a lower + * priority. + */ + smp_rmb(); + + /* Need to do the rmb for every iteration */ + if (skip) + continue; + + if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids) + continue; + + if (lowest_mask) { + cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask); + + /* + * We have to ensure that we have at least one bit + * still set in the array, since the map could have + * been concurrently emptied between the first and + * second reads of vec->mask. If we hit this + * condition, simply act as though we never hit this + * priority level and continue on. + */ + if (cpumask_any(lowest_mask) >= nr_cpu_ids) + continue; + } + + return 1; + } + + return 0; +} + +/** + * cpupri_set - update the cpu priority setting + * @cp: The cpupri context + * @cpu: The target cpu + * @pri: The priority (INVALID-RT99) to assign to this CPU + * + * Note: Assumes cpu_rq(cpu)->lock is locked + * + * Returns: (void) + */ +void cpupri_set(struct cpupri *cp, int cpu, int newpri) +{ + int *currpri = &cp->cpu_to_pri[cpu]; + int oldpri = *currpri; + int do_mb = 0; + + newpri = convert_prio(newpri); + + BUG_ON(newpri >= CPUPRI_NR_PRIORITIES); + + if (newpri == oldpri) + return; + + /* + * If the cpu was currently mapped to a different value, we + * need to map it to the new value then remove the old value. + * Note, we must add the new value first, otherwise we risk the + * cpu being missed by the priority loop in cpupri_find. + */ + if (likely(newpri != CPUPRI_INVALID)) { + struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; + + cpumask_set_cpu(cpu, vec->mask); + /* + * When adding a new vector, we update the mask first, + * do a write memory barrier, and then update the count, to + * make sure the vector is visible when count is set. + */ + smp_mb__before_atomic_inc(); + atomic_inc(&(vec)->count); + do_mb = 1; + } + if (likely(oldpri != CPUPRI_INVALID)) { + struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; + + /* + * Because the order of modification of the vec->count + * is important, we must make sure that the update + * of the new prio is seen before we decrement the + * old prio. This makes sure that the loop sees + * one or the other when we raise the priority of + * the run queue. We don't care about when we lower the + * priority, as that will trigger an rt pull anyway. + * + * We only need to do a memory barrier if we updated + * the new priority vec. + */ + if (do_mb) + smp_mb__after_atomic_inc(); + + /* + * When removing from the vector, we decrement the counter first + * do a memory barrier and then clear the mask. + */ + atomic_dec(&(vec)->count); + smp_mb__after_atomic_inc(); + cpumask_clear_cpu(cpu, vec->mask); + } + + *currpri = newpri; +} + +/** + * cpupri_init - initialize the cpupri structure + * @cp: The cpupri context + * @bootmem: true if allocations need to use bootmem + * + * Returns: -ENOMEM if memory fails. + */ +int cpupri_init(struct cpupri *cp) +{ + int i; + + memset(cp, 0, sizeof(*cp)); + + for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) { + struct cpupri_vec *vec = &cp->pri_to_cpu[i]; + + atomic_set(&vec->count, 0); + if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL)) + goto cleanup; + } + + for_each_possible_cpu(i) + cp->cpu_to_pri[i] = CPUPRI_INVALID; + return 0; + +cleanup: + for (i--; i >= 0; i--) + free_cpumask_var(cp->pri_to_cpu[i].mask); + return -ENOMEM; +} + +/** + * cpupri_cleanup - clean up the cpupri structure + * @cp: The cpupri context + */ +void cpupri_cleanup(struct cpupri *cp) +{ + int i; + + for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) + free_cpumask_var(cp->pri_to_cpu[i].mask); +} |