diff options
author | Daniel Borkmann <daniel@iogearbox.net> | 2016-06-15 22:47:14 +0200 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2016-06-15 23:42:57 -0700 |
commit | 3b1efb196eee45b2f0c4994e0c43edb5e367f620 (patch) | |
tree | b4f7d122f21e841f0057c624e064f8ca30622e48 /kernel/trace/bpf_trace.c | |
parent | d056a788765e67773124f520159185bc89f5d1ad (diff) | |
download | linux-3b1efb196eee45b2f0c4994e0c43edb5e367f620.tar.gz linux-3b1efb196eee45b2f0c4994e0c43edb5e367f620.tar.bz2 linux-3b1efb196eee45b2f0c4994e0c43edb5e367f620.zip |
bpf, maps: flush own entries on perf map release
The behavior of perf event arrays are quite different from all
others as they are tightly coupled to perf event fds, f.e. shown
recently by commit e03e7ee34fdd ("perf/bpf: Convert perf_event_array
to use struct file") to make refcounting on perf event more robust.
A remaining issue that the current code still has is that since
additions to the perf event array take a reference on the struct
file via perf_event_get() and are only released via fput() (that
cleans up the perf event eventually via perf_event_release_kernel())
when the element is either manually removed from the map from user
space or automatically when the last reference on the perf event
map is dropped. However, this leads us to dangling struct file's
when the map gets pinned after the application owning the perf
event descriptor exits, and since the struct file reference will
in such case only be manually dropped or via pinned file removal,
it leads to the perf event living longer than necessary, consuming
needlessly resources for that time.
Relations between perf event fds and bpf perf event map fds can be
rather complex. F.e. maps can act as demuxers among different perf
event fds that can possibly be owned by different threads and based
on the index selection from the program, events get dispatched to
one of the per-cpu fd endpoints. One perf event fd (or, rather a
per-cpu set of them) can also live in multiple perf event maps at
the same time, listening for events. Also, another requirement is
that perf event fds can get closed from application side after they
have been attached to the perf event map, so that on exit perf event
map will take care of dropping their references eventually. Likewise,
when such maps are pinned, the intended behavior is that a user
application does bpf_obj_get(), puts its fds in there and on exit
when fd is released, they are dropped from the map again, so the map
acts rather as connector endpoint. This also makes perf event maps
inherently different from program arrays as described in more detail
in commit c9da161c6517 ("bpf: fix clearing on persistent program
array maps").
To tackle this, map entries are marked by the map struct file that
added the element to the map. And when the last reference to that map
struct file is released from user space, then the tracked entries
are purged from the map. This is okay, because new map struct files
instances resp. frontends to the anon inode are provided via
bpf_map_new_fd() that is called when we invoke bpf_obj_get_user()
for retrieving a pinned map, but also when an initial instance is
created via map_create(). The rest is resolved by the vfs layer
automatically for us by keeping reference count on the map's struct
file. Any concurrent updates on the map slot are fine as well, it
just means that perf_event_fd_array_release() needs to delete less
of its own entires.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'kernel/trace/bpf_trace.c')
-rw-r--r-- | kernel/trace/bpf_trace.c | 18 |
1 files changed, 8 insertions, 10 deletions
diff --git a/kernel/trace/bpf_trace.c b/kernel/trace/bpf_trace.c index 720b7bb01d43..037ea6ea3cb2 100644 --- a/kernel/trace/bpf_trace.c +++ b/kernel/trace/bpf_trace.c @@ -192,18 +192,17 @@ static u64 bpf_perf_event_read(u64 r1, u64 index, u64 r3, u64 r4, u64 r5) { struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; struct bpf_array *array = container_of(map, struct bpf_array, map); + struct bpf_event_entry *ee; struct perf_event *event; - struct file *file; if (unlikely(index >= array->map.max_entries)) return -E2BIG; - file = READ_ONCE(array->ptrs[index]); - if (unlikely(!file)) + ee = READ_ONCE(array->ptrs[index]); + if (unlikely(!ee)) return -ENOENT; - event = file->private_data; - + event = ee->event; /* make sure event is local and doesn't have pmu::count */ if (event->oncpu != smp_processor_id() || event->pmu->count) @@ -233,8 +232,8 @@ static u64 bpf_perf_event_output(u64 r1, u64 r2, u64 flags, u64 r4, u64 size) u64 index = flags & BPF_F_INDEX_MASK; void *data = (void *) (long) r4; struct perf_sample_data sample_data; + struct bpf_event_entry *ee; struct perf_event *event; - struct file *file; struct perf_raw_record raw = { .size = size, .data = data, @@ -247,12 +246,11 @@ static u64 bpf_perf_event_output(u64 r1, u64 r2, u64 flags, u64 r4, u64 size) if (unlikely(index >= array->map.max_entries)) return -E2BIG; - file = READ_ONCE(array->ptrs[index]); - if (unlikely(!file)) + ee = READ_ONCE(array->ptrs[index]); + if (unlikely(!ee)) return -ENOENT; - event = file->private_data; - + event = ee->event; if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) return -EINVAL; |