diff options
author | Barry Song <song.bao.hua@hisilicon.com> | 2020-07-03 15:15:24 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2020-07-03 16:15:25 -0700 |
commit | 40366bd70bbbbf822ca224dfc227a8c8e868c44f (patch) | |
tree | 99dbfa10e6c48632144cd5ad253d939bff392f3f /mm/cma.c | |
parent | c3eeaae9fd736b7f2afbda8d3cbb1cbae06decf3 (diff) | |
download | linux-40366bd70bbbbf822ca224dfc227a8c8e868c44f.tar.gz linux-40366bd70bbbbf822ca224dfc227a8c8e868c44f.tar.bz2 linux-40366bd70bbbbf822ca224dfc227a8c8e868c44f.zip |
mm/cma.c: use exact_nid true to fix possible per-numa cma leak
Calling cma_declare_contiguous_nid() with false exact_nid for per-numa
reservation can easily cause cma leak and various confusion. For example,
mm/hugetlb.c is trying to reserve per-numa cma for gigantic pages. But it
can easily leak cma and make users confused when system has memoryless
nodes.
In case the system has 4 numa nodes, and only numa node0 has memory. if
we set hugetlb_cma=4G in bootargs, mm/hugetlb.c will get 4 cma areas for 4
different numa nodes. since exact_nid=false in current code, all 4 numa
nodes will get cma successfully from node0, but hugetlb_cma[1 to 3] will
never be available to hugepage will only allocate memory from
hugetlb_cma[0].
In case the system has 4 numa nodes, both numa node0&2 has memory, other
nodes have no memory. if we set hugetlb_cma=4G in bootargs, mm/hugetlb.c
will get 4 cma areas for 4 different numa nodes. since exact_nid=false in
current code, all 4 numa nodes will get cma successfully from node0 or 2,
but hugetlb_cma[1] and [3] will never be available to hugepage as
mm/hugetlb.c will only allocate memory from hugetlb_cma[0] and
hugetlb_cma[2]. This causes permanent leak of the cma areas which are
supposed to be used by memoryless node.
Of cource we can workaround the issue by letting mm/hugetlb.c scan all cma
areas in alloc_gigantic_page() even node_mask includes node0 only. that
means when node_mask includes node0 only, we can get page from
hugetlb_cma[1] to hugetlb_cma[3]. But this will cause kernel crash in
free_gigantic_page() while it wants to free page by:
cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)
On the other hand, exact_nid=false won't consider numa distance, it might
be not that useful to leverage cma areas on remote nodes. I feel it is
much simpler to make exact_nid true to make everything clear. After that,
memoryless nodes won't be able to reserve per-numa CMA from other nodes
which have memory.
Fixes: cf11e85fc08c ("mm: hugetlb: optionally allocate gigantic hugepages using cma")
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Aslan Bakirov <aslan@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andreas Schaufler <andreas.schaufler@gmx.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200628074345.27228-1-song.bao.hua@hisilicon.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/cma.c')
-rw-r--r-- | mm/cma.c | 4 |
1 files changed, 2 insertions, 2 deletions
@@ -339,13 +339,13 @@ int __init cma_declare_contiguous_nid(phys_addr_t base, */ if (base < highmem_start && limit > highmem_start) { addr = memblock_alloc_range_nid(size, alignment, - highmem_start, limit, nid, false); + highmem_start, limit, nid, true); limit = highmem_start; } if (!addr) { addr = memblock_alloc_range_nid(size, alignment, base, - limit, nid, false); + limit, nid, true); if (!addr) { ret = -ENOMEM; goto err; |