summaryrefslogtreecommitdiffstats
path: root/mm/mprotect.c
diff options
context:
space:
mode:
authorMel Gorman <mgorman@suse.de>2015-03-25 15:55:40 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2015-03-25 16:20:31 -0700
commitb191f9b106ea1a24a711dbebb2925d3313da5852 (patch)
treed47cd29412ed7c10fbd5415e2bf2d8ebcc8366d0 /mm/mprotect.c
parentbea66fbd11af1ca98ae26855eea41eda8582923e (diff)
downloadlinux-b191f9b106ea1a24a711dbebb2925d3313da5852.tar.gz
linux-b191f9b106ea1a24a711dbebb2925d3313da5852.tar.bz2
linux-b191f9b106ea1a24a711dbebb2925d3313da5852.zip
mm: numa: preserve PTE write permissions across a NUMA hinting fault
Protecting a PTE to trap a NUMA hinting fault clears the writable bit and further faults are needed after trapping a NUMA hinting fault to set the writable bit again. This patch preserves the writable bit when trapping NUMA hinting faults. The impact is obvious from the number of minor faults trapped during the basis balancing benchmark and the system CPU usage; autonumabench 4.0.0-rc4 4.0.0-rc4 baseline preserve Time System-NUMA01 107.13 ( 0.00%) 103.13 ( 3.73%) Time System-NUMA01_THEADLOCAL 131.87 ( 0.00%) 83.30 ( 36.83%) Time System-NUMA02 8.95 ( 0.00%) 10.72 (-19.78%) Time System-NUMA02_SMT 4.57 ( 0.00%) 3.99 ( 12.69%) Time Elapsed-NUMA01 515.78 ( 0.00%) 517.26 ( -0.29%) Time Elapsed-NUMA01_THEADLOCAL 384.10 ( 0.00%) 384.31 ( -0.05%) Time Elapsed-NUMA02 48.86 ( 0.00%) 48.78 ( 0.16%) Time Elapsed-NUMA02_SMT 47.98 ( 0.00%) 48.12 ( -0.29%) 4.0.0-rc4 4.0.0-rc4 baseline preserve User 44383.95 43971.89 System 252.61 201.24 Elapsed 998.68 1000.94 Minor Faults 2597249 1981230 Major Faults 365 364 There is a similar drop in system CPU usage using Dave Chinner's xfsrepair workload 4.0.0-rc4 4.0.0-rc4 baseline preserve Amean real-xfsrepair 454.14 ( 0.00%) 442.36 ( 2.60%) Amean syst-xfsrepair 277.20 ( 0.00%) 204.68 ( 26.16%) The patch looks hacky but the alternatives looked worse. The tidest was to rewalk the page tables after a hinting fault but it was more complex than this approach and the performance was worse. It's not generally safe to just mark the page writable during the fault if it's a write fault as it may have been read-only for COW so that approach was discarded. Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Dave Chinner <david@fromorbit.com> Tested-by: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/mprotect.c')
-rw-r--r--mm/mprotect.c3
1 files changed, 3 insertions, 0 deletions
diff --git a/mm/mprotect.c b/mm/mprotect.c
index 44727811bf4c..88584838e704 100644
--- a/mm/mprotect.c
+++ b/mm/mprotect.c
@@ -75,6 +75,7 @@ static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
oldpte = *pte;
if (pte_present(oldpte)) {
pte_t ptent;
+ bool preserve_write = prot_numa && pte_write(oldpte);
/*
* Avoid trapping faults against the zero or KSM
@@ -94,6 +95,8 @@ static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
ptent = ptep_modify_prot_start(mm, addr, pte);
ptent = pte_modify(ptent, newprot);
+ if (preserve_write)
+ ptent = pte_mkwrite(ptent);
/* Avoid taking write faults for known dirty pages */
if (dirty_accountable && pte_dirty(ptent) &&