diff options
-rw-r--r-- | Documentation/workqueue.txt | 380 | ||||
-rw-r--r-- | include/linux/workqueue.h | 4 | ||||
-rw-r--r-- | kernel/workqueue.c | 27 |
3 files changed, 401 insertions, 10 deletions
diff --git a/Documentation/workqueue.txt b/Documentation/workqueue.txt new file mode 100644 index 000000000000..e4498a2872c3 --- /dev/null +++ b/Documentation/workqueue.txt @@ -0,0 +1,380 @@ + +Concurrency Managed Workqueue (cmwq) + +September, 2010 Tejun Heo <tj@kernel.org> + Florian Mickler <florian@mickler.org> + +CONTENTS + +1. Introduction +2. Why cmwq? +3. The Design +4. Application Programming Interface (API) +5. Example Execution Scenarios +6. Guidelines + + +1. Introduction + +There are many cases where an asynchronous process execution context +is needed and the workqueue (wq) API is the most commonly used +mechanism for such cases. + +When such an asynchronous execution context is needed, a work item +describing which function to execute is put on a queue. An +independent thread serves as the asynchronous execution context. The +queue is called workqueue and the thread is called worker. + +While there are work items on the workqueue the worker executes the +functions associated with the work items one after the other. When +there is no work item left on the workqueue the worker becomes idle. +When a new work item gets queued, the worker begins executing again. + + +2. Why cmwq? + +In the original wq implementation, a multi threaded (MT) wq had one +worker thread per CPU and a single threaded (ST) wq had one worker +thread system-wide. A single MT wq needed to keep around the same +number of workers as the number of CPUs. The kernel grew a lot of MT +wq users over the years and with the number of CPU cores continuously +rising, some systems saturated the default 32k PID space just booting +up. + +Although MT wq wasted a lot of resource, the level of concurrency +provided was unsatisfactory. The limitation was common to both ST and +MT wq albeit less severe on MT. Each wq maintained its own separate +worker pool. A MT wq could provide only one execution context per CPU +while a ST wq one for the whole system. Work items had to compete for +those very limited execution contexts leading to various problems +including proneness to deadlocks around the single execution context. + +The tension between the provided level of concurrency and resource +usage also forced its users to make unnecessary tradeoffs like libata +choosing to use ST wq for polling PIOs and accepting an unnecessary +limitation that no two polling PIOs can progress at the same time. As +MT wq don't provide much better concurrency, users which require +higher level of concurrency, like async or fscache, had to implement +their own thread pool. + +Concurrency Managed Workqueue (cmwq) is a reimplementation of wq with +focus on the following goals. + +* Maintain compatibility with the original workqueue API. + +* Use per-CPU unified worker pools shared by all wq to provide + flexible level of concurrency on demand without wasting a lot of + resource. + +* Automatically regulate worker pool and level of concurrency so that + the API users don't need to worry about such details. + + +3. The Design + +In order to ease the asynchronous execution of functions a new +abstraction, the work item, is introduced. + +A work item is a simple struct that holds a pointer to the function +that is to be executed asynchronously. Whenever a driver or subsystem +wants a function to be executed asynchronously it has to set up a work +item pointing to that function and queue that work item on a +workqueue. + +Special purpose threads, called worker threads, execute the functions +off of the queue, one after the other. If no work is queued, the +worker threads become idle. These worker threads are managed in so +called thread-pools. + +The cmwq design differentiates between the user-facing workqueues that +subsystems and drivers queue work items on and the backend mechanism +which manages thread-pool and processes the queued work items. + +The backend is called gcwq. There is one gcwq for each possible CPU +and one gcwq to serve work items queued on unbound workqueues. + +Subsystems and drivers can create and queue work items through special +workqueue API functions as they see fit. They can influence some +aspects of the way the work items are executed by setting flags on the +workqueue they are putting the work item on. These flags include +things like CPU locality, reentrancy, concurrency limits and more. To +get a detailed overview refer to the API description of +alloc_workqueue() below. + +When a work item is queued to a workqueue, the target gcwq is +determined according to the queue parameters and workqueue attributes +and appended on the shared worklist of the gcwq. For example, unless +specifically overridden, a work item of a bound workqueue will be +queued on the worklist of exactly that gcwq that is associated to the +CPU the issuer is running on. + +For any worker pool implementation, managing the concurrency level +(how many execution contexts are active) is an important issue. cmwq +tries to keep the concurrency at a minimal but sufficient level. +Minimal to save resources and sufficient in that the system is used at +its full capacity. + +Each gcwq bound to an actual CPU implements concurrency management by +hooking into the scheduler. The gcwq is notified whenever an active +worker wakes up or sleeps and keeps track of the number of the +currently runnable workers. Generally, work items are not expected to +hog a CPU and consume many cycles. That means maintaining just enough +concurrency to prevent work processing from stalling should be +optimal. As long as there are one or more runnable workers on the +CPU, the gcwq doesn't start execution of a new work, but, when the +last running worker goes to sleep, it immediately schedules a new +worker so that the CPU doesn't sit idle while there are pending work +items. This allows using a minimal number of workers without losing +execution bandwidth. + +Keeping idle workers around doesn't cost other than the memory space +for kthreads, so cmwq holds onto idle ones for a while before killing +them. + +For an unbound wq, the above concurrency management doesn't apply and +the gcwq for the pseudo unbound CPU tries to start executing all work +items as soon as possible. The responsibility of regulating +concurrency level is on the users. There is also a flag to mark a +bound wq to ignore the concurrency management. Please refer to the +API section for details. + +Forward progress guarantee relies on that workers can be created when +more execution contexts are necessary, which in turn is guaranteed +through the use of rescue workers. All work items which might be used +on code paths that handle memory reclaim are required to be queued on +wq's that have a rescue-worker reserved for execution under memory +pressure. Else it is possible that the thread-pool deadlocks waiting +for execution contexts to free up. + + +4. Application Programming Interface (API) + +alloc_workqueue() allocates a wq. The original create_*workqueue() +functions are deprecated and scheduled for removal. alloc_workqueue() +takes three arguments - @name, @flags and @max_active. @name is the +name of the wq and also used as the name of the rescuer thread if +there is one. + +A wq no longer manages execution resources but serves as a domain for +forward progress guarantee, flush and work item attributes. @flags +and @max_active control how work items are assigned execution +resources, scheduled and executed. + +@flags: + + WQ_NON_REENTRANT + + By default, a wq guarantees non-reentrance only on the same + CPU. A work item may not be executed concurrently on the same + CPU by multiple workers but is allowed to be executed + concurrently on multiple CPUs. This flag makes sure + non-reentrance is enforced across all CPUs. Work items queued + to a non-reentrant wq are guaranteed to be executed by at most + one worker system-wide at any given time. + + WQ_UNBOUND + + Work items queued to an unbound wq are served by a special + gcwq which hosts workers which are not bound to any specific + CPU. This makes the wq behave as a simple execution context + provider without concurrency management. The unbound gcwq + tries to start execution of work items as soon as possible. + Unbound wq sacrifices locality but is useful for the following + cases. + + * Wide fluctuation in the concurrency level requirement is + expected and using bound wq may end up creating large number + of mostly unused workers across different CPUs as the issuer + hops through different CPUs. + + * Long running CPU intensive workloads which can be better + managed by the system scheduler. + + WQ_FREEZEABLE + + A freezeable wq participates in the freeze phase of the system + suspend operations. Work items on the wq are drained and no + new work item starts execution until thawed. + + WQ_RESCUER + + All wq which might be used in the memory reclaim paths _MUST_ + have this flag set. This reserves one worker exclusively for + the execution of this wq under memory pressure. + + WQ_HIGHPRI + + Work items of a highpri wq are queued at the head of the + worklist of the target gcwq and start execution regardless of + the current concurrency level. In other words, highpri work + items will always start execution as soon as execution + resource is available. + + Ordering among highpri work items is preserved - a highpri + work item queued after another highpri work item will start + execution after the earlier highpri work item starts. + + Although highpri work items are not held back by other + runnable work items, they still contribute to the concurrency + level. Highpri work items in runnable state will prevent + non-highpri work items from starting execution. + + This flag is meaningless for unbound wq. + + WQ_CPU_INTENSIVE + + Work items of a CPU intensive wq do not contribute to the + concurrency level. In other words, runnable CPU intensive + work items will not prevent other work items from starting + execution. This is useful for bound work items which are + expected to hog CPU cycles so that their execution is + regulated by the system scheduler. + + Although CPU intensive work items don't contribute to the + concurrency level, start of their executions is still + regulated by the concurrency management and runnable + non-CPU-intensive work items can delay execution of CPU + intensive work items. + + This flag is meaningless for unbound wq. + + WQ_HIGHPRI | WQ_CPU_INTENSIVE + + This combination makes the wq avoid interaction with + concurrency management completely and behave as a simple + per-CPU execution context provider. Work items queued on a + highpri CPU-intensive wq start execution as soon as resources + are available and don't affect execution of other work items. + +@max_active: + +@max_active determines the maximum number of execution contexts per +CPU which can be assigned to the work items of a wq. For example, +with @max_active of 16, at most 16 work items of the wq can be +executing at the same time per CPU. + +Currently, for a bound wq, the maximum limit for @max_active is 512 +and the default value used when 0 is specified is 256. For an unbound +wq, the limit is higher of 512 and 4 * num_possible_cpus(). These +values are chosen sufficiently high such that they are not the +limiting factor while providing protection in runaway cases. + +The number of active work items of a wq is usually regulated by the +users of the wq, more specifically, by how many work items the users +may queue at the same time. Unless there is a specific need for +throttling the number of active work items, specifying '0' is +recommended. + +Some users depend on the strict execution ordering of ST wq. The +combination of @max_active of 1 and WQ_UNBOUND is used to achieve this +behavior. Work items on such wq are always queued to the unbound gcwq +and only one work item can be active at any given time thus achieving +the same ordering property as ST wq. + + +5. Example Execution Scenarios + +The following example execution scenarios try to illustrate how cmwq +behave under different configurations. + + Work items w0, w1, w2 are queued to a bound wq q0 on the same CPU. + w0 burns CPU for 5ms then sleeps for 10ms then burns CPU for 5ms + again before finishing. w1 and w2 burn CPU for 5ms then sleep for + 10ms. + +Ignoring all other tasks, works and processing overhead, and assuming +simple FIFO scheduling, the following is one highly simplified version +of possible sequences of events with the original wq. + + TIME IN MSECS EVENT + 0 w0 starts and burns CPU + 5 w0 sleeps + 15 w0 wakes up and burns CPU + 20 w0 finishes + 20 w1 starts and burns CPU + 25 w1 sleeps + 35 w1 wakes up and finishes + 35 w2 starts and burns CPU + 40 w2 sleeps + 50 w2 wakes up and finishes + +And with cmwq with @max_active >= 3, + + TIME IN MSECS EVENT + 0 w0 starts and burns CPU + 5 w0 sleeps + 5 w1 starts and burns CPU + 10 w1 sleeps + 10 w2 starts and burns CPU + 15 w2 sleeps + 15 w0 wakes up and burns CPU + 20 w0 finishes + 20 w1 wakes up and finishes + 25 w2 wakes up and finishes + +If @max_active == 2, + + TIME IN MSECS EVENT + 0 w0 starts and burns CPU + 5 w0 sleeps + 5 w1 starts and burns CPU + 10 w1 sleeps + 15 w0 wakes up and burns CPU + 20 w0 finishes + 20 w1 wakes up and finishes + 20 w2 starts and burns CPU + 25 w2 sleeps + 35 w2 wakes up and finishes + +Now, let's assume w1 and w2 are queued to a different wq q1 which has +WQ_HIGHPRI set, + + TIME IN MSECS EVENT + 0 w1 and w2 start and burn CPU + 5 w1 sleeps + 10 w2 sleeps + 10 w0 starts and burns CPU + 15 w0 sleeps + 15 w1 wakes up and finishes + 20 w2 wakes up and finishes + 25 w0 wakes up and burns CPU + 30 w0 finishes + +If q1 has WQ_CPU_INTENSIVE set, + + TIME IN MSECS EVENT + 0 w0 starts and burns CPU + 5 w0 sleeps + 5 w1 and w2 start and burn CPU + 10 w1 sleeps + 15 w2 sleeps + 15 w0 wakes up and burns CPU + 20 w0 finishes + 20 w1 wakes up and finishes + 25 w2 wakes up and finishes + + +6. Guidelines + +* Do not forget to use WQ_RESCUER if a wq may process work items which + are used during memory reclaim. Each wq with WQ_RESCUER set has one + rescuer thread reserved for it. If there is dependency among + multiple work items used during memory reclaim, they should be + queued to separate wq each with WQ_RESCUER. + +* Unless strict ordering is required, there is no need to use ST wq. + +* Unless there is a specific need, using 0 for @max_active is + recommended. In most use cases, concurrency level usually stays + well under the default limit. + +* A wq serves as a domain for forward progress guarantee (WQ_RESCUER), + flush and work item attributes. Work items which are not involved + in memory reclaim and don't need to be flushed as a part of a group + of work items, and don't require any special attribute, can use one + of the system wq. There is no difference in execution + characteristics between using a dedicated wq and a system wq. + +* Unless work items are expected to consume a huge amount of CPU + cycles, using a bound wq is usually beneficial due to the increased + level of locality in wq operations and work item execution. diff --git a/include/linux/workqueue.h b/include/linux/workqueue.h index f11100f96482..25e02c941bac 100644 --- a/include/linux/workqueue.h +++ b/include/linux/workqueue.h @@ -235,6 +235,10 @@ static inline unsigned int work_static(struct work_struct *work) { return 0; } #define work_clear_pending(work) \ clear_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) +/* + * Workqueue flags and constants. For details, please refer to + * Documentation/workqueue.txt. + */ enum { WQ_NON_REENTRANT = 1 << 0, /* guarantee non-reentrance */ WQ_UNBOUND = 1 << 1, /* not bound to any cpu */ diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 727f24e563ae..f77afd939229 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c @@ -1,19 +1,26 @@ /* - * linux/kernel/workqueue.c + * kernel/workqueue.c - generic async execution with shared worker pool * - * Generic mechanism for defining kernel helper threads for running - * arbitrary tasks in process context. + * Copyright (C) 2002 Ingo Molnar * - * Started by Ingo Molnar, Copyright (C) 2002 + * Derived from the taskqueue/keventd code by: + * David Woodhouse <dwmw2@infradead.org> + * Andrew Morton + * Kai Petzke <wpp@marie.physik.tu-berlin.de> + * Theodore Ts'o <tytso@mit.edu> * - * Derived from the taskqueue/keventd code by: + * Made to use alloc_percpu by Christoph Lameter. * - * David Woodhouse <dwmw2@infradead.org> - * Andrew Morton - * Kai Petzke <wpp@marie.physik.tu-berlin.de> - * Theodore Ts'o <tytso@mit.edu> + * Copyright (C) 2010 SUSE Linux Products GmbH + * Copyright (C) 2010 Tejun Heo <tj@kernel.org> * - * Made to use alloc_percpu by Christoph Lameter. + * This is the generic async execution mechanism. Work items as are + * executed in process context. The worker pool is shared and + * automatically managed. There is one worker pool for each CPU and + * one extra for works which are better served by workers which are + * not bound to any specific CPU. + * + * Please read Documentation/workqueue.txt for details. */ #include <linux/module.h> |