summaryrefslogtreecommitdiffstats
path: root/mm/memcontrol.c
diff options
context:
space:
mode:
authorTejun Heo <tj@kernel.org>2019-08-26 09:06:56 -0700
committerJens Axboe <axboe@kernel.dk>2019-08-27 09:22:38 -0600
commit97b27821b4854ca744946dae32a3f2fd55bcd5bc (patch)
treea89a3f0e814f684b87f9dd2198818d351b52c8aa /mm/memcontrol.c
parentd62241c7a406f0680d702bd974f6f17e28ab8e5d (diff)
downloadlinux-97b27821b4854ca744946dae32a3f2fd55bcd5bc.tar.gz
linux-97b27821b4854ca744946dae32a3f2fd55bcd5bc.tar.bz2
linux-97b27821b4854ca744946dae32a3f2fd55bcd5bc.zip
writeback, memcg: Implement foreign dirty flushing
There's an inherent mismatch between memcg and writeback. The former trackes ownership per-page while the latter per-inode. This was a deliberate design decision because honoring per-page ownership in the writeback path is complicated, may lead to higher CPU and IO overheads and deemed unnecessary given that write-sharing an inode across different cgroups isn't a common use-case. Combined with inode majority-writer ownership switching, this works well enough in most cases but there are some pathological cases. For example, let's say there are two cgroups A and B which keep writing to different but confined parts of the same inode. B owns the inode and A's memory is limited far below B's. A's dirty ratio can rise enough to trigger balance_dirty_pages() sleeps but B's can be low enough to avoid triggering background writeback. A will be slowed down without a way to make writeback of the dirty pages happen. This patch implements foreign dirty recording and foreign mechanism so that when a memcg encounters a condition as above it can trigger flushes on bdi_writebacks which can clean its pages. Please see the comment on top of mem_cgroup_track_foreign_dirty_slowpath() for details. A reproducer follows. write-range.c:: #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <fcntl.h> #include <sys/types.h> static const char *usage = "write-range FILE START SIZE\n"; int main(int argc, char **argv) { int fd; unsigned long start, size, end, pos; char *endp; char buf[4096]; if (argc < 4) { fprintf(stderr, usage); return 1; } fd = open(argv[1], O_WRONLY); if (fd < 0) { perror("open"); return 1; } start = strtoul(argv[2], &endp, 0); if (*endp != '\0') { fprintf(stderr, usage); return 1; } size = strtoul(argv[3], &endp, 0); if (*endp != '\0') { fprintf(stderr, usage); return 1; } end = start + size; while (1) { for (pos = start; pos < end; ) { long bread, bwritten = 0; if (lseek(fd, pos, SEEK_SET) < 0) { perror("lseek"); return 1; } bread = read(0, buf, sizeof(buf) < end - pos ? sizeof(buf) : end - pos); if (bread < 0) { perror("read"); return 1; } if (bread == 0) return 0; while (bwritten < bread) { long this; this = write(fd, buf + bwritten, bread - bwritten); if (this < 0) { perror("write"); return 1; } bwritten += this; pos += bwritten; } } } } repro.sh:: #!/bin/bash set -e set -x sysctl -w vm.dirty_expire_centisecs=300000 sysctl -w vm.dirty_writeback_centisecs=300000 sysctl -w vm.dirtytime_expire_seconds=300000 echo 3 > /proc/sys/vm/drop_caches TEST=/sys/fs/cgroup/test A=$TEST/A B=$TEST/B mkdir -p $A $B echo "+memory +io" > $TEST/cgroup.subtree_control echo $((1<<30)) > $A/memory.high echo $((32<<30)) > $B/memory.high rm -f testfile touch testfile fallocate -l 4G testfile echo "Starting B" (echo $BASHPID > $B/cgroup.procs pv -q --rate-limit 70M < /dev/urandom | ./write-range testfile $((2<<30)) $((2<<30))) & echo "Waiting 10s to ensure B claims the testfile inode" sleep 5 sync sleep 5 sync echo "Starting A" (echo $BASHPID > $A/cgroup.procs pv < /dev/urandom | ./write-range testfile 0 $((2<<30))) v2: Added comments explaining why the specific intervals are being used. v3: Use 0 @nr when calling cgroup_writeback_by_id() to use best-effort flushing while avoding possible livelocks. v4: Use get_jiffies_64() and time_before/after64() instead of raw jiffies_64 and arthimetic comparisons as suggested by Jan. Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r--mm/memcontrol.c134
1 files changed, 134 insertions, 0 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index cdbb7a84cb6e..89b65f5ca634 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -87,6 +87,10 @@ int do_swap_account __read_mostly;
#define do_swap_account 0
#endif
+#ifdef CONFIG_CGROUP_WRITEBACK
+static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
+#endif
+
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
@@ -4145,6 +4149,127 @@ void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
}
}
+/*
+ * Foreign dirty flushing
+ *
+ * There's an inherent mismatch between memcg and writeback. The former
+ * trackes ownership per-page while the latter per-inode. This was a
+ * deliberate design decision because honoring per-page ownership in the
+ * writeback path is complicated, may lead to higher CPU and IO overheads
+ * and deemed unnecessary given that write-sharing an inode across
+ * different cgroups isn't a common use-case.
+ *
+ * Combined with inode majority-writer ownership switching, this works well
+ * enough in most cases but there are some pathological cases. For
+ * example, let's say there are two cgroups A and B which keep writing to
+ * different but confined parts of the same inode. B owns the inode and
+ * A's memory is limited far below B's. A's dirty ratio can rise enough to
+ * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
+ * triggering background writeback. A will be slowed down without a way to
+ * make writeback of the dirty pages happen.
+ *
+ * Conditions like the above can lead to a cgroup getting repatedly and
+ * severely throttled after making some progress after each
+ * dirty_expire_interval while the underyling IO device is almost
+ * completely idle.
+ *
+ * Solving this problem completely requires matching the ownership tracking
+ * granularities between memcg and writeback in either direction. However,
+ * the more egregious behaviors can be avoided by simply remembering the
+ * most recent foreign dirtying events and initiating remote flushes on
+ * them when local writeback isn't enough to keep the memory clean enough.
+ *
+ * The following two functions implement such mechanism. When a foreign
+ * page - a page whose memcg and writeback ownerships don't match - is
+ * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
+ * bdi_writeback on the page owning memcg. When balance_dirty_pages()
+ * decides that the memcg needs to sleep due to high dirty ratio, it calls
+ * mem_cgroup_flush_foreign() which queues writeback on the recorded
+ * foreign bdi_writebacks which haven't expired. Both the numbers of
+ * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
+ * limited to MEMCG_CGWB_FRN_CNT.
+ *
+ * The mechanism only remembers IDs and doesn't hold any object references.
+ * As being wrong occasionally doesn't matter, updates and accesses to the
+ * records are lockless and racy.
+ */
+void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
+ struct bdi_writeback *wb)
+{
+ struct mem_cgroup *memcg = page->mem_cgroup;
+ struct memcg_cgwb_frn *frn;
+ u64 now = get_jiffies_64();
+ u64 oldest_at = now;
+ int oldest = -1;
+ int i;
+
+ /*
+ * Pick the slot to use. If there is already a slot for @wb, keep
+ * using it. If not replace the oldest one which isn't being
+ * written out.
+ */
+ for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
+ frn = &memcg->cgwb_frn[i];
+ if (frn->bdi_id == wb->bdi->id &&
+ frn->memcg_id == wb->memcg_css->id)
+ break;
+ if (time_before64(frn->at, oldest_at) &&
+ atomic_read(&frn->done.cnt) == 1) {
+ oldest = i;
+ oldest_at = frn->at;
+ }
+ }
+
+ if (i < MEMCG_CGWB_FRN_CNT) {
+ /*
+ * Re-using an existing one. Update timestamp lazily to
+ * avoid making the cacheline hot. We want them to be
+ * reasonably up-to-date and significantly shorter than
+ * dirty_expire_interval as that's what expires the record.
+ * Use the shorter of 1s and dirty_expire_interval / 8.
+ */
+ unsigned long update_intv =
+ min_t(unsigned long, HZ,
+ msecs_to_jiffies(dirty_expire_interval * 10) / 8);
+
+ if (time_before64(frn->at, now - update_intv))
+ frn->at = now;
+ } else if (oldest >= 0) {
+ /* replace the oldest free one */
+ frn = &memcg->cgwb_frn[oldest];
+ frn->bdi_id = wb->bdi->id;
+ frn->memcg_id = wb->memcg_css->id;
+ frn->at = now;
+ }
+}
+
+/* issue foreign writeback flushes for recorded foreign dirtying events */
+void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
+ unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
+ u64 now = jiffies_64;
+ int i;
+
+ for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
+ struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
+
+ /*
+ * If the record is older than dirty_expire_interval,
+ * writeback on it has already started. No need to kick it
+ * off again. Also, don't start a new one if there's
+ * already one in flight.
+ */
+ if (time_after64(frn->at, now - intv) &&
+ atomic_read(&frn->done.cnt) == 1) {
+ frn->at = 0;
+ cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
+ WB_REASON_FOREIGN_FLUSH,
+ &frn->done);
+ }
+ }
+}
+
#else /* CONFIG_CGROUP_WRITEBACK */
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
@@ -4661,6 +4786,7 @@ static struct mem_cgroup *mem_cgroup_alloc(void)
struct mem_cgroup *memcg;
unsigned int size;
int node;
+ int __maybe_unused i;
size = sizeof(struct mem_cgroup);
size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
@@ -4704,6 +4830,9 @@ static struct mem_cgroup *mem_cgroup_alloc(void)
#endif
#ifdef CONFIG_CGROUP_WRITEBACK
INIT_LIST_HEAD(&memcg->cgwb_list);
+ for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
+ memcg->cgwb_frn[i].done =
+ __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
#endif
idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
return memcg;
@@ -4833,7 +4962,12 @@ static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ int __maybe_unused i;
+#ifdef CONFIG_CGROUP_WRITEBACK
+ for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
+ wb_wait_for_completion(&memcg->cgwb_frn[i].done);
+#endif
if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
static_branch_dec(&memcg_sockets_enabled_key);