summaryrefslogtreecommitdiffstats
path: root/tools/perf/Documentation
diff options
context:
space:
mode:
authorAdrian Hunter <adrian.hunter@intel.com>2015-07-17 19:33:42 +0300
committerArnaldo Carvalho de Melo <acme@redhat.com>2015-08-17 11:11:37 -0300
commit5efb1d5489520ce72232bbc28e9156f0ebddc44e (patch)
treea5637c81f5d6576c848a6a3d1ef91790ab1e7b46 /tools/perf/Documentation
parent90e457f7be0870052724b2d9c2c106e5847f2c19 (diff)
downloadlinux-5efb1d5489520ce72232bbc28e9156f0ebddc44e.tar.gz
linux-5efb1d5489520ce72232bbc28e9156f0ebddc44e.tar.bz2
linux-5efb1d5489520ce72232bbc28e9156f0ebddc44e.zip
perf tools: Take Intel PT into use
To record an AUX area, the weak function auxtrace_record__init() must be implemented. Equally to decode an AUX area, the AUX area tracing type must be added to the perf_event__process_auxtrace_info() function. This patch makes those two changes plus hooks up default config for the intel_pt PMU. Also some brief documentation is provided for using the tools with intel_pt. Commiter note: E.g: [root@perf4 ~]# dmesg 451 [0.405807] Performance Events: PEBS fmt2+, 16-deep LBR, Broadwell events, full-width counters, Intel PMU driver. [root@perf4 ~]# perf --version perf version 4.1.g53874a [root@perf4 ~]# perf record -e intel_pt//u -a sleep 10 [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.383 MB perf.data ] [root@perf4 ~]# perf evlist intel_pt//u sched:sched_switch dummy:u [root@perf4 ~]# perf report --stdio # To display the perf.data header info, please use --header/--header-only options. # # # Total Lost Samples: 0 # # Samples: 0 of event 'intel_pt//u' # Event count (approx.): 0 # # Overhead Command Shared Object Symbol # ........ ....... ............. ...... # # Samples: 393 of event 'sched:sched_switch' # Event count (approx.): 393 # # Overhead Command Shared Object Symbol # ........ .............. ................ .............. 49.62% swapper [kernel.vmlinux] [k] __schedule 10.69% rcu_sched [kernel.vmlinux] [k] __schedule 6.62% rcuos/0 [kernel.vmlinux] [k] __schedule 5.60% kworker/0:1 [kernel.vmlinux] [k] __schedule 3.56% rcuos/3 [kernel.vmlinux] [k] __schedule 3.05% kworker/u384:2 [kernel.vmlinux] [k] __schedule 2.54% kworker/2:0 [kernel.vmlinux] [k] __schedule 2.54% tuned [kernel.vmlinux] [k] __schedule <SNIP> # Samples: 0 of event 'dummy:u' # Event count (approx.): 0 # # Overhead Command Shared Object Symbol # ........ ....... ............. ...... # Samples: 28 of event 'instructions:u' # Event count (approx.): 5030172 # # Overhead Command Shared Object Symbol # ........ .......... ................... ................................ # 21.43% tuned libpython2.7.so.1.0 [.] PyEval_EvalFrameEx | ---PyEval_EvalFrameEx | |--83.33%-- PyEval_EvalCodeEx | PyEval_EvalFrameEx | | | |--60.00%-- PyEval_EvalCodeEx | | PyEval_EvalFrameEx | | PyEval_EvalFrameEx | | | --40.00%-- PyEval_EvalFrameEx | --16.67%-- PyEval_EvalFrameEx PyEval_EvalCodeEx PyEval_EvalFrameEx PyEval_EvalCodeEx PyEval_EvalFrameEx PyEval_EvalFrameEx 14.29% tuned libpython2.7.so.1.0 [.] _PyType_Lookup | ---_PyType_Lookup _PyObject_GenericGetAttrWithDict PyEval_EvalFrameEx PyEval_EvalCodeEx PyEval_EvalFrameEx PyEval_EvalCodeEx PyEval_EvalFrameEx | |--75.00%-- PyEval_EvalFrameEx | --25.00%-- PyEval_EvalCodeEx PyEval_EvalFrameEx PyEval_EvalFrameEx 3.57% irqbalance irqbalance [.] 0x0000000000004038 | ---0x4038 0x4761 0x4761 0x4761 0x49f1 0x2295 3.57% irqbalance libc-2.17.so [.] __GI_____strtoull_l_internal | ---__GI_____strtoull_l_internal 0x6f49 0x229a 3.57% irqbalance libc-2.17.so [.] __strchrnul | ---__strchrnul vfprintf __vsprintf_chk __sprintf_chk 0x2724 0x4038 0x2331 3.57% irqbalance libc-2.17.so [.] __strstr_sse42 | ---__strstr_sse42 0x71e0 0x229f # And now to some userspace ftrace on uninstrumented binaries 8-) : # Hand edited to make it a bit more compact, replacing /home/acme/bin/perf # with /bin/perf: [root@perf4 ~]# perf script perf 8921 [3] 7.310889: 1 branches:u: 0 [unknown] ([unknown]) => 7fcecadbf257 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.310889: 1 branches:u: 7fcecadbf25f __GI___ioctl (/usr/lib64/libc-2.17.so) => 481689 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310889: 1 branches:u: 481694 perf_evlist__enable (/bin/perf) => 481614 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310889: 1 branches:u: 481630 perf_evlist__enable (/bin/perf) => 4816d8 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310889: 1 branches:u: 4816de perf_evlist__enable (/bin/perf) => 48164f perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310889: 1 branches:u: 481652 perf_evlist__enable (/bin/perf) => 48165f perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310889: 1 branches:u: 481684 perf_evlist__enable (/bin/perf) => 41d250 ioctl@plt (/bin/perf) perf 8921 [3] 7.310889: 1 branches:u: 41d250 ioctl@plt (/bin/perf) => 7fcecadbf250 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.310889: 1 branches:u: 7fcecadbf255 __GI___ioctl (/usr/lib64/libc-2.17.so) => 0 [unknown] ([unknown]) perf 8921 [3] 7.310890: 1 branches:u: 0 [unknown] ([unknown]) => 7fcecadbf257 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.310890: 1 branches:u: 7fcecadbf25f __GI___ioctl (/usr/lib64/libc-2.17.so) => 481689 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310890: 1 branches:u: 481694 perf_evlist__enable (/bin/perf) => 481614 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310890: 1 branches:u: 481652 perf_evlist__enable (/bin/perf) => 48165f perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310890: 1 branches:u: 481684 perf_evlist__enable (/bin/perf) => 41d250 ioctl@plt (/bin/perf) perf 8921 [3] 7.310890: 1 branches:u: 41d250 ioctl@plt (/bin/perf) => 7fcecadbf250 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.310890: 1 branches:u: 7fcecadbf255 __GI___ioctl (/usr/lib64/libc-2.17.so) => 0 [unknown] ([unknown]) perf 8921 [3] 7.310893: 1 branches:u: 0 [unknown] ([unknown]) => 7fcecadbf257 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.310893: 1 branches:u: 7fcecadbf25f __GI___ioctl (/usr/lib64/libc-2.17.so) => 481689 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310893: 1 branches:u: 4816a8 perf_evlist__enable (/bin/perf) => 4815f8 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310893: 1 branches:u: 4815fe perf_evlist__enable (/bin/perf) => 481614 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310893: 1 branches:u: 481652 perf_evlist__enable (/bin/perf) => 48165f perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310893: 1 branches:u: 481684 perf_evlist__enable (/bin/perf) => 41d250 ioctl@plt (/bin/perf) perf 8921 [3] 7.310893: 1 branches:u: 41d250 ioctl@plt (/bin/perf) => 7fcecadbf250 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.310893: 1 branches:u: 7fcecadbf255 __GI___ioctl (/usr/lib64/libc-2.17.so) => 0 [unknown] ([unknown]) perf 8921 [3] 7.310956: 1 branches:u: 0 [unknown] ([unknown]) => 7fcecadbf257 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.310956: 1 branches:u: 7fcecadbf25f __GI___ioctl (/usr/lib64/libc-2.17.so) => 481689 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310956: 1 branches:u: 481694 perf_evlist__enable (/bin/perf) => 481614 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310956: 1 branches:u: 481630 perf_evlist__enable (/bin/perf) => 4816d8 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310956: 1 branches:u: 4816de perf_evlist__enable (/bin/perf) => 48164f perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310956: 1 branches:u: 481652 perf_evlist__enable (/bin/perf) => 48165f perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310956: 1 branches:u: 481684 perf_evlist__enable (/bin/perf) => 41d250 ioctl@plt (/bin/perf) perf 8921 [3] 7.310956: 1 branches:u: 41d250 ioctl@plt (/bin/perf) => 7fcecadbf250 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.310956: 1 branches:u: 7fcecadbf255 __GI___ioctl (/usr/lib64/libc-2.17.so) => 0 [unknown] ([unknown]) perf 8921 [3] 7.310961: 1 branches:u: 0 [unknown] ([unknown]) => 7fcecadbf257 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.310961: 1 branches:u: 7fcecadbf25f __GI___ioctl (/usr/lib64/libc-2.17.so) => 481689 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310961: 1 branches:u: 481694 perf_evlist__enable (/bin/perf) => 481614 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310961: 1 branches:u: 481652 perf_evlist__enable (/bin/perf) => 48165f perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310961: 1 branches:u: 481684 perf_evlist__enable (/bin/perf) => 41d250 ioctl@plt (/bin/perf) perf 8921 [3] 7.310961: 1 branches:u: 41d250 ioctl@plt (/bin/perf) => 7fcecadbf250 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.310961: 1 branches:u: 7fcecadbf255 __GI___ioctl (/usr/lib64/libc-2.17.so) => 0 [unknown] ([unknown]) perf 8921 [3] 7.310968: 1 branches:u: 0 [unknown] ([unknown]) => 7fcecadbf257 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.310968: 1 branches:u: 7fcecadbf25f __GI___ioctl (/usr/lib64/libc-2.17.so) => 481689 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310968: 1 branches:u: 4816a8 perf_evlist__enable (/bin/perf) => 4815f8 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310968: 1 branches:u: 4815fe perf_evlist__enable (/bin/perf) => 481614 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310968: 1 branches:u: 481652 perf_evlist__enable (/bin/perf) => 48165f perf_evlist__enable (/bin/perf) perf 8921 [3] 7.310968: 1 branches:u: 481684 perf_evlist__enable (/bin/perf) => 41d250 ioctl@plt (/bin/perf) perf 8921 [3] 7.310968: 1 branches:u: 41d250 ioctl@plt (/bin/perf) => 7fcecadbf250 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.310968: 1 branches:u: 7fcecadbf255 __GI___ioctl (/usr/lib64/libc-2.17.so) => 0 [unknown] ([unknown]) perf 8921 [3] 7.311040: 1 branches:u: 0 [unknown] ([unknown]) => 7fcecadbf257 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.311040: 1 branches:u: 7fcecadbf25f __GI___ioctl (/usr/lib64/libc-2.17.so) => 481689 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.311040: 1 branches:u: 481694 perf_evlist__enable (/bin/perf) => 481614 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.311040: 1 branches:u: 481630 perf_evlist__enable (/bin/perf) => 4816d8 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.311040: 1 branches:u: 4816de perf_evlist__enable (/bin/perf) => 48164f perf_evlist__enable (/bin/perf) perf 8921 [3] 7.311040: 1 branches:u: 481652 perf_evlist__enable (/bin/perf) => 48165f perf_evlist__enable (/bin/perf) perf 8921 [3] 7.311040: 1 branches:u: 481684 perf_evlist__enable (/bin/perf) => 41d250 ioctl@plt (/bin/perf) perf 8921 [3] 7.311040: 1 branches:u: 41d250 ioctl@plt (/bin/perf) => 7fcecadbf250 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.311040: 1 branches:u: 7fcecadbf255 __GI___ioctl (/usr/lib64/libc-2.17.so) => 0 [unknown] ([unknown]) perf 8921 [3] 7.311046: 1 branches:u: 0 [unknown] ([unknown]) => 7fcecadbf257 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.311046: 1 branches:u: 7fcecadbf25f __GI___ioctl (/usr/lib64/libc-2.17.so) => 481689 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.311046: 1 branches:u: 481694 perf_evlist__enable (/bin/perf) => 481614 perf_evlist__enable (/bin/perf) perf 8921 [3] 7.311046: 1 branches:u: 481652 perf_evlist__enable (/bin/perf) => 48165f perf_evlist__enable (/bin/perf) perf 8921 [3] 7.311046: 1 branches:u: 481684 perf_evlist__enable (/bin/perf) => 41d250 ioctl@plt (/bin/perf) perf 8921 [3] 7.311046: 1 branches:u: 41d250 ioctl@plt (/bin/perf) => 7fcecadbf250 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.311046: 1 branches:u: 7fcecadbf255 __GI___ioctl (/usr/lib64/libc-2.17.so) => 0 [unknown] ([unknown]) perf 8921 [3] 7.311050: 1 branches:u: 0 [unknown] ([unknown]) => 7fcecadbf257 __GI___ioctl (/usr/lib64/libc-2.17.so) perf 8921 [3] 7.311050: 1 branches:u: 7fcecadbf25f __GI___ioctl (/usr/lib64/libc-2.17.so) => 481689 perf_evlist__enable (/bin/perf) : Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/r/1437150840-31811-8-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Diffstat (limited to 'tools/perf/Documentation')
-rw-r--r--tools/perf/Documentation/intel-pt.txt588
1 files changed, 588 insertions, 0 deletions
diff --git a/tools/perf/Documentation/intel-pt.txt b/tools/perf/Documentation/intel-pt.txt
new file mode 100644
index 000000000000..2866b62eb293
--- /dev/null
+++ b/tools/perf/Documentation/intel-pt.txt
@@ -0,0 +1,588 @@
+Intel Processor Trace
+=====================
+
+Overview
+========
+
+Intel Processor Trace (Intel PT) is an extension of Intel Architecture that
+collects information about software execution such as control flow, execution
+modes and timings and formats it into highly compressed binary packets.
+Technical details are documented in the Intel 64 and IA-32 Architectures
+Software Developer Manuals, Chapter 36 Intel Processor Trace.
+
+Intel PT is first supported in Intel Core M and 5th generation Intel Core
+processors that are based on the Intel micro-architecture code name Broadwell.
+
+Trace data is collected by 'perf record' and stored within the perf.data file.
+See below for options to 'perf record'.
+
+Trace data must be 'decoded' which involves walking the object code and matching
+the trace data packets. For example a TNT packet only tells whether a
+conditional branch was taken or not taken, so to make use of that packet the
+decoder must know precisely which instruction was being executed.
+
+Decoding is done on-the-fly. The decoder outputs samples in the same format as
+samples output by perf hardware events, for example as though the "instructions"
+or "branches" events had been recorded. Presently 3 tools support this:
+'perf script', 'perf report' and 'perf inject'. See below for more information
+on using those tools.
+
+The main distinguishing feature of Intel PT is that the decoder can determine
+the exact flow of software execution. Intel PT can be used to understand why
+and how did software get to a certain point, or behave a certain way. The
+software does not have to be recompiled, so Intel PT works with debug or release
+builds, however the executed images are needed - which makes use in JIT-compiled
+environments, or with self-modified code, a challenge. Also symbols need to be
+provided to make sense of addresses.
+
+A limitation of Intel PT is that it produces huge amounts of trace data
+(hundreds of megabytes per second per core) which takes a long time to decode,
+for example two or three orders of magnitude longer than it took to collect.
+Another limitation is the performance impact of tracing, something that will
+vary depending on the use-case and architecture.
+
+
+Quickstart
+==========
+
+It is important to start small. That is because it is easy to capture vastly
+more data than can possibly be processed.
+
+The simplest thing to do with Intel PT is userspace profiling of small programs.
+Data is captured with 'perf record' e.g. to trace 'ls' userspace-only:
+
+ perf record -e intel_pt//u ls
+
+And profiled with 'perf report' e.g.
+
+ perf report
+
+To also trace kernel space presents a problem, namely kernel self-modifying
+code. A fairly good kernel image is available in /proc/kcore but to get an
+accurate image a copy of /proc/kcore needs to be made under the same conditions
+as the data capture. A script perf-with-kcore can do that, but beware that the
+script makes use of 'sudo' to copy /proc/kcore. If you have perf installed
+locally from the source tree you can do:
+
+ ~/libexec/perf-core/perf-with-kcore record pt_ls -e intel_pt// -- ls
+
+which will create a directory named 'pt_ls' and put the perf.data file and
+copies of /proc/kcore, /proc/kallsyms and /proc/modules into it. Then to use
+'perf report' becomes:
+
+ ~/libexec/perf-core/perf-with-kcore report pt_ls
+
+Because samples are synthesized after-the-fact, the sampling period can be
+selected for reporting. e.g. sample every microsecond
+
+ ~/libexec/perf-core/perf-with-kcore report pt_ls --itrace=i1usge
+
+See the sections below for more information about the --itrace option.
+
+Beware the smaller the period, the more samples that are produced, and the
+longer it takes to process them.
+
+Also note that the coarseness of Intel PT timing information will start to
+distort the statistical value of the sampling as the sampling period becomes
+smaller.
+
+To represent software control flow, "branches" samples are produced. By default
+a branch sample is synthesized for every single branch. To get an idea what
+data is available you can use the 'perf script' tool with no parameters, which
+will list all the samples.
+
+ perf record -e intel_pt//u ls
+ perf script
+
+An interesting field that is not printed by default is 'flags' which can be
+displayed as follows:
+
+ perf script -Fcomm,tid,pid,time,cpu,event,trace,ip,sym,dso,addr,symoff,flags
+
+The flags are "bcrosyiABEx" which stand for branch, call, return, conditional,
+system, asynchronous, interrupt, transaction abort, trace begin, trace end, and
+in transaction, respectively.
+
+While it is possible to create scripts to analyze the data, an alternative
+approach is available to export the data to a postgresql database. Refer to
+script export-to-postgresql.py for more details, and to script
+call-graph-from-postgresql.py for an example of using the database.
+
+As mentioned above, it is easy to capture too much data. One way to limit the
+data captured is to use 'snapshot' mode which is explained further below.
+Refer to 'new snapshot option' and 'Intel PT modes of operation' further below.
+
+Another problem that will be experienced is decoder errors. They can be caused
+by inability to access the executed image, self-modified or JIT-ed code, or the
+inability to match side-band information (such as context switches and mmaps)
+which results in the decoder not knowing what code was executed.
+
+There is also the problem of perf not being able to copy the data fast enough,
+resulting in data lost because the buffer was full. See 'Buffer handling' below
+for more details.
+
+
+perf record
+===========
+
+new event
+---------
+
+The Intel PT kernel driver creates a new PMU for Intel PT. PMU events are
+selected by providing the PMU name followed by the "config" separated by slashes.
+An enhancement has been made to allow default "config" e.g. the option
+
+ -e intel_pt//
+
+will use a default config value. Currently that is the same as
+
+ -e intel_pt/tsc,noretcomp=0/
+
+which is the same as
+
+ -e intel_pt/tsc=1,noretcomp=0/
+
+The config terms are listed in /sys/devices/intel_pt/format. They are bit
+fields within the config member of the struct perf_event_attr which is
+passed to the kernel by the perf_event_open system call. They correspond to bit
+fields in the IA32_RTIT_CTL MSR. Here is a list of them and their definitions:
+
+ $ for f in `ls /sys/devices/intel_pt/format`;do
+ > echo $f
+ > cat /sys/devices/intel_pt/format/$f
+ > done
+ noretcomp
+ config:11
+ tsc
+ config:10
+
+Note that the default config must be overridden for each term i.e.
+
+ -e intel_pt/noretcomp=0/
+
+is the same as:
+
+ -e intel_pt/tsc=1,noretcomp=0/
+
+So, to disable TSC packets use:
+
+ -e intel_pt/tsc=0/
+
+It is also possible to specify the config value explicitly:
+
+ -e intel_pt/config=0x400/
+
+Note that, as with all events, the event is suffixed with event modifiers:
+
+ u userspace
+ k kernel
+ h hypervisor
+ G guest
+ H host
+ p precise ip
+
+'h', 'G' and 'H' are for virtualization which is not supported by Intel PT.
+'p' is also not relevant to Intel PT. So only options 'u' and 'k' are
+meaningful for Intel PT.
+
+perf_event_attr is displayed if the -vv option is used e.g.
+
+ ------------------------------------------------------------
+ perf_event_attr:
+ type 6
+ size 112
+ config 0x400
+ { sample_period, sample_freq } 1
+ sample_type IP|TID|TIME|CPU|IDENTIFIER
+ read_format ID
+ disabled 1
+ inherit 1
+ exclude_kernel 1
+ exclude_hv 1
+ enable_on_exec 1
+ sample_id_all 1
+ ------------------------------------------------------------
+ sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8
+ sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8
+ sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8
+ sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8
+ ------------------------------------------------------------
+
+
+new snapshot option
+-------------------
+
+To select snapshot mode a new option has been added:
+
+ -S
+
+Optionally it can be followed by the snapshot size e.g.
+
+ -S0x100000
+
+The default snapshot size is the auxtrace mmap size. If neither auxtrace mmap size
+nor snapshot size is specified, then the default is 4MiB for privileged users
+(or if /proc/sys/kernel/perf_event_paranoid < 0), 128KiB for unprivileged users.
+If an unprivileged user does not specify mmap pages, the mmap pages will be
+reduced as described in the 'new auxtrace mmap size option' section below.
+
+The snapshot size is displayed if the option -vv is used e.g.
+
+ Intel PT snapshot size: %zu
+
+
+new auxtrace mmap size option
+---------------------------
+
+Intel PT buffer size is specified by an addition to the -m option e.g.
+
+ -m,16
+
+selects a buffer size of 16 pages i.e. 64KiB.
+
+Note that the existing functionality of -m is unchanged. The auxtrace mmap size
+is specified by the optional addition of a comma and the value.
+
+The default auxtrace mmap size for Intel PT is 4MiB/page_size for privileged users
+(or if /proc/sys/kernel/perf_event_paranoid < 0), 128KiB for unprivileged users.
+If an unprivileged user does not specify mmap pages, the mmap pages will be
+reduced from the default 512KiB/page_size to 256KiB/page_size, otherwise the
+user is likely to get an error as they exceed their mlock limit (Max locked
+memory as shown in /proc/self/limits). Note that perf does not count the first
+512KiB (actually /proc/sys/kernel/perf_event_mlock_kb minus 1 page) per cpu
+against the mlock limit so an unprivileged user is allowed 512KiB per cpu plus
+their mlock limit (which defaults to 64KiB but is not multiplied by the number
+of cpus).
+
+In full-trace mode, powers of two are allowed for buffer size, with a minimum
+size of 2 pages. In snapshot mode, it is the same but the minimum size is
+1 page.
+
+The mmap size and auxtrace mmap size are displayed if the -vv option is used e.g.
+
+ mmap length 528384
+ auxtrace mmap length 4198400
+
+
+Intel PT modes of operation
+---------------------------
+
+Intel PT can be used in 2 modes:
+ full-trace mode
+ snapshot mode
+
+Full-trace mode traces continuously e.g.
+
+ perf record -e intel_pt//u uname
+
+Snapshot mode captures the available data when a signal is sent e.g.
+
+ perf record -v -e intel_pt//u -S ./loopy 1000000000 &
+ [1] 11435
+ kill -USR2 11435
+ Recording AUX area tracing snapshot
+
+Note that the signal sent is SIGUSR2.
+Note that "Recording AUX area tracing snapshot" is displayed because the -v
+option is used.
+
+The 2 modes cannot be used together.
+
+
+Buffer handling
+---------------
+
+There may be buffer limitations (i.e. single ToPa entry) which means that actual
+buffer sizes are limited to powers of 2 up to 4MiB (MAX_ORDER). In order to
+provide other sizes, and in particular an arbitrarily large size, multiple
+buffers are logically concatenated. However an interrupt must be used to switch
+between buffers. That has two potential problems:
+ a) the interrupt may not be handled in time so that the current buffer
+ becomes full and some trace data is lost.
+ b) the interrupts may slow the system and affect the performance
+ results.
+
+If trace data is lost, the driver sets 'truncated' in the PERF_RECORD_AUX event
+which the tools report as an error.
+
+In full-trace mode, the driver waits for data to be copied out before allowing
+the (logical) buffer to wrap-around. If data is not copied out quickly enough,
+again 'truncated' is set in the PERF_RECORD_AUX event. If the driver has to
+wait, the intel_pt event gets disabled. Because it is difficult to know when
+that happens, perf tools always re-enable the intel_pt event after copying out
+data.
+
+
+Intel PT and build ids
+----------------------
+
+By default "perf record" post-processes the event stream to find all build ids
+for executables for all addresses sampled. Deliberately, Intel PT is not
+decoded for that purpose (it would take too long). Instead the build ids for
+all executables encountered (due to mmap, comm or task events) are included
+in the perf.data file.
+
+To see buildids included in the perf.data file use the command:
+
+ perf buildid-list
+
+If the perf.data file contains Intel PT data, that is the same as:
+
+ perf buildid-list --with-hits
+
+
+Snapshot mode and event disabling
+---------------------------------
+
+In order to make a snapshot, the intel_pt event is disabled using an IOCTL,
+namely PERF_EVENT_IOC_DISABLE. However doing that can also disable the
+collection of side-band information. In order to prevent that, a dummy
+software event has been introduced that permits tracking events (like mmaps) to
+continue to be recorded while intel_pt is disabled. That is important to ensure
+there is complete side-band information to allow the decoding of subsequent
+snapshots.
+
+A test has been created for that. To find the test:
+
+ perf test list
+ ...
+ 23: Test using a dummy software event to keep tracking
+
+To run the test:
+
+ perf test 23
+ 23: Test using a dummy software event to keep tracking : Ok
+
+
+perf record modes (nothing new here)
+------------------------------------
+
+perf record essentially operates in one of three modes:
+ per thread
+ per cpu
+ workload only
+
+"per thread" mode is selected by -t or by --per-thread (with -p or -u or just a
+workload).
+"per cpu" is selected by -C or -a.
+"workload only" mode is selected by not using the other options but providing a
+command to run (i.e. the workload).
+
+In per-thread mode an exact list of threads is traced. There is no inheritance.
+Each thread has its own event buffer.
+
+In per-cpu mode all processes (or processes from the selected cgroup i.e. -G
+option, or processes selected with -p or -u) are traced. Each cpu has its own
+buffer. Inheritance is allowed.
+
+In workload-only mode, the workload is traced but with per-cpu buffers.
+Inheritance is allowed. Note that you can now trace a workload in per-thread
+mode by using the --per-thread option.
+
+
+Privileged vs non-privileged users
+----------------------------------
+
+Unless /proc/sys/kernel/perf_event_paranoid is set to -1, unprivileged users
+have memory limits imposed upon them. That affects what buffer sizes they can
+have as outlined above.
+
+Unless /proc/sys/kernel/perf_event_paranoid is set to -1, unprivileged users are
+not permitted to use tracepoints which means there is insufficient side-band
+information to decode Intel PT in per-cpu mode, and potentially workload-only
+mode too if the workload creates new processes.
+
+Note also, that to use tracepoints, read-access to debugfs is required. So if
+debugfs is not mounted or the user does not have read-access, it will again not
+be possible to decode Intel PT in per-cpu mode.
+
+
+sched_switch tracepoint
+-----------------------
+
+The sched_switch tracepoint is used to provide side-band data for Intel PT
+decoding. sched_switch events are automatically added. e.g. the second event
+shown below
+
+ $ perf record -vv -e intel_pt//u uname
+ ------------------------------------------------------------
+ perf_event_attr:
+ type 6
+ size 112
+ config 0x400
+ { sample_period, sample_freq } 1
+ sample_type IP|TID|TIME|CPU|IDENTIFIER
+ read_format ID
+ disabled 1
+ inherit 1
+ exclude_kernel 1
+ exclude_hv 1
+ enable_on_exec 1
+ sample_id_all 1
+ ------------------------------------------------------------
+ sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8
+ sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8
+ sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8
+ sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8
+ ------------------------------------------------------------
+ perf_event_attr:
+ type 2
+ size 112
+ config 0x108
+ { sample_period, sample_freq } 1
+ sample_type IP|TID|TIME|CPU|PERIOD|RAW|IDENTIFIER
+ read_format ID
+ inherit 1
+ sample_id_all 1
+ exclude_guest 1
+ ------------------------------------------------------------
+ sys_perf_event_open: pid -1 cpu 0 group_fd -1 flags 0x8
+ sys_perf_event_open: pid -1 cpu 1 group_fd -1 flags 0x8
+ sys_perf_event_open: pid -1 cpu 2 group_fd -1 flags 0x8
+ sys_perf_event_open: pid -1 cpu 3 group_fd -1 flags 0x8
+ ------------------------------------------------------------
+ perf_event_attr:
+ type 1
+ size 112
+ config 0x9
+ { sample_period, sample_freq } 1
+ sample_type IP|TID|TIME|IDENTIFIER
+ read_format ID
+ disabled 1
+ inherit 1
+ exclude_kernel 1
+ exclude_hv 1
+ mmap 1
+ comm 1
+ enable_on_exec 1
+ task 1
+ sample_id_all 1
+ mmap2 1
+ comm_exec 1
+ ------------------------------------------------------------
+ sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8
+ sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8
+ sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8
+ sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8
+ mmap size 528384B
+ AUX area mmap length 4194304
+ perf event ring buffer mmapped per cpu
+ Synthesizing auxtrace information
+ Linux
+ [ perf record: Woken up 1 times to write data ]
+ [ perf record: Captured and wrote 0.042 MB perf.data ]
+
+Note, the sched_switch event is only added if the user is permitted to use it
+and only in per-cpu mode.
+
+Note also, the sched_switch event is only added if TSC packets are requested.
+That is because, in the absence of timing information, the sched_switch events
+cannot be matched against the Intel PT trace.
+
+
+perf script
+===========
+
+By default, perf script will decode trace data found in the perf.data file.
+This can be further controlled by new option --itrace.
+
+
+New --itrace option
+-------------------
+
+Having no option is the same as
+
+ --itrace
+
+which, in turn, is the same as
+
+ --itrace=ibxe
+
+The letters are:
+
+ i synthesize "instructions" events
+ b synthesize "branches" events
+ x synthesize "transactions" events
+ c synthesize branches events (calls only)
+ r synthesize branches events (returns only)
+ e synthesize tracing error events
+ d create a debug log
+ g synthesize a call chain (use with i or x)
+
+"Instructions" events look like they were recorded by "perf record -e
+instructions".
+
+"Branches" events look like they were recorded by "perf record -e branches". "c"
+and "r" can be combined to get calls and returns.
+
+"Transactions" events correspond to the start or end of transactions. The
+'flags' field can be used in perf script to determine whether the event is a
+tranasaction start, commit or abort.
+
+Error events are new. They show where the decoder lost the trace. Error events
+are quite important. Users must know if what they are seeing is a complete
+picture or not.
+
+The "d" option will cause the creation of a file "intel_pt.log" containing all
+decoded packets and instructions. Note that this option slows down the decoder
+and that the resulting file may be very large.
+
+In addition, the period of the "instructions" event can be specified. e.g.
+
+ --itrace=i10us
+
+sets the period to 10us i.e. one instruction sample is synthesized for each 10
+microseconds of trace. Alternatives to "us" are "ms" (milliseconds),
+"ns" (nanoseconds), "t" (TSC ticks) or "i" (instructions).
+
+"ms", "us" and "ns" are converted to TSC ticks.
+
+The timing information included with Intel PT does not give the time of every
+instruction. Consequently, for the purpose of sampling, the decoder estimates
+the time since the last timing packet based on 1 tick per instruction. The time
+on the sample is *not* adjusted and reflects the last known value of TSC.
+
+For Intel PT, the default period is 100us.
+
+Also the call chain size (default 16, max. 1024) for instructions or
+transactions events can be specified. e.g.
+
+ --itrace=ig32
+ --itrace=xg32
+
+To disable trace decoding entirely, use the option --no-itrace.
+
+
+dump option
+-----------
+
+perf script has an option (-D) to "dump" the events i.e. display the binary
+data.
+
+When -D is used, Intel PT packets are displayed. The packet decoder does not
+pay attention to PSB packets, but just decodes the bytes - so the packets seen
+by the actual decoder may not be identical in places where the data is corrupt.
+One example of that would be when the buffer-switching interrupt has been too
+slow, and the buffer has been filled completely. In that case, the last packet
+in the buffer might be truncated and immediately followed by a PSB as the trace
+continues in the next buffer.
+
+To disable the display of Intel PT packets, combine the -D option with
+--no-itrace.
+
+
+perf report
+===========
+
+By default, perf report will decode trace data found in the perf.data file.
+This can be further controlled by new option --itrace exactly the same as
+perf script, with the exception that the default is --itrace=igxe.
+
+
+perf inject
+===========
+
+perf inject also accepts the --itrace option in which case tracing data is
+removed and replaced with the synthesized events. e.g.
+
+ perf inject --itrace -i perf.data -o perf.data.new