summaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
authorPaul E. McKenney <paulmck@linux.vnet.ibm.com>2015-01-22 22:47:14 -0800
committerPaul E. McKenney <paulmck@linux.vnet.ibm.com>2015-02-11 15:46:43 -0800
commitc0135d07b013fa8f7ba9ec91b4369c372e6a28cb (patch)
treede44b57621944fcab0a180080d21522c3b5c3bd0 /kernel
parent78e691f4ae2d5edea0199ca802bb505b9cdced88 (diff)
downloadlinux-c0135d07b013fa8f7ba9ec91b4369c372e6a28cb.tar.gz
linux-c0135d07b013fa8f7ba9ec91b4369c372e6a28cb.tar.bz2
linux-c0135d07b013fa8f7ba9ec91b4369c372e6a28cb.zip
rcu: Clear need_qs flag to prevent splat
If the scheduling-clock interrupt sets the current tasks need_qs flag, but if the current CPU passes through a quiescent state in the meantime, then rcu_preempt_qs() will fail to clear the need_qs flag, which can fool RCU into thinking that additional rcu_read_unlock_special() processing is needed. This commit therefore clears the need_qs flag before checking for additional processing. For this problem to occur, we need rcu_preempt_data.passed_quiesce equal to true and current->rcu_read_unlock_special.b.need_qs also equal to true. This condition can occur as follows: 1. CPU 0 is aware of the current preemptible RCU grace period, but has not yet passed through a quiescent state. Among other things, this means that rcu_preempt_data.passed_quiesce is false. 2. Task A running on CPU 0 enters a preemptible RCU read-side critical section. 3. CPU 0 takes a scheduling-clock interrupt, which notices the RCU read-side critical section and the need for a quiescent state, and thus sets current->rcu_read_unlock_special.b.need_qs to true. 4. Task A is preempted, enters the scheduler, eventually invoking rcu_preempt_note_context_switch() which in turn invokes rcu_preempt_qs(). Because rcu_preempt_data.passed_quiesce is false, control enters the body of the "if" statement, which sets rcu_preempt_data.passed_quiesce to true. 5. At this point, CPU 0 takes an interrupt. The interrupt handler contains an RCU read-side critical section, and the rcu_read_unlock() notes that current->rcu_read_unlock_special is nonzero, and thus invokes rcu_read_unlock_special(). 6. Once in rcu_read_unlock_special(), the fact that current->rcu_read_unlock_special.b.need_qs is true becomes apparent, so rcu_read_unlock_special() invokes rcu_preempt_qs(). Recursively, given that we interrupted out of that same function in the preceding step. 7. Because rcu_preempt_data.passed_quiesce is now true, rcu_preempt_qs() does nothing, and simply returns. 8. Upon return to rcu_read_unlock_special(), it is noted that current->rcu_read_unlock_special is still nonzero (because the interrupted rcu_preempt_qs() had not yet gotten around to clearing current->rcu_read_unlock_special.b.need_qs). 9. Execution proceeds to the WARN_ON_ONCE(), which notes that we are in an interrupt handler and thus duly splats. The solution, as noted above, is to make rcu_read_unlock_special() clear out current->rcu_read_unlock_special.b.need_qs after calling rcu_preempt_qs(). The interrupted rcu_preempt_qs() will clear it again, but this is harmless. The worst that happens is that we clobber another attempt to set this field, but this is not a problem because we just got done reporting a quiescent state. Reported-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Fix embarrassing build bug noted by Sasha Levin. ] Tested-by: Sasha Levin <sasha.levin@oracle.com>
Diffstat (limited to 'kernel')
-rw-r--r--kernel/rcu/tree_plugin.h1
1 files changed, 1 insertions, 0 deletions
diff --git a/kernel/rcu/tree_plugin.h b/kernel/rcu/tree_plugin.h
index 2e850a51bb8f..bca28b00f7e6 100644
--- a/kernel/rcu/tree_plugin.h
+++ b/kernel/rcu/tree_plugin.h
@@ -327,6 +327,7 @@ void rcu_read_unlock_special(struct task_struct *t)
special = t->rcu_read_unlock_special;
if (special.b.need_qs) {
rcu_preempt_qs();
+ t->rcu_read_unlock_special.b.need_qs = false;
if (!t->rcu_read_unlock_special.s) {
local_irq_restore(flags);
return;