diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2024-03-14 17:43:30 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2024-03-14 17:43:30 -0700 |
commit | 902861e34c401696ed9ad17a54c8790e7e8e3069 (patch) | |
tree | 126324c3ec4101b1e17f002ef029d3ffb296ada7 /mm/page-writeback.c | |
parent | 1bbeaf83dd7b5e3628b98bec66ff8fe2646e14aa (diff) | |
parent | 270700dd06ca41a4779c19eb46608f076bb7d40e (diff) | |
download | linux-902861e34c401696ed9ad17a54c8790e7e8e3069.tar.gz linux-902861e34c401696ed9ad17a54c8790e7e8e3069.tar.bz2 linux-902861e34c401696ed9ad17a54c8790e7e8e3069.zip |
Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory. Series
"implement "memmap on memory" feature on s390".
- More folio conversions from Matthew Wilcox in the series
"Convert memcontrol charge moving to use folios"
"mm: convert mm counter to take a folio"
- Chengming Zhou has optimized zswap's rbtree locking, providing
significant reductions in system time and modest but measurable
reductions in overall runtimes. The series is "mm/zswap: optimize the
scalability of zswap rb-tree".
- Chengming Zhou has also provided the series "mm/zswap: optimize zswap
lru list" which provides measurable runtime benefits in some
swap-intensive situations.
- And Chengming Zhou further optimizes zswap in the series "mm/zswap:
optimize for dynamic zswap_pools". Measured improvements are modest.
- zswap cleanups and simplifications from Yosry Ahmed in the series
"mm: zswap: simplify zswap_swapoff()".
- In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
contributed several DAX cleanups as well as adding a sysfs tunable to
control the memmap_on_memory setting when the dax device is
hotplugged as system memory.
- Johannes Weiner has added the large series "mm: zswap: cleanups",
which does that.
- More DAMON work from SeongJae Park in the series
"mm/damon: make DAMON debugfs interface deprecation unignorable"
"selftests/damon: add more tests for core functionalities and corner cases"
"Docs/mm/damon: misc readability improvements"
"mm/damon: let DAMOS feeds and tame/auto-tune itself"
- In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
extension" Rakie Kim has developed a new mempolicy interleaving
policy wherein we allocate memory across nodes in a weighted fashion
rather than uniformly. This is beneficial in heterogeneous memory
environments appearing with CXL.
- Christophe Leroy has contributed some cleanup and consolidation work
against the ARM pagetable dumping code in the series "mm: ptdump:
Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
- Luis Chamberlain has added some additional xarray selftesting in the
series "test_xarray: advanced API multi-index tests".
- Muhammad Usama Anjum has reworked the selftest code to make its
human-readable output conform to the TAP ("Test Anything Protocol")
format. Amongst other things, this opens up the use of third-party
tools to parse and process out selftesting results.
- Ryan Roberts has added fork()-time PTE batching of THP ptes in the
series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
targeted at arm64, this significantly speeds up fork() when the
process has a large number of pte-mapped folios.
- David Hildenbrand also gets in on the THP pte batching game in his
series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
implements batching during munmap() and other pte teardown
situations. The microbenchmark improvements are nice.
- And in the series "Transparent Contiguous PTEs for User Mappings"
Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte
mappings"). Kernel build times on arm64 improved nicely. Ryan's
series "Address some contpte nits" provides some followup work.
- In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
fixed an obscure hugetlb race which was causing unnecessary page
faults. He has also added a reproducer under the selftest code.
- In the series "selftests/mm: Output cleanups for the compaction
test", Mark Brown did what the title claims.
- Kinsey Ho has added the series "mm/mglru: code cleanup and
refactoring".
- Even more zswap material from Nhat Pham. The series "fix and extend
zswap kselftests" does as claimed.
- In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
regression" Mathieu Desnoyers has cleaned up and fixed rather a mess
in our handling of DAX on archiecctures which have virtually aliasing
data caches. The arm architecture is the main beneficiary.
- Lokesh Gidra's series "per-vma locks in userfaultfd" provides
dramatic improvements in worst-case mmap_lock hold times during
certain userfaultfd operations.
- Some page_owner enhancements and maintenance work from Oscar Salvador
in his series
"page_owner: print stacks and their outstanding allocations"
"page_owner: Fixup and cleanup"
- Uladzislau Rezki has contributed some vmalloc scalability
improvements in his series "Mitigate a vmap lock contention". It
realizes a 12x improvement for a certain microbenchmark.
- Some kexec/crash cleanup work from Baoquan He in the series "Split
crash out from kexec and clean up related config items".
- Some zsmalloc maintenance work from Chengming Zhou in the series
"mm/zsmalloc: fix and optimize objects/page migration"
"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
- Zi Yan has taught the MM to perform compaction on folios larger than
order=0. This a step along the path to implementaton of the merging
of large anonymous folios. The series is named "Enable >0 order folio
memory compaction".
- Christoph Hellwig has done quite a lot of cleanup work in the
pagecache writeback code in his series "convert write_cache_pages()
to an iterator".
- Some modest hugetlb cleanups and speedups in Vishal Moola's series
"Handle hugetlb faults under the VMA lock".
- Zi Yan has changed the page splitting code so we can split huge pages
into sizes other than order-0 to better utilize large folios. The
series is named "Split a folio to any lower order folios".
- David Hildenbrand has contributed the series "mm: remove
total_mapcount()", a cleanup.
- Matthew Wilcox has sought to improve the performance of bulk memory
freeing in his series "Rearrange batched folio freeing".
- Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
provides large improvements in bootup times on large machines which
are configured to use large numbers of hugetlb pages.
- Matthew Wilcox's series "PageFlags cleanups" does that.
- Qi Zheng's series "minor fixes and supplement for ptdesc" does that
also. S390 is affected.
- Cleanups to our pagemap utility functions from Peter Xu in his series
"mm/treewide: Replace pXd_large() with pXd_leaf()".
- Nico Pache has fixed a few things with our hugepage selftests in his
series "selftests/mm: Improve Hugepage Test Handling in MM
Selftests".
- Also, of course, many singleton patches to many things. Please see
the individual changelogs for details.
* tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits)
mm/zswap: remove the memcpy if acomp is not sleepable
crypto: introduce: acomp_is_async to expose if comp drivers might sleep
memtest: use {READ,WRITE}_ONCE in memory scanning
mm: prohibit the last subpage from reusing the entire large folio
mm: recover pud_leaf() definitions in nopmd case
selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements
selftests/mm: skip uffd hugetlb tests with insufficient hugepages
selftests/mm: dont fail testsuite due to a lack of hugepages
mm/huge_memory: skip invalid debugfs new_order input for folio split
mm/huge_memory: check new folio order when split a folio
mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
mm: add an explicit smp_wmb() to UFFDIO_CONTINUE
mm: fix list corruption in put_pages_list
mm: remove folio from deferred split list before uncharging it
filemap: avoid unnecessary major faults in filemap_fault()
mm,page_owner: drop unnecessary check
mm,page_owner: check for null stack_record before bumping its refcount
mm: swap: fix race between free_swap_and_cache() and swapoff()
mm/treewide: align up pXd_leaf() retval across archs
mm/treewide: drop pXd_large()
...
Diffstat (limited to 'mm/page-writeback.c')
-rw-r--r-- | mm/page-writeback.c | 390 |
1 files changed, 222 insertions, 168 deletions
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 3f255534986a..3e19b87049db 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c @@ -2325,18 +2325,18 @@ void __init page_writeback_init(void) } /** - * tag_pages_for_writeback - tag pages to be written by write_cache_pages + * tag_pages_for_writeback - tag pages to be written by writeback * @mapping: address space structure to write * @start: starting page index * @end: ending page index (inclusive) * * This function scans the page range from @start to @end (inclusive) and tags - * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is - * that write_cache_pages (or whoever calls this function) will then use - * TOWRITE tag to identify pages eligible for writeback. This mechanism is - * used to avoid livelocking of writeback by a process steadily creating new - * dirty pages in the file (thus it is important for this function to be quick - * so that it can tag pages faster than a dirtying process can create them). + * all pages that have DIRTY tag set with a special TOWRITE tag. The caller + * can then use the TOWRITE tag to identify pages eligible for writeback. + * This mechanism is used to avoid livelocking of writeback by a process + * steadily creating new dirty pages in the file (thus it is important for this + * function to be quick so that it can tag pages faster than a dirtying process + * can create them). */ void tag_pages_for_writeback(struct address_space *mapping, pgoff_t start, pgoff_t end) @@ -2360,183 +2360,242 @@ void tag_pages_for_writeback(struct address_space *mapping, } EXPORT_SYMBOL(tag_pages_for_writeback); +static bool folio_prepare_writeback(struct address_space *mapping, + struct writeback_control *wbc, struct folio *folio) +{ + /* + * Folio truncated or invalidated. We can freely skip it then, + * even for data integrity operations: the folio has disappeared + * concurrently, so there could be no real expectation of this + * data integrity operation even if there is now a new, dirty + * folio at the same pagecache index. + */ + if (unlikely(folio->mapping != mapping)) + return false; + + /* + * Did somebody else write it for us? + */ + if (!folio_test_dirty(folio)) + return false; + + if (folio_test_writeback(folio)) { + if (wbc->sync_mode == WB_SYNC_NONE) + return false; + folio_wait_writeback(folio); + } + BUG_ON(folio_test_writeback(folio)); + + if (!folio_clear_dirty_for_io(folio)) + return false; + + return true; +} + +static xa_mark_t wbc_to_tag(struct writeback_control *wbc) +{ + if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) + return PAGECACHE_TAG_TOWRITE; + return PAGECACHE_TAG_DIRTY; +} + +static pgoff_t wbc_end(struct writeback_control *wbc) +{ + if (wbc->range_cyclic) + return -1; + return wbc->range_end >> PAGE_SHIFT; +} + +static struct folio *writeback_get_folio(struct address_space *mapping, + struct writeback_control *wbc) +{ + struct folio *folio; + +retry: + folio = folio_batch_next(&wbc->fbatch); + if (!folio) { + folio_batch_release(&wbc->fbatch); + cond_resched(); + filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc), + wbc_to_tag(wbc), &wbc->fbatch); + folio = folio_batch_next(&wbc->fbatch); + if (!folio) + return NULL; + } + + folio_lock(folio); + if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) { + folio_unlock(folio); + goto retry; + } + + trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); + return folio; +} + /** - * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. + * writeback_iter - iterate folio of a mapping for writeback * @mapping: address space structure to write - * @wbc: subtract the number of written pages from *@wbc->nr_to_write - * @writepage: function called for each page - * @data: data passed to writepage function + * @wbc: writeback context + * @folio: previously iterated folio (%NULL to start) + * @error: in-out pointer for writeback errors (see below) * - * If a page is already under I/O, write_cache_pages() skips it, even - * if it's dirty. This is desirable behaviour for memory-cleaning writeback, - * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() - * and msync() need to guarantee that all the data which was dirty at the time - * the call was made get new I/O started against them. If wbc->sync_mode is - * WB_SYNC_ALL then we were called for data integrity and we must wait for - * existing IO to complete. - * - * To avoid livelocks (when other process dirties new pages), we first tag - * pages which should be written back with TOWRITE tag and only then start - * writing them. For data-integrity sync we have to be careful so that we do - * not miss some pages (e.g., because some other process has cleared TOWRITE - * tag we set). The rule we follow is that TOWRITE tag can be cleared only - * by the process clearing the DIRTY tag (and submitting the page for IO). - * - * To avoid deadlocks between range_cyclic writeback and callers that hold - * pages in PageWriteback to aggregate IO until write_cache_pages() returns, - * we do not loop back to the start of the file. Doing so causes a page - * lock/page writeback access order inversion - we should only ever lock - * multiple pages in ascending page->index order, and looping back to the start - * of the file violates that rule and causes deadlocks. + * This function returns the next folio for the writeback operation described by + * @wbc on @mapping and should be called in a while loop in the ->writepages + * implementation. * - * Return: %0 on success, negative error code otherwise + * To start the writeback operation, %NULL is passed in the @folio argument, and + * for every subsequent iteration the folio returned previously should be passed + * back in. + * + * If there was an error in the per-folio writeback inside the writeback_iter() + * loop, @error should be set to the error value. + * + * Once the writeback described in @wbc has finished, this function will return + * %NULL and if there was an error in any iteration restore it to @error. + * + * Note: callers should not manually break out of the loop using break or goto + * but must keep calling writeback_iter() until it returns %NULL. + * + * Return: the folio to write or %NULL if the loop is done. */ -int write_cache_pages(struct address_space *mapping, - struct writeback_control *wbc, writepage_t writepage, - void *data) +struct folio *writeback_iter(struct address_space *mapping, + struct writeback_control *wbc, struct folio *folio, int *error) { - int ret = 0; - int done = 0; - int error; - struct folio_batch fbatch; - int nr_folios; - pgoff_t index; - pgoff_t end; /* Inclusive */ - pgoff_t done_index; - int range_whole = 0; - xa_mark_t tag; - - folio_batch_init(&fbatch); - if (wbc->range_cyclic) { - index = mapping->writeback_index; /* prev offset */ - end = -1; - } else { - index = wbc->range_start >> PAGE_SHIFT; - end = wbc->range_end >> PAGE_SHIFT; - if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) - range_whole = 1; - } - if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { - tag_pages_for_writeback(mapping, index, end); - tag = PAGECACHE_TAG_TOWRITE; - } else { - tag = PAGECACHE_TAG_DIRTY; - } - done_index = index; - while (!done && (index <= end)) { - int i; - - nr_folios = filemap_get_folios_tag(mapping, &index, end, - tag, &fbatch); - - if (nr_folios == 0) - break; + if (!folio) { + folio_batch_init(&wbc->fbatch); + wbc->saved_err = *error = 0; - for (i = 0; i < nr_folios; i++) { - struct folio *folio = fbatch.folios[i]; - unsigned long nr; + /* + * For range cyclic writeback we remember where we stopped so + * that we can continue where we stopped. + * + * For non-cyclic writeback we always start at the beginning of + * the passed in range. + */ + if (wbc->range_cyclic) + wbc->index = mapping->writeback_index; + else + wbc->index = wbc->range_start >> PAGE_SHIFT; - done_index = folio->index; + /* + * To avoid livelocks when other processes dirty new pages, we + * first tag pages which should be written back and only then + * start writing them. + * + * For data-integrity writeback we have to be careful so that we + * do not miss some pages (e.g., because some other process has + * cleared the TOWRITE tag we set). The rule we follow is that + * TOWRITE tag can be cleared only by the process clearing the + * DIRTY tag (and submitting the page for I/O). + */ + if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) + tag_pages_for_writeback(mapping, wbc->index, + wbc_end(wbc)); + } else { + wbc->nr_to_write -= folio_nr_pages(folio); - folio_lock(folio); + WARN_ON_ONCE(*error > 0); - /* - * Page truncated or invalidated. We can freely skip it - * then, even for data integrity operations: the page - * has disappeared concurrently, so there could be no - * real expectation of this data integrity operation - * even if there is now a new, dirty page at the same - * pagecache address. - */ - if (unlikely(folio->mapping != mapping)) { -continue_unlock: - folio_unlock(folio); - continue; - } + /* + * For integrity writeback we have to keep going until we have + * written all the folios we tagged for writeback above, even if + * we run past wbc->nr_to_write or encounter errors. + * We stash away the first error we encounter in wbc->saved_err + * so that it can be retrieved when we're done. This is because + * the file system may still have state to clear for each folio. + * + * For background writeback we exit as soon as we run past + * wbc->nr_to_write or encounter the first error. + */ + if (wbc->sync_mode == WB_SYNC_ALL) { + if (*error && !wbc->saved_err) + wbc->saved_err = *error; + } else { + if (*error || wbc->nr_to_write <= 0) + goto done; + } + } - if (!folio_test_dirty(folio)) { - /* someone wrote it for us */ - goto continue_unlock; - } + folio = writeback_get_folio(mapping, wbc); + if (!folio) { + /* + * To avoid deadlocks between range_cyclic writeback and callers + * that hold pages in PageWriteback to aggregate I/O until + * the writeback iteration finishes, we do not loop back to the + * start of the file. Doing so causes a page lock/page + * writeback access order inversion - we should only ever lock + * multiple pages in ascending page->index order, and looping + * back to the start of the file violates that rule and causes + * deadlocks. + */ + if (wbc->range_cyclic) + mapping->writeback_index = 0; - if (folio_test_writeback(folio)) { - if (wbc->sync_mode != WB_SYNC_NONE) - folio_wait_writeback(folio); - else - goto continue_unlock; - } + /* + * Return the first error we encountered (if there was any) to + * the caller. + */ + *error = wbc->saved_err; + } + return folio; - BUG_ON(folio_test_writeback(folio)); - if (!folio_clear_dirty_for_io(folio)) - goto continue_unlock; +done: + if (wbc->range_cyclic) + mapping->writeback_index = folio->index + folio_nr_pages(folio); + folio_batch_release(&wbc->fbatch); + return NULL; +} - trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); - error = writepage(folio, wbc, data); - nr = folio_nr_pages(folio); - if (unlikely(error)) { - /* - * Handle errors according to the type of - * writeback. There's no need to continue for - * background writeback. Just push done_index - * past this page so media errors won't choke - * writeout for the entire file. For integrity - * writeback, we must process the entire dirty - * set regardless of errors because the fs may - * still have state to clear for each page. In - * that case we continue processing and return - * the first error. - */ - if (error == AOP_WRITEPAGE_ACTIVATE) { - folio_unlock(folio); - error = 0; - } else if (wbc->sync_mode != WB_SYNC_ALL) { - ret = error; - done_index = folio->index + nr; - done = 1; - break; - } - if (!ret) - ret = error; - } +/** + * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. + * @mapping: address space structure to write + * @wbc: subtract the number of written pages from *@wbc->nr_to_write + * @writepage: function called for each page + * @data: data passed to writepage function + * + * Return: %0 on success, negative error code otherwise + * + * Note: please use writeback_iter() instead. + */ +int write_cache_pages(struct address_space *mapping, + struct writeback_control *wbc, writepage_t writepage, + void *data) +{ + struct folio *folio = NULL; + int error; - /* - * We stop writing back only if we are not doing - * integrity sync. In case of integrity sync we have to - * keep going until we have written all the pages - * we tagged for writeback prior to entering this loop. - */ - wbc->nr_to_write -= nr; - if (wbc->nr_to_write <= 0 && - wbc->sync_mode == WB_SYNC_NONE) { - done = 1; - break; - } + while ((folio = writeback_iter(mapping, wbc, folio, &error))) { + error = writepage(folio, wbc, data); + if (error == AOP_WRITEPAGE_ACTIVATE) { + folio_unlock(folio); + error = 0; } - folio_batch_release(&fbatch); - cond_resched(); } - /* - * If we hit the last page and there is more work to be done: wrap - * back the index back to the start of the file for the next - * time we are called. - */ - if (wbc->range_cyclic && !done) - done_index = 0; - if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) - mapping->writeback_index = done_index; - - return ret; + return error; } EXPORT_SYMBOL(write_cache_pages); -static int writepage_cb(struct folio *folio, struct writeback_control *wbc, - void *data) +static int writeback_use_writepage(struct address_space *mapping, + struct writeback_control *wbc) { - struct address_space *mapping = data; - int ret = mapping->a_ops->writepage(&folio->page, wbc); - mapping_set_error(mapping, ret); - return ret; + struct folio *folio = NULL; + struct blk_plug plug; + int err; + + blk_start_plug(&plug); + while ((folio = writeback_iter(mapping, wbc, folio, &err))) { + err = mapping->a_ops->writepage(&folio->page, wbc); + if (err == AOP_WRITEPAGE_ACTIVATE) { + folio_unlock(folio); + err = 0; + } + mapping_set_error(mapping, err); + } + blk_finish_plug(&plug); + + return err; } int do_writepages(struct address_space *mapping, struct writeback_control *wbc) @@ -2552,12 +2611,7 @@ int do_writepages(struct address_space *mapping, struct writeback_control *wbc) if (mapping->a_ops->writepages) { ret = mapping->a_ops->writepages(mapping, wbc); } else if (mapping->a_ops->writepage) { - struct blk_plug plug; - - blk_start_plug(&plug); - ret = write_cache_pages(mapping, wbc, writepage_cb, - mapping); - blk_finish_plug(&plug); + ret = writeback_use_writepage(mapping, wbc); } else { /* deal with chardevs and other special files */ ret = 0; |