diff options
author | Daniel Borkmann <dborkman@redhat.com> | 2014-09-02 22:53:44 +0200 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2014-09-05 12:02:48 -0700 |
commit | 60a3b2253c413cf601783b070507d7dd6620c954 (patch) | |
tree | d5682002b80cfeb75cb765df5ba097e7c889e9fe /net/core | |
parent | 4a804c01635a43ed073893532c058fbaa1f5154e (diff) | |
download | linux-60a3b2253c413cf601783b070507d7dd6620c954.tar.gz linux-60a3b2253c413cf601783b070507d7dd6620c954.tar.bz2 linux-60a3b2253c413cf601783b070507d7dd6620c954.zip |
net: bpf: make eBPF interpreter images read-only
With eBPF getting more extended and exposure to user space is on it's way,
hardening the memory range the interpreter uses to steer its command flow
seems appropriate. This patch moves the to be interpreted bytecode to
read-only pages.
In case we execute a corrupted BPF interpreter image for some reason e.g.
caused by an attacker which got past a verifier stage, it would not only
provide arbitrary read/write memory access but arbitrary function calls
as well. After setting up the BPF interpreter image, its contents do not
change until destruction time, thus we can setup the image on immutable
made pages in order to mitigate modifications to that code. The idea
is derived from commit 314beb9bcabf ("x86: bpf_jit_comp: secure bpf jit
against spraying attacks").
This is possible because bpf_prog is not part of sk_filter anymore.
After setup bpf_prog cannot be altered during its life-time. This prevents
any modifications to the entire bpf_prog structure (incl. function/JIT
image pointer).
Every eBPF program (including classic BPF that are migrated) have to call
bpf_prog_select_runtime() to select either interpreter or a JIT image
as a last setup step, and they all are being freed via bpf_prog_free(),
including non-JIT. Therefore, we can easily integrate this into the
eBPF life-time, plus since we directly allocate a bpf_prog, we have no
performance penalty.
Tested with seccomp and test_bpf testsuite in JIT/non-JIT mode and manual
inspection of kernel_page_tables. Brad Spengler proposed the same idea
via Twitter during development of this patch.
Joint work with Hannes Frederic Sowa.
Suggested-by: Brad Spengler <spender@grsecurity.net>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Kees Cook <keescook@chromium.org>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'net/core')
-rw-r--r-- | net/core/filter.c | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/net/core/filter.c b/net/core/filter.c index d814b8a89d0f..37f8eb06fdee 100644 --- a/net/core/filter.c +++ b/net/core/filter.c @@ -933,7 +933,7 @@ static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp) /* Expand fp for appending the new filter representation. */ old_fp = fp; - fp = krealloc(old_fp, bpf_prog_size(new_len), GFP_KERNEL); + fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0); if (!fp) { /* The old_fp is still around in case we couldn't * allocate new memory, so uncharge on that one. @@ -1013,7 +1013,7 @@ int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog) if (fprog->filter == NULL) return -EINVAL; - fp = kmalloc(bpf_prog_size(fprog->len), GFP_KERNEL); + fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0); if (!fp) return -ENOMEM; @@ -1069,7 +1069,7 @@ int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk) if (fprog->filter == NULL) return -EINVAL; - prog = kmalloc(bpf_fsize, GFP_KERNEL); + prog = bpf_prog_alloc(bpf_fsize, 0); if (!prog) return -ENOMEM; |