summaryrefslogtreecommitdiffstats
path: root/kernel/watchdog_hld.c
diff options
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2017-08-15 09:50:13 +0200
committerThomas Gleixner <tglx@linutronix.de>2017-08-18 12:35:02 +0200
commit7edaeb6841dfb27e362288ab8466ebdc4972e867 (patch)
tree419ce3f71f7ffc17131bb911fb16ff037e3c6bb1 /kernel/watchdog_hld.c
parentef954844c7ace62f773f4f23e28d2d915adc419f (diff)
downloadlinux-7edaeb6841dfb27e362288ab8466ebdc4972e867.tar.gz
linux-7edaeb6841dfb27e362288ab8466ebdc4972e867.tar.bz2
linux-7edaeb6841dfb27e362288ab8466ebdc4972e867.zip
kernel/watchdog: Prevent false positives with turbo modes
The hardlockup detector on x86 uses a performance counter based on unhalted CPU cycles and a periodic hrtimer. The hrtimer period is about 2/5 of the performance counter period, so the hrtimer should fire 2-3 times before the performance counter NMI fires. The NMI code checks whether the hrtimer fired since the last invocation. If not, it assumess a hard lockup. The calculation of those periods is based on the nominal CPU frequency. Turbo modes increase the CPU clock frequency and therefore shorten the period of the perf/NMI watchdog. With extreme Turbo-modes (3x nominal frequency) the perf/NMI period is shorter than the hrtimer period which leads to false positives. A simple fix would be to shorten the hrtimer period, but that comes with the side effect of more frequent hrtimer and softlockup thread wakeups, which is not desired. Implement a low pass filter, which checks the perf/NMI period against kernel time. If the perf/NMI fires before 4/5 of the watchdog period has elapsed then the event is ignored and postponed to the next perf/NMI. That solves the problem and avoids the overhead of shorter hrtimer periods and more frequent softlockup thread wakeups. Fixes: 58687acba592 ("lockup_detector: Combine nmi_watchdog and softlockup detector") Reported-and-tested-by: Kan Liang <Kan.liang@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: dzickus@redhat.com Cc: prarit@redhat.com Cc: ak@linux.intel.com Cc: babu.moger@oracle.com Cc: peterz@infradead.org Cc: eranian@google.com Cc: acme@redhat.com Cc: stable@vger.kernel.org Cc: atomlin@redhat.com Cc: akpm@linux-foundation.org Cc: torvalds@linux-foundation.org Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1708150931310.1886@nanos
Diffstat (limited to 'kernel/watchdog_hld.c')
-rw-r--r--kernel/watchdog_hld.c59
1 files changed, 59 insertions, 0 deletions
diff --git a/kernel/watchdog_hld.c b/kernel/watchdog_hld.c
index 295a0d84934c..3a09ea1b1d3d 100644
--- a/kernel/watchdog_hld.c
+++ b/kernel/watchdog_hld.c
@@ -37,6 +37,62 @@ void arch_touch_nmi_watchdog(void)
}
EXPORT_SYMBOL(arch_touch_nmi_watchdog);
+#ifdef CONFIG_HARDLOCKUP_CHECK_TIMESTAMP
+static DEFINE_PER_CPU(ktime_t, last_timestamp);
+static DEFINE_PER_CPU(unsigned int, nmi_rearmed);
+static ktime_t watchdog_hrtimer_sample_threshold __read_mostly;
+
+void watchdog_update_hrtimer_threshold(u64 period)
+{
+ /*
+ * The hrtimer runs with a period of (watchdog_threshold * 2) / 5
+ *
+ * So it runs effectively with 2.5 times the rate of the NMI
+ * watchdog. That means the hrtimer should fire 2-3 times before
+ * the NMI watchdog expires. The NMI watchdog on x86 is based on
+ * unhalted CPU cycles, so if Turbo-Mode is enabled the CPU cycles
+ * might run way faster than expected and the NMI fires in a
+ * smaller period than the one deduced from the nominal CPU
+ * frequency. Depending on the Turbo-Mode factor this might be fast
+ * enough to get the NMI period smaller than the hrtimer watchdog
+ * period and trigger false positives.
+ *
+ * The sample threshold is used to check in the NMI handler whether
+ * the minimum time between two NMI samples has elapsed. That
+ * prevents false positives.
+ *
+ * Set this to 4/5 of the actual watchdog threshold period so the
+ * hrtimer is guaranteed to fire at least once within the real
+ * watchdog threshold.
+ */
+ watchdog_hrtimer_sample_threshold = period * 2;
+}
+
+static bool watchdog_check_timestamp(void)
+{
+ ktime_t delta, now = ktime_get_mono_fast_ns();
+
+ delta = now - __this_cpu_read(last_timestamp);
+ if (delta < watchdog_hrtimer_sample_threshold) {
+ /*
+ * If ktime is jiffies based, a stalled timer would prevent
+ * jiffies from being incremented and the filter would look
+ * at a stale timestamp and never trigger.
+ */
+ if (__this_cpu_inc_return(nmi_rearmed) < 10)
+ return false;
+ }
+ __this_cpu_write(nmi_rearmed, 0);
+ __this_cpu_write(last_timestamp, now);
+ return true;
+}
+#else
+static inline bool watchdog_check_timestamp(void)
+{
+ return true;
+}
+#endif
+
static struct perf_event_attr wd_hw_attr = {
.type = PERF_TYPE_HARDWARE,
.config = PERF_COUNT_HW_CPU_CYCLES,
@@ -61,6 +117,9 @@ static void watchdog_overflow_callback(struct perf_event *event,
return;
}
+ if (!watchdog_check_timestamp())
+ return;
+
/* check for a hardlockup
* This is done by making sure our timer interrupt
* is incrementing. The timer interrupt should have