diff options
-rw-r--r-- | Documentation/hwspinlock.txt | 293 | ||||
-rw-r--r-- | drivers/Kconfig | 2 | ||||
-rw-r--r-- | drivers/Makefile | 2 | ||||
-rw-r--r-- | drivers/hwspinlock/Kconfig | 13 | ||||
-rw-r--r-- | drivers/hwspinlock/Makefile | 5 | ||||
-rw-r--r-- | drivers/hwspinlock/hwspinlock_core.c | 548 | ||||
-rw-r--r-- | drivers/hwspinlock/hwspinlock_internal.h | 61 | ||||
-rw-r--r-- | include/linux/hwspinlock.h | 292 |
8 files changed, 1216 insertions, 0 deletions
diff --git a/Documentation/hwspinlock.txt b/Documentation/hwspinlock.txt new file mode 100644 index 000000000000..7dcd1a4e726c --- /dev/null +++ b/Documentation/hwspinlock.txt @@ -0,0 +1,293 @@ +Hardware Spinlock Framework + +1. Introduction + +Hardware spinlock modules provide hardware assistance for synchronization +and mutual exclusion between heterogeneous processors and those not operating +under a single, shared operating system. + +For example, OMAP4 has dual Cortex-A9, dual Cortex-M3 and a C64x+ DSP, +each of which is running a different Operating System (the master, A9, +is usually running Linux and the slave processors, the M3 and the DSP, +are running some flavor of RTOS). + +A generic hwspinlock framework allows platform-independent drivers to use +the hwspinlock device in order to access data structures that are shared +between remote processors, that otherwise have no alternative mechanism +to accomplish synchronization and mutual exclusion operations. + +This is necessary, for example, for Inter-processor communications: +on OMAP4, cpu-intensive multimedia tasks are offloaded by the host to the +remote M3 and/or C64x+ slave processors (by an IPC subsystem called Syslink). + +To achieve fast message-based communications, a minimal kernel support +is needed to deliver messages arriving from a remote processor to the +appropriate user process. + +This communication is based on simple data structures that is shared between +the remote processors, and access to it is synchronized using the hwspinlock +module (remote processor directly places new messages in this shared data +structure). + +A common hwspinlock interface makes it possible to have generic, platform- +independent, drivers. + +2. User API + + struct hwspinlock *hwspin_lock_request(void); + - dynamically assign an hwspinlock and return its address, or NULL + in case an unused hwspinlock isn't available. Users of this + API will usually want to communicate the lock's id to the remote core + before it can be used to achieve synchronization. + Can be called from an atomic context (this function will not sleep) but + not from within interrupt context. + + struct hwspinlock *hwspin_lock_request_specific(unsigned int id); + - assign a specific hwspinlock id and return its address, or NULL + if that hwspinlock is already in use. Usually board code will + be calling this function in order to reserve specific hwspinlock + ids for predefined purposes. + Can be called from an atomic context (this function will not sleep) but + not from within interrupt context. + + int hwspin_lock_free(struct hwspinlock *hwlock); + - free a previously-assigned hwspinlock; returns 0 on success, or an + appropriate error code on failure (e.g. -EINVAL if the hwspinlock + is already free). + Can be called from an atomic context (this function will not sleep) but + not from within interrupt context. + + int hwspin_lock_timeout(struct hwspinlock *hwlock, unsigned int timeout); + - lock a previously-assigned hwspinlock with a timeout limit (specified in + msecs). If the hwspinlock is already taken, the function will busy loop + waiting for it to be released, but give up when the timeout elapses. + Upon a successful return from this function, preemption is disabled so + the caller must not sleep, and is advised to release the hwspinlock as + soon as possible, in order to minimize remote cores polling on the + hardware interconnect. + Returns 0 when successful and an appropriate error code otherwise (most + notably -ETIMEDOUT if the hwspinlock is still busy after timeout msecs). + The function will never sleep. + + int hwspin_lock_timeout_irq(struct hwspinlock *hwlock, unsigned int timeout); + - lock a previously-assigned hwspinlock with a timeout limit (specified in + msecs). If the hwspinlock is already taken, the function will busy loop + waiting for it to be released, but give up when the timeout elapses. + Upon a successful return from this function, preemption and the local + interrupts are disabled, so the caller must not sleep, and is advised to + release the hwspinlock as soon as possible. + Returns 0 when successful and an appropriate error code otherwise (most + notably -ETIMEDOUT if the hwspinlock is still busy after timeout msecs). + The function will never sleep. + + int hwspin_lock_timeout_irqsave(struct hwspinlock *hwlock, unsigned int to, + unsigned long *flags); + - lock a previously-assigned hwspinlock with a timeout limit (specified in + msecs). If the hwspinlock is already taken, the function will busy loop + waiting for it to be released, but give up when the timeout elapses. + Upon a successful return from this function, preemption is disabled, + local interrupts are disabled and their previous state is saved at the + given flags placeholder. The caller must not sleep, and is advised to + release the hwspinlock as soon as possible. + Returns 0 when successful and an appropriate error code otherwise (most + notably -ETIMEDOUT if the hwspinlock is still busy after timeout msecs). + The function will never sleep. + + int hwspin_trylock(struct hwspinlock *hwlock); + - attempt to lock a previously-assigned hwspinlock, but immediately fail if + it is already taken. + Upon a successful return from this function, preemption is disabled so + caller must not sleep, and is advised to release the hwspinlock as soon as + possible, in order to minimize remote cores polling on the hardware + interconnect. + Returns 0 on success and an appropriate error code otherwise (most + notably -EBUSY if the hwspinlock was already taken). + The function will never sleep. + + int hwspin_trylock_irq(struct hwspinlock *hwlock); + - attempt to lock a previously-assigned hwspinlock, but immediately fail if + it is already taken. + Upon a successful return from this function, preemption and the local + interrupts are disabled so caller must not sleep, and is advised to + release the hwspinlock as soon as possible. + Returns 0 on success and an appropriate error code otherwise (most + notably -EBUSY if the hwspinlock was already taken). + The function will never sleep. + + int hwspin_trylock_irqsave(struct hwspinlock *hwlock, unsigned long *flags); + - attempt to lock a previously-assigned hwspinlock, but immediately fail if + it is already taken. + Upon a successful return from this function, preemption is disabled, + the local interrupts are disabled and their previous state is saved + at the given flags placeholder. The caller must not sleep, and is advised + to release the hwspinlock as soon as possible. + Returns 0 on success and an appropriate error code otherwise (most + notably -EBUSY if the hwspinlock was already taken). + The function will never sleep. + + void hwspin_unlock(struct hwspinlock *hwlock); + - unlock a previously-locked hwspinlock. Always succeed, and can be called + from any context (the function never sleeps). Note: code should _never_ + unlock an hwspinlock which is already unlocked (there is no protection + against this). + + void hwspin_unlock_irq(struct hwspinlock *hwlock); + - unlock a previously-locked hwspinlock and enable local interrupts. + The caller should _never_ unlock an hwspinlock which is already unlocked. + Doing so is considered a bug (there is no protection against this). + Upon a successful return from this function, preemption and local + interrupts are enabled. This function will never sleep. + + void + hwspin_unlock_irqrestore(struct hwspinlock *hwlock, unsigned long *flags); + - unlock a previously-locked hwspinlock. + The caller should _never_ unlock an hwspinlock which is already unlocked. + Doing so is considered a bug (there is no protection against this). + Upon a successful return from this function, preemption is reenabled, + and the state of the local interrupts is restored to the state saved at + the given flags. This function will never sleep. + + int hwspin_lock_get_id(struct hwspinlock *hwlock); + - retrieve id number of a given hwspinlock. This is needed when an + hwspinlock is dynamically assigned: before it can be used to achieve + mutual exclusion with a remote cpu, the id number should be communicated + to the remote task with which we want to synchronize. + Returns the hwspinlock id number, or -EINVAL if hwlock is null. + +3. Typical usage + +#include <linux/hwspinlock.h> +#include <linux/err.h> + +int hwspinlock_example1(void) +{ + struct hwspinlock *hwlock; + int ret; + + /* dynamically assign a hwspinlock */ + hwlock = hwspin_lock_request(); + if (!hwlock) + ... + + id = hwspin_lock_get_id(hwlock); + /* probably need to communicate id to a remote processor now */ + + /* take the lock, spin for 1 sec if it's already taken */ + ret = hwspin_lock_timeout(hwlock, 1000); + if (ret) + ... + + /* + * we took the lock, do our thing now, but do NOT sleep + */ + + /* release the lock */ + hwspin_unlock(hwlock); + + /* free the lock */ + ret = hwspin_lock_free(hwlock); + if (ret) + ... + + return ret; +} + +int hwspinlock_example2(void) +{ + struct hwspinlock *hwlock; + int ret; + + /* + * assign a specific hwspinlock id - this should be called early + * by board init code. + */ + hwlock = hwspin_lock_request_specific(PREDEFINED_LOCK_ID); + if (!hwlock) + ... + + /* try to take it, but don't spin on it */ + ret = hwspin_trylock(hwlock); + if (!ret) { + pr_info("lock is already taken\n"); + return -EBUSY; + } + + /* + * we took the lock, do our thing now, but do NOT sleep + */ + + /* release the lock */ + hwspin_unlock(hwlock); + + /* free the lock */ + ret = hwspin_lock_free(hwlock); + if (ret) + ... + + return ret; +} + + +4. API for implementors + + int hwspin_lock_register(struct hwspinlock *hwlock); + - to be called from the underlying platform-specific implementation, in + order to register a new hwspinlock instance. Can be called from an atomic + context (this function will not sleep) but not from within interrupt + context. Returns 0 on success, or appropriate error code on failure. + + struct hwspinlock *hwspin_lock_unregister(unsigned int id); + - to be called from the underlying vendor-specific implementation, in order + to unregister an existing (and unused) hwspinlock instance. + Can be called from an atomic context (will not sleep) but not from + within interrupt context. + Returns the address of hwspinlock on success, or NULL on error (e.g. + if the hwspinlock is sill in use). + +5. struct hwspinlock + +This struct represents an hwspinlock instance. It is registered by the +underlying hwspinlock implementation using the hwspin_lock_register() API. + +/** + * struct hwspinlock - vendor-specific hwspinlock implementation + * + * @dev: underlying device, will be used with runtime PM api + * @ops: vendor-specific hwspinlock handlers + * @id: a global, unique, system-wide, index of the lock. + * @lock: initialized and used by hwspinlock core + * @owner: underlying implementation module, used to maintain module ref count + */ +struct hwspinlock { + struct device *dev; + const struct hwspinlock_ops *ops; + int id; + spinlock_t lock; + struct module *owner; +}; + +The underlying implementation is responsible to assign the dev, ops, id and +owner members. The lock member, OTOH, is initialized and used by the hwspinlock +core. + +6. Implementation callbacks + +There are three possible callbacks defined in 'struct hwspinlock_ops': + +struct hwspinlock_ops { + int (*trylock)(struct hwspinlock *lock); + void (*unlock)(struct hwspinlock *lock); + void (*relax)(struct hwspinlock *lock); +}; + +The first two callbacks are mandatory: + +The ->trylock() callback should make a single attempt to take the lock, and +return 0 on failure and 1 on success. This callback may _not_ sleep. + +The ->unlock() callback releases the lock. It always succeed, and it, too, +may _not_ sleep. + +The ->relax() callback is optional. It is called by hwspinlock core while +spinning on a lock, and can be used by the underlying implementation to force +a delay between two successive invocations of ->trylock(). It may _not_ sleep. diff --git a/drivers/Kconfig b/drivers/Kconfig index 9bfb71ff3a6a..177c7d156933 100644 --- a/drivers/Kconfig +++ b/drivers/Kconfig @@ -117,4 +117,6 @@ source "drivers/staging/Kconfig" source "drivers/platform/Kconfig" source "drivers/clk/Kconfig" + +source "drivers/hwspinlock/Kconfig" endmenu diff --git a/drivers/Makefile b/drivers/Makefile index b423bb16c3a8..3f135b6fb014 100644 --- a/drivers/Makefile +++ b/drivers/Makefile @@ -117,3 +117,5 @@ obj-y += platform/ obj-y += ieee802154/ #common clk code obj-y += clk/ + +obj-$(CONFIG_HWSPINLOCK) += hwspinlock/ diff --git a/drivers/hwspinlock/Kconfig b/drivers/hwspinlock/Kconfig new file mode 100644 index 000000000000..9dd8db46606b --- /dev/null +++ b/drivers/hwspinlock/Kconfig @@ -0,0 +1,13 @@ +# +# Generic HWSPINLOCK framework +# + +config HWSPINLOCK + tristate "Generic Hardware Spinlock framework" + help + Say y here to support the generic hardware spinlock framework. + You only need to enable this if you have hardware spinlock module + on your system (usually only relevant if your system has remote slave + coprocessors). + + If unsure, say N. diff --git a/drivers/hwspinlock/Makefile b/drivers/hwspinlock/Makefile new file mode 100644 index 000000000000..b9d2b9f40491 --- /dev/null +++ b/drivers/hwspinlock/Makefile @@ -0,0 +1,5 @@ +# +# Generic Hardware Spinlock framework +# + +obj-$(CONFIG_HWSPINLOCK) += hwspinlock_core.o diff --git a/drivers/hwspinlock/hwspinlock_core.c b/drivers/hwspinlock/hwspinlock_core.c new file mode 100644 index 000000000000..43a62714b4fb --- /dev/null +++ b/drivers/hwspinlock/hwspinlock_core.c @@ -0,0 +1,548 @@ +/* + * Hardware spinlock framework + * + * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com + * + * Contact: Ohad Ben-Cohen <ohad@wizery.com> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published + * by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#define pr_fmt(fmt) "%s: " fmt, __func__ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/spinlock.h> +#include <linux/types.h> +#include <linux/err.h> +#include <linux/jiffies.h> +#include <linux/radix-tree.h> +#include <linux/hwspinlock.h> +#include <linux/pm_runtime.h> + +#include "hwspinlock_internal.h" + +/* radix tree tags */ +#define HWSPINLOCK_UNUSED (0) /* tags an hwspinlock as unused */ + +/* + * A radix tree is used to maintain the available hwspinlock instances. + * The tree associates hwspinlock pointers with their integer key id, + * and provides easy-to-use API which makes the hwspinlock core code simple + * and easy to read. + * + * Radix trees are quick on lookups, and reasonably efficient in terms of + * storage, especially with high density usages such as this framework + * requires (a continuous range of integer keys, beginning with zero, is + * used as the ID's of the hwspinlock instances). + * + * The radix tree API supports tagging items in the tree, which this + * framework uses to mark unused hwspinlock instances (see the + * HWSPINLOCK_UNUSED tag above). As a result, the process of querying the + * tree, looking for an unused hwspinlock instance, is now reduced to a + * single radix tree API call. + */ +static RADIX_TREE(hwspinlock_tree, GFP_KERNEL); + +/* + * Synchronization of access to the tree is achieved using this spinlock, + * as the radix-tree API requires that users provide all synchronisation. + */ +static DEFINE_SPINLOCK(hwspinlock_tree_lock); + +/** + * __hwspin_trylock() - attempt to lock a specific hwspinlock + * @hwlock: an hwspinlock which we want to trylock + * @mode: controls whether local interrupts are disabled or not + * @flags: a pointer where the caller's interrupt state will be saved at (if + * requested) + * + * This function attempts to lock an hwspinlock, and will immediately + * fail if the hwspinlock is already taken. + * + * Upon a successful return from this function, preemption (and possibly + * interrupts) is disabled, so the caller must not sleep, and is advised to + * release the hwspinlock as soon as possible. This is required in order to + * minimize remote cores polling on the hardware interconnect. + * + * The user decides whether local interrupts are disabled or not, and if yes, + * whether he wants their previous state to be saved. It is up to the user + * to choose the appropriate @mode of operation, exactly the same way users + * should decide between spin_trylock, spin_trylock_irq and + * spin_trylock_irqsave. + * + * Returns 0 if we successfully locked the hwspinlock or -EBUSY if + * the hwspinlock was already taken. + * This function will never sleep. + */ +int __hwspin_trylock(struct hwspinlock *hwlock, int mode, unsigned long *flags) +{ + int ret; + + BUG_ON(!hwlock); + BUG_ON(!flags && mode == HWLOCK_IRQSTATE); + + /* + * This spin_lock{_irq, _irqsave} serves three purposes: + * + * 1. Disable preemption, in order to minimize the period of time + * in which the hwspinlock is taken. This is important in order + * to minimize the possible polling on the hardware interconnect + * by a remote user of this lock. + * 2. Make the hwspinlock SMP-safe (so we can take it from + * additional contexts on the local host). + * 3. Ensure that in_atomic/might_sleep checks catch potential + * problems with hwspinlock usage (e.g. scheduler checks like + * 'scheduling while atomic' etc.) + */ + if (mode == HWLOCK_IRQSTATE) + ret = spin_trylock_irqsave(&hwlock->lock, *flags); + else if (mode == HWLOCK_IRQ) + ret = spin_trylock_irq(&hwlock->lock); + else + ret = spin_trylock(&hwlock->lock); + + /* is lock already taken by another context on the local cpu ? */ + if (!ret) + return -EBUSY; + + /* try to take the hwspinlock device */ + ret = hwlock->ops->trylock(hwlock); + + /* if hwlock is already taken, undo spin_trylock_* and exit */ + if (!ret) { + if (mode == HWLOCK_IRQSTATE) + spin_unlock_irqrestore(&hwlock->lock, *flags); + else if (mode == HWLOCK_IRQ) + spin_unlock_irq(&hwlock->lock); + else + spin_unlock(&hwlock->lock); + + return -EBUSY; + } + + /* + * We can be sure the other core's memory operations + * are observable to us only _after_ we successfully take + * the hwspinlock, and we must make sure that subsequent memory + * operations (both reads and writes) will not be reordered before + * we actually took the hwspinlock. + * + * Note: the implicit memory barrier of the spinlock above is too + * early, so we need this additional explicit memory barrier. + */ + mb(); + + return 0; +} +EXPORT_SYMBOL_GPL(__hwspin_trylock); + +/** + * __hwspin_lock_timeout() - lock an hwspinlock with timeout limit + * @hwlock: the hwspinlock to be locked + * @timeout: timeout value in msecs + * @mode: mode which controls whether local interrupts are disabled or not + * @flags: a pointer to where the caller's interrupt state will be saved at (if + * requested) + * + * This function locks the given @hwlock. If the @hwlock + * is already taken, the function will busy loop waiting for it to + * be released, but give up after @timeout msecs have elapsed. + * + * Upon a successful return from this function, preemption is disabled + * (and possibly local interrupts, too), so the caller must not sleep, + * and is advised to release the hwspinlock as soon as possible. + * This is required in order to minimize remote cores polling on the + * hardware interconnect. + * + * The user decides whether local interrupts are disabled or not, and if yes, + * whether he wants their previous state to be saved. It is up to the user + * to choose the appropriate @mode of operation, exactly the same way users + * should decide between spin_lock, spin_lock_irq and spin_lock_irqsave. + * + * Returns 0 when the @hwlock was successfully taken, and an appropriate + * error code otherwise (most notably -ETIMEDOUT if the @hwlock is still + * busy after @timeout msecs). The function will never sleep. + */ +int __hwspin_lock_timeout(struct hwspinlock *hwlock, unsigned int to, + int mode, unsigned long *flags) +{ + int ret; + unsigned long expire; + + expire = msecs_to_jiffies(to) + jiffies; + + for (;;) { + /* Try to take the hwspinlock */ + ret = __hwspin_trylock(hwlock, mode, flags); + if (ret != -EBUSY) + break; + + /* + * The lock is already taken, let's check if the user wants + * us to try again + */ + if (time_is_before_eq_jiffies(expire)) + return -ETIMEDOUT; + + /* + * Allow platform-specific relax handlers to prevent + * hogging the interconnect (no sleeping, though) + */ + if (hwlock->ops->relax) + hwlock->ops->relax(hwlock); + } + + return ret; +} +EXPORT_SYMBOL_GPL(__hwspin_lock_timeout); + +/** + * __hwspin_unlock() - unlock a specific hwspinlock + * @hwlock: a previously-acquired hwspinlock which we want to unlock + * @mode: controls whether local interrupts needs to be restored or not + * @flags: previous caller's interrupt state to restore (if requested) + * + * This function will unlock a specific hwspinlock, enable preemption and + * (possibly) enable interrupts or restore their previous state. + * @hwlock must be already locked before calling this function: it is a bug + * to call unlock on a @hwlock that is already unlocked. + * + * The user decides whether local interrupts should be enabled or not, and + * if yes, whether he wants their previous state to be restored. It is up + * to the user to choose the appropriate @mode of operation, exactly the + * same way users decide between spin_unlock, spin_unlock_irq and + * spin_unlock_irqrestore. + * + * The function will never sleep. + */ +void __hwspin_unlock(struct hwspinlock *hwlock, int mode, unsigned long *flags) +{ + BUG_ON(!hwlock); + BUG_ON(!flags && mode == HWLOCK_IRQSTATE); + + /* + * We must make sure that memory operations (both reads and writes), + * done before unlocking the hwspinlock, will not be reordered + * after the lock is released. + * + * That's the purpose of this explicit memory barrier. + * + * Note: the memory barrier induced by the spin_unlock below is too + * late; the other core is going to access memory soon after it will + * take the hwspinlock, and by then we want to be sure our memory + * operations are already observable. + */ + mb(); + + hwlock->ops->unlock(hwlock); + + /* Undo the spin_trylock{_irq, _irqsave} called while locking */ + if (mode == HWLOCK_IRQSTATE) + spin_unlock_irqrestore(&hwlock->lock, *flags); + else if (mode == HWLOCK_IRQ) + spin_unlock_irq(&hwlock->lock); + else + spin_unlock(&hwlock->lock); +} +EXPORT_SYMBOL_GPL(__hwspin_unlock); + +/** + * hwspin_lock_register() - register a new hw spinlock + * @hwlock: hwspinlock to register. + * + * This function should be called from the underlying platform-specific + * implementation, to register a new hwspinlock instance. + * + * Can be called from an atomic context (will not sleep) but not from + * within interrupt context. + * + * Returns 0 on success, or an appropriate error code on failure + */ +int hwspin_lock_register(struct hwspinlock *hwlock) +{ + struct hwspinlock *tmp; + int ret; + + if (!hwlock || !hwlock->ops || + !hwlock->ops->trylock || !hwlock->ops->unlock) { + pr_err("invalid parameters\n"); + return -EINVAL; + } + + spin_lock_init(&hwlock->lock); + + spin_lock(&hwspinlock_tree_lock); + + ret = radix_tree_insert(&hwspinlock_tree, hwlock->id, hwlock); + if (ret) + goto out; + + /* mark this hwspinlock as available */ + tmp = radix_tree_tag_set(&hwspinlock_tree, hwlock->id, + HWSPINLOCK_UNUSED); + + /* self-sanity check which should never fail */ + WARN_ON(tmp != hwlock); + +out: + spin_unlock(&hwspinlock_tree_lock); + return ret; +} +EXPORT_SYMBOL_GPL(hwspin_lock_register); + +/** + * hwspin_lock_unregister() - unregister an hw spinlock + * @id: index of the specific hwspinlock to unregister + * + * This function should be called from the underlying platform-specific + * implementation, to unregister an existing (and unused) hwspinlock. + * + * Can be called from an atomic context (will not sleep) but not from + * within interrupt context. + * + * Returns the address of hwspinlock @id on success, or NULL on failure + */ +struct hwspinlock *hwspin_lock_unregister(unsigned int id) +{ + struct hwspinlock *hwlock = NULL; + int ret; + + spin_lock(&hwspinlock_tree_lock); + + /* make sure the hwspinlock is not in use (tag is set) */ + ret = radix_tree_tag_get(&hwspinlock_tree, id, HWSPINLOCK_UNUSED); + if (ret == 0) { + pr_err("hwspinlock %d still in use (or not present)\n", id); + goto out; + } + + hwlock = radix_tree_delete(&hwspinlock_tree, id); + if (!hwlock) { + pr_err("failed to delete hwspinlock %d\n", id); + goto out; + } + +out: + spin_unlock(&hwspinlock_tree_lock); + return hwlock; +} +EXPORT_SYMBOL_GPL(hwspin_lock_unregister); + +/** + * __hwspin_lock_request() - tag an hwspinlock as used and power it up + * + * This is an internal function that prepares an hwspinlock instance + * before it is given to the user. The function assumes that + * hwspinlock_tree_lock is taken. + * + * Returns 0 or positive to indicate success, and a negative value to + * indicate an error (with the appropriate error code) + */ +static int __hwspin_lock_request(struct hwspinlock *hwlock) +{ + struct hwspinlock *tmp; + int ret; + + /* prevent underlying implementation from being removed */ + if (!try_module_get(hwlock->owner)) { + dev_err(hwlock->dev, "%s: can't get owner\n", __func__); + return -EINVAL; + } + + /* notify PM core that power is now needed */ + ret = pm_runtime_get_sync(hwlock->dev); + if (ret < 0) { + dev_err(hwlock->dev, "%s: can't power on device\n", __func__); + return ret; + } + + /* mark hwspinlock as used, should not fail */ + tmp = radix_tree_tag_clear(&hwspinlock_tree, hwlock->id, + HWSPINLOCK_UNUSED); + + /* self-sanity check that should never fail */ + WARN_ON(tmp != hwlock); + + return ret; +} + +/** + * hwspin_lock_get_id() - retrieve id number of a given hwspinlock + * @hwlock: a valid hwspinlock instance + * + * Returns the id number of a given @hwlock, or -EINVAL if @hwlock is invalid. + */ +int hwspin_lock_get_id(struct hwspinlock *hwlock) +{ + if (!hwlock) { + pr_err("invalid hwlock\n"); + return -EINVAL; + } + + return hwlock->id; +} +EXPORT_SYMBOL_GPL(hwspin_lock_get_id); + +/** + * hwspin_lock_request() - request an hwspinlock + * + * This function should be called by users of the hwspinlock device, + * in order to dynamically assign them an unused hwspinlock. + * Usually the user of this lock will then have to communicate the lock's id + * to the remote core before it can be used for synchronization (to get the + * id of a given hwlock, use hwspin_lock_get_id()). + * + * Can be called from an atomic context (will not sleep) but not from + * within interrupt context (simply because there is no use case for + * that yet). + * + * Returns the address of the assigned hwspinlock, or NULL on error + */ +struct hwspinlock *hwspin_lock_request(void) +{ + struct hwspinlock *hwlock; + int ret; + + spin_lock(&hwspinlock_tree_lock); + + /* look for an unused lock */ + ret = radix_tree_gang_lookup_tag(&hwspinlock_tree, (void **)&hwlock, + 0, 1, HWSPINLOCK_UNUSED); + if (ret == 0) { + pr_warn("a free hwspinlock is not available\n"); + hwlock = NULL; + goto out; + } + + /* sanity check that should never fail */ + WARN_ON(ret > 1); + + /* mark as used and power up */ + ret = __hwspin_lock_request(hwlock); + if (ret < 0) + hwlock = NULL; + +out: + spin_unlock(&hwspinlock_tree_lock); + return hwlock; +} +EXPORT_SYMBOL_GPL(hwspin_lock_request); + +/** + * hwspin_lock_request_specific() - request for a specific hwspinlock + * @id: index of the specific hwspinlock that is requested + * + * This function should be called by users of the hwspinlock module, + * in order to assign them a specific hwspinlock. + * Usually early board code will be calling this function in order to + * reserve specific hwspinlock ids for predefined purposes. + * + * Can be called from an atomic context (will not sleep) but not from + * within interrupt context (simply because there is no use case for + * that yet). + * + * Returns the address of the assigned hwspinlock, or NULL on error + */ +struct hwspinlock *hwspin_lock_request_specific(unsigned int id) +{ + struct hwspinlock *hwlock; + int ret; + + spin_lock(&hwspinlock_tree_lock); + + /* make sure this hwspinlock exists */ + hwlock = radix_tree_lookup(&hwspinlock_tree, id); + if (!hwlock) { + pr_warn("hwspinlock %u does not exist\n", id); + goto out; + } + + /* sanity check (this shouldn't happen) */ + WARN_ON(hwlock->id != id); + + /* make sure this hwspinlock is unused */ + ret = radix_tree_tag_get(&hwspinlock_tree, id, HWSPINLOCK_UNUSED); + if (ret == 0) { + pr_warn("hwspinlock %u is already in use\n", id); + hwlock = NULL; + goto out; + } + + /* mark as used and power up */ + ret = __hwspin_lock_request(hwlock); + if (ret < 0) + hwlock = NULL; + +out: + spin_unlock(&hwspinlock_tree_lock); + return hwlock; +} +EXPORT_SYMBOL_GPL(hwspin_lock_request_specific); + +/** + * hwspin_lock_free() - free a specific hwspinlock + * @hwlock: the specific hwspinlock to free + * + * This function mark @hwlock as free again. + * Should only be called with an @hwlock that was retrieved from + * an earlier call to omap_hwspin_lock_request{_specific}. + * + * Can be called from an atomic context (will not sleep) but not from + * within interrupt context (simply because there is no use case for + * that yet). + * + * Returns 0 on success, or an appropriate error code on failure + */ +int hwspin_lock_free(struct hwspinlock *hwlock) +{ + struct hwspinlock *tmp; + int ret; + + if (!hwlock) { + pr_err("invalid hwlock\n"); + return -EINVAL; + } + + spin_lock(&hwspinlock_tree_lock); + + /* make sure the hwspinlock is used */ + ret = radix_tree_tag_get(&hwspinlock_tree, hwlock->id, + HWSPINLOCK_UNUSED); + if (ret == 1) { + dev_err(hwlock->dev, "%s: hwlock is already free\n", __func__); + dump_stack(); + ret = -EINVAL; + goto out; + } + + /* notify the underlying device that power is not needed */ + ret = pm_runtime_put(hwlock->dev); + if (ret < 0) + goto out; + + /* mark this hwspinlock as available */ + tmp = radix_tree_tag_set(&hwspinlock_tree, hwlock->id, + HWSPINLOCK_UNUSED); + + /* sanity check (this shouldn't happen) */ + WARN_ON(tmp != hwlock); + + module_put(hwlock->owner); + +out: + spin_unlock(&hwspinlock_tree_lock); + return ret; +} +EXPORT_SYMBOL_GPL(hwspin_lock_free); + +MODULE_LICENSE("GPL v2"); +MODULE_DESCRIPTION("Hardware spinlock interface"); +MODULE_AUTHOR("Ohad Ben-Cohen <ohad@wizery.com>"); diff --git a/drivers/hwspinlock/hwspinlock_internal.h b/drivers/hwspinlock/hwspinlock_internal.h new file mode 100644 index 000000000000..69935e6b93e5 --- /dev/null +++ b/drivers/hwspinlock/hwspinlock_internal.h @@ -0,0 +1,61 @@ +/* + * Hardware spinlocks internal header + * + * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com + * + * Contact: Ohad Ben-Cohen <ohad@wizery.com> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published + * by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#ifndef __HWSPINLOCK_HWSPINLOCK_H +#define __HWSPINLOCK_HWSPINLOCK_H + +#include <linux/spinlock.h> +#include <linux/device.h> + +/** + * struct hwspinlock_ops - platform-specific hwspinlock handlers + * + * @trylock: make a single attempt to take the lock. returns 0 on + * failure and true on success. may _not_ sleep. + * @unlock: release the lock. always succeed. may _not_ sleep. + * @relax: optional, platform-specific relax handler, called by hwspinlock + * core while spinning on a lock, between two successive + * invocations of @trylock. may _not_ sleep. + */ +struct hwspinlock_ops { + int (*trylock)(struct hwspinlock *lock); + void (*unlock)(struct hwspinlock *lock); + void (*relax)(struct hwspinlock *lock); +}; + +/** + * struct hwspinlock - this struct represents a single hwspinlock instance + * + * @dev: underlying device, will be used to invoke runtime PM api + * @ops: platform-specific hwspinlock handlers + * @id: a global, unique, system-wide, index of the lock. + * @lock: initialized and used by hwspinlock core + * @owner: underlying implementation module, used to maintain module ref count + * + * Note: currently simplicity was opted for, but later we can squeeze some + * memory bytes by grouping the dev, ops and owner members in a single + * per-platform struct, and have all hwspinlocks point at it. + */ +struct hwspinlock { + struct device *dev; + const struct hwspinlock_ops *ops; + int id; + spinlock_t lock; + struct module *owner; +}; + +#endif /* __HWSPINLOCK_HWSPINLOCK_H */ diff --git a/include/linux/hwspinlock.h b/include/linux/hwspinlock.h new file mode 100644 index 000000000000..8390efc457eb --- /dev/null +++ b/include/linux/hwspinlock.h @@ -0,0 +1,292 @@ +/* + * Hardware spinlock public header + * + * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com + * + * Contact: Ohad Ben-Cohen <ohad@wizery.com> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published + * by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#ifndef __LINUX_HWSPINLOCK_H +#define __LINUX_HWSPINLOCK_H + +#include <linux/err.h> +#include <linux/sched.h> + +/* hwspinlock mode argument */ +#define HWLOCK_IRQSTATE 0x01 /* Disable interrupts, save state */ +#define HWLOCK_IRQ 0x02 /* Disable interrupts, don't save state */ + +struct hwspinlock; + +#if defined(CONFIG_HWSPINLOCK) || defined(CONFIG_HWSPINLOCK_MODULE) + +int hwspin_lock_register(struct hwspinlock *lock); +struct hwspinlock *hwspin_lock_unregister(unsigned int id); +struct hwspinlock *hwspin_lock_request(void); +struct hwspinlock *hwspin_lock_request_specific(unsigned int id); +int hwspin_lock_free(struct hwspinlock *hwlock); +int hwspin_lock_get_id(struct hwspinlock *hwlock); +int __hwspin_lock_timeout(struct hwspinlock *, unsigned int, int, + unsigned long *); +int __hwspin_trylock(struct hwspinlock *, int, unsigned long *); +void __hwspin_unlock(struct hwspinlock *, int, unsigned long *); + +#else /* !CONFIG_HWSPINLOCK */ + +/* + * We don't want these functions to fail if CONFIG_HWSPINLOCK is not + * enabled. We prefer to silently succeed in this case, and let the + * code path get compiled away. This way, if CONFIG_HWSPINLOCK is not + * required on a given setup, users will still work. + * + * The only exception is hwspin_lock_register/hwspin_lock_unregister, with which + * we _do_ want users to fail (no point in registering hwspinlock instances if + * the framework is not available). + * + * Note: ERR_PTR(-ENODEV) will still be considered a success for NULL-checking + * users. Others, which care, can still check this with IS_ERR. + */ +static inline struct hwspinlock *hwspin_lock_request(void) +{ + return ERR_PTR(-ENODEV); +} + +static inline struct hwspinlock *hwspin_lock_request_specific(unsigned int id) +{ + return ERR_PTR(-ENODEV); +} + +static inline int hwspin_lock_free(struct hwspinlock *hwlock) +{ + return 0; +} + +static inline +int __hwspin_lock_timeout(struct hwspinlock *hwlock, unsigned int to, + int mode, unsigned long *flags) +{ + return 0; +} + +static inline +int __hwspin_trylock(struct hwspinlock *hwlock, int mode, unsigned long *flags) +{ + return 0; +} + +static inline +void __hwspin_unlock(struct hwspinlock *hwlock, int mode, unsigned long *flags) +{ + return 0; +} + +static inline int hwspin_lock_get_id(struct hwspinlock *hwlock) +{ + return 0; +} + +static inline int hwspin_lock_register(struct hwspinlock *hwlock) +{ + return -ENODEV; +} + +static inline struct hwspinlock *hwspin_lock_unregister(unsigned int id) +{ + return NULL; +} + +#endif /* !CONFIG_HWSPINLOCK */ + +/** + * hwspin_trylock_irqsave() - try to lock an hwspinlock, disable interrupts + * @hwlock: an hwspinlock which we want to trylock + * @flags: a pointer to where the caller's interrupt state will be saved at + * + * This function attempts to lock the underlying hwspinlock, and will + * immediately fail if the hwspinlock is already locked. + * + * Upon a successful return from this function, preemption and local + * interrupts are disabled (previous interrupts state is saved at @flags), + * so the caller must not sleep, and is advised to release the hwspinlock + * as soon as possible. + * + * Returns 0 if we successfully locked the hwspinlock, -EBUSY if + * the hwspinlock was already taken, and -EINVAL if @hwlock is invalid. + */ +static inline +int hwspin_trylock_irqsave(struct hwspinlock *hwlock, unsigned long *flags) +{ + return __hwspin_trylock(hwlock, HWLOCK_IRQSTATE, flags); +} + +/** + * hwspin_trylock_irq() - try to lock an hwspinlock, disable interrupts + * @hwlock: an hwspinlock which we want to trylock + * + * This function attempts to lock the underlying hwspinlock, and will + * immediately fail if the hwspinlock is already locked. + * + * Upon a successful return from this function, preemption and local + * interrupts are disabled, so the caller must not sleep, and is advised + * to release the hwspinlock as soon as possible. + * + * Returns 0 if we successfully locked the hwspinlock, -EBUSY if + * the hwspinlock was already taken, and -EINVAL if @hwlock is invalid. + */ +static inline int hwspin_trylock_irq(struct hwspinlock *hwlock) +{ + return __hwspin_trylock(hwlock, HWLOCK_IRQ, NULL); +} + +/** + * hwspin_trylock() - attempt to lock a specific hwspinlock + * @hwlock: an hwspinlock which we want to trylock + * + * This function attempts to lock an hwspinlock, and will immediately fail + * if the hwspinlock is already taken. + * + * Upon a successful return from this function, preemption is disabled, + * so the caller must not sleep, and is advised to release the hwspinlock + * as soon as possible. This is required in order to minimize remote cores + * polling on the hardware interconnect. + * + * Returns 0 if we successfully locked the hwspinlock, -EBUSY if + * the hwspinlock was already taken, and -EINVAL if @hwlock is invalid. + */ +static inline int hwspin_trylock(struct hwspinlock *hwlock) +{ + return __hwspin_trylock(hwlock, 0, NULL); +} + +/** + * hwspin_lock_timeout_irqsave() - lock hwspinlock, with timeout, disable irqs + * @hwlock: the hwspinlock to be locked + * @to: timeout value in msecs + * @flags: a pointer to where the caller's interrupt state will be saved at + * + * This function locks the underlying @hwlock. If the @hwlock + * is already taken, the function will busy loop waiting for it to + * be released, but give up when @timeout msecs have elapsed. + * + * Upon a successful return from this function, preemption and local interrupts + * are disabled (plus previous interrupt state is saved), so the caller must + * not sleep, and is advised to release the hwspinlock as soon as possible. + * + * Returns 0 when the @hwlock was successfully taken, and an appropriate + * error code otherwise (most notably an -ETIMEDOUT if the @hwlock is still + * busy after @timeout msecs). The function will never sleep. + */ +static inline int hwspin_lock_timeout_irqsave(struct hwspinlock *hwlock, + unsigned int to, unsigned long *flags) +{ + return __hwspin_lock_timeout(hwlock, to, HWLOCK_IRQSTATE, flags); +} + +/** + * hwspin_lock_timeout_irq() - lock hwspinlock, with timeout, disable irqs + * @hwlock: the hwspinlock to be locked + * @to: timeout value in msecs + * + * This function locks the underlying @hwlock. If the @hwlock + * is already taken, the function will busy loop waiting for it to + * be released, but give up when @timeout msecs have elapsed. + * + * Upon a successful return from this function, preemption and local interrupts + * are disabled so the caller must not sleep, and is advised to release the + * hwspinlock as soon as possible. + * + * Returns 0 when the @hwlock was successfully taken, and an appropriate + * error code otherwise (most notably an -ETIMEDOUT if the @hwlock is still + * busy after @timeout msecs). The function will never sleep. + */ +static inline +int hwspin_lock_timeout_irq(struct hwspinlock *hwlock, unsigned int to) +{ + return __hwspin_lock_timeout(hwlock, to, HWLOCK_IRQ, NULL); +} + +/** + * hwspin_lock_timeout() - lock an hwspinlock with timeout limit + * @hwlock: the hwspinlock to be locked + * @to: timeout value in msecs + * + * This function locks the underlying @hwlock. If the @hwlock + * is already taken, the function will busy loop waiting for it to + * be released, but give up when @timeout msecs have elapsed. + * + * Upon a successful return from this function, preemption is disabled + * so the caller must not sleep, and is advised to release the hwspinlock + * as soon as possible. + * This is required in order to minimize remote cores polling on the + * hardware interconnect. + * + * Returns 0 when the @hwlock was successfully taken, and an appropriate + * error code otherwise (most notably an -ETIMEDOUT if the @hwlock is still + * busy after @timeout msecs). The function will never sleep. + */ +static inline +int hwspin_lock_timeout(struct hwspinlock *hwlock, unsigned int to) +{ + return __hwspin_lock_timeout(hwlock, to, 0, NULL); +} + +/** + * hwspin_unlock_irqrestore() - unlock hwspinlock, restore irq state + * @hwlock: a previously-acquired hwspinlock which we want to unlock + * @flags: previous caller's interrupt state to restore + * + * This function will unlock a specific hwspinlock, enable preemption and + * restore the previous state of the local interrupts. It should be used + * to undo, e.g., hwspin_trylock_irqsave(). + * + * @hwlock must be already locked before calling this function: it is a bug + * to call unlock on a @hwlock that is already unlocked. + */ +static inline void hwspin_unlock_irqrestore(struct hwspinlock *hwlock, + unsigned long *flags) +{ + __hwspin_unlock(hwlock, HWLOCK_IRQSTATE, flags); +} + +/** + * hwspin_unlock_irq() - unlock hwspinlock, enable interrupts + * @hwlock: a previously-acquired hwspinlock which we want to unlock + * + * This function will unlock a specific hwspinlock, enable preemption and + * enable local interrupts. Should be used to undo hwspin_lock_irq(). + * + * @hwlock must be already locked (e.g. by hwspin_trylock_irq()) before + * calling this function: it is a bug to call unlock on a @hwlock that is + * already unlocked. + */ +static inline void hwspin_unlock_irq(struct hwspinlock *hwlock) +{ + __hwspin_unlock(hwlock, HWLOCK_IRQ, NULL); +} + +/** + * hwspin_unlock() - unlock hwspinlock + * @hwlock: a previously-acquired hwspinlock which we want to unlock + * + * This function will unlock a specific hwspinlock and enable preemption + * back. + * + * @hwlock must be already locked (e.g. by hwspin_trylock()) before calling + * this function: it is a bug to call unlock on a @hwlock that is already + * unlocked. + */ +static inline void hwspin_unlock(struct hwspinlock *hwlock) +{ + __hwspin_unlock(hwlock, 0, NULL); +} + +#endif /* __LINUX_HWSPINLOCK_H */ |