diff options
author | Balbir Singh <balbir@linux.vnet.ibm.com> | 2011-03-03 17:04:35 +0530 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2011-03-04 11:03:18 +0100 |
commit | 0c3b9168017cbad2c4af3dd65ec93fe646eeaa62 (patch) | |
tree | 98ae84f8060a62bc95ab3734b345fa87d0688a16 /kernel/sched_rt.c | |
parent | b65a0e0c84cf489bfa00d6aa6c48abc5a237100f (diff) | |
download | linux-0c3b9168017cbad2c4af3dd65ec93fe646eeaa62.tar.gz linux-0c3b9168017cbad2c4af3dd65ec93fe646eeaa62.tar.bz2 linux-0c3b9168017cbad2c4af3dd65ec93fe646eeaa62.zip |
sched: Fix sched rt group scheduling when hierachy is enabled
The current sched rt code is broken when it comes to hierarchical
scheduling, this patch fixes two problems
1. It adds redundant enqueuing (harmless) when it finds a queue
has tasks enqueued, but it has no run time and it is not
throttled.
2. The most important change is in sched_rt_rq_enqueue/dequeue.
The code just picks the rt_rq belonging to the current cpu
on which the period timer runs, the patch fixes it, so that
the correct rt_se is enqueued/dequeued.
Tested with a simple hierarchy
/c/d, c and d assigned similar runtimes of 50,000 and a while
1 loop runs within "d". Both c and d get throttled, without
the patch, the task just stops running and never runs (depends
on where the sched_rt b/w timer runs). With the patch, the
task is throttled and runs as expected.
[ bharata, suggestions on how to pick the rt_se belong to the
rt_rq and correct cpu ]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: stable@kernel.org
LKML-Reference: <20110303113435.GA2868@balbir.in.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/sched_rt.c')
-rw-r--r-- | kernel/sched_rt.c | 14 |
1 files changed, 9 insertions, 5 deletions
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index ad6267714c84..01f75a5f17af 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c @@ -210,11 +210,12 @@ static void dequeue_rt_entity(struct sched_rt_entity *rt_se); static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) { - int this_cpu = smp_processor_id(); struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; struct sched_rt_entity *rt_se; - rt_se = rt_rq->tg->rt_se[this_cpu]; + int cpu = cpu_of(rq_of_rt_rq(rt_rq)); + + rt_se = rt_rq->tg->rt_se[cpu]; if (rt_rq->rt_nr_running) { if (rt_se && !on_rt_rq(rt_se)) @@ -226,10 +227,10 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) { - int this_cpu = smp_processor_id(); struct sched_rt_entity *rt_se; + int cpu = cpu_of(rq_of_rt_rq(rt_rq)); - rt_se = rt_rq->tg->rt_se[this_cpu]; + rt_se = rt_rq->tg->rt_se[cpu]; if (rt_se && on_rt_rq(rt_se)) dequeue_rt_entity(rt_se); @@ -565,8 +566,11 @@ static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) if (rt_rq->rt_time || rt_rq->rt_nr_running) idle = 0; raw_spin_unlock(&rt_rq->rt_runtime_lock); - } else if (rt_rq->rt_nr_running) + } else if (rt_rq->rt_nr_running) { idle = 0; + if (!rt_rq_throttled(rt_rq)) + enqueue = 1; + } if (enqueue) sched_rt_rq_enqueue(rt_rq); |