summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--arch/um/Kconfig58
-rw-r--r--arch/um/drivers/Kconfig352
-rw-r--r--arch/um/drivers/ubd_kern.c4
-rw-r--r--arch/um/include/asm/pgtable.h7
-rw-r--r--arch/um/kernel/irq.c2
-rw-r--r--arch/um/kernel/skas/uaccess.c1
-rw-r--r--arch/um/kernel/time.c2
-rw-r--r--arch/um/os-Linux/signal.c28
-rw-r--r--arch/um/os-Linux/umid.c36
-rw-r--r--fs/hostfs/hostfs.h2
10 files changed, 253 insertions, 239 deletions
diff --git a/arch/um/Kconfig b/arch/um/Kconfig
index ec9711d068b7..6b6eb938fcc1 100644
--- a/arch/um/Kconfig
+++ b/arch/um/Kconfig
@@ -80,46 +80,46 @@ config LD_SCRIPT_DYN
bool
default y
depends on !LD_SCRIPT_STATIC
- select MODULE_REL_CRCS if MODVERSIONS
+ select MODULE_REL_CRCS if MODVERSIONS
config HOSTFS
tristate "Host filesystem"
help
- While the User-Mode Linux port uses its own root file system for
- booting and normal file access, this module lets the UML user
- access files stored on the host. It does not require any
- network connection between the Host and UML. An example use of
- this might be:
+ While the User-Mode Linux port uses its own root file system for
+ booting and normal file access, this module lets the UML user
+ access files stored on the host. It does not require any
+ network connection between the Host and UML. An example use of
+ this might be:
- mount none /tmp/fromhost -t hostfs -o /tmp/umlshare
+ mount none /tmp/fromhost -t hostfs -o /tmp/umlshare
- where /tmp/fromhost is an empty directory inside UML and
- /tmp/umlshare is a directory on the host with files the UML user
- wishes to access.
+ where /tmp/fromhost is an empty directory inside UML and
+ /tmp/umlshare is a directory on the host with files the UML user
+ wishes to access.
- For more information, see
- <http://user-mode-linux.sourceforge.net/hostfs.html>.
+ For more information, see
+ <http://user-mode-linux.sourceforge.net/hostfs.html>.
- If you'd like to be able to work with files stored on the host,
- say Y or M here; otherwise say N.
+ If you'd like to be able to work with files stored on the host,
+ say Y or M here; otherwise say N.
config MCONSOLE
bool "Management console"
depends on PROC_FS
default y
help
- The user mode linux management console is a low-level interface to
- the kernel, somewhat like the i386 SysRq interface. Since there is
- a full-blown operating system running under every user mode linux
- instance, there is much greater flexibility possible than with the
- SysRq mechanism.
+ The user mode linux management console is a low-level interface to
+ the kernel, somewhat like the i386 SysRq interface. Since there is
+ a full-blown operating system running under every user mode linux
+ instance, there is much greater flexibility possible than with the
+ SysRq mechanism.
- If you answer 'Y' to this option, to use this feature, you need the
- mconsole client (called uml_mconsole) which is present in CVS in
- 2.4.5-9um and later (path /tools/mconsole), and is also in the
- distribution RPM package in 2.4.6 and later.
+ If you answer 'Y' to this option, to use this feature, you need the
+ mconsole client (called uml_mconsole) which is present in CVS in
+ 2.4.5-9um and later (path /tools/mconsole), and is also in the
+ distribution RPM package in 2.4.6 and later.
- It is safe to say 'Y' here.
+ It is safe to say 'Y' here.
config MAGIC_SYSRQ
bool "Magic SysRq key"
@@ -142,13 +142,17 @@ config MAGIC_SYSRQ
config KERNEL_STACK_ORDER
int "Kernel stack size order"
- default 1 if 64BIT
- range 1 10 if 64BIT
- default 0 if !64BIT
+ default 2 if 64BIT
+ range 2 10 if 64BIT
+ default 1 if !64BIT
help
This option determines the size of UML kernel stacks. They will
be 1 << order pages. The default is OK unless you're running Valgrind
on UML, in which case, set this to 3.
+ It is possible to reduce the stack to 1 for 64BIT and 0 for 32BIT on
+ older (pre-2017) CPUs. It is not recommended on newer CPUs due to the
+ increase in the size of the state which needs to be saved when handling
+ signals.
config MMAPPER
tristate "iomem emulation driver"
diff --git a/arch/um/drivers/Kconfig b/arch/um/drivers/Kconfig
index 2b1aaf7755aa..2638e46f50cc 100644
--- a/arch/um/drivers/Kconfig
+++ b/arch/um/drivers/Kconfig
@@ -11,58 +11,58 @@ config STDERR_CONSOLE
config SSL
bool "Virtual serial line"
help
- The User-Mode Linux environment allows you to create virtual serial
- lines on the UML that are usually made to show up on the host as
- ttys or ptys.
+ The User-Mode Linux environment allows you to create virtual serial
+ lines on the UML that are usually made to show up on the host as
+ ttys or ptys.
- See <http://user-mode-linux.sourceforge.net/old/input.html> for more
- information and command line examples of how to use this facility.
+ See <http://user-mode-linux.sourceforge.net/old/input.html> for more
+ information and command line examples of how to use this facility.
- Unless you have a specific reason for disabling this, say Y.
+ Unless you have a specific reason for disabling this, say Y.
config NULL_CHAN
bool "null channel support"
help
- This option enables support for attaching UML consoles and serial
- lines to a device similar to /dev/null. Data written to it disappears
- and there is never any data to be read.
+ This option enables support for attaching UML consoles and serial
+ lines to a device similar to /dev/null. Data written to it disappears
+ and there is never any data to be read.
config PORT_CHAN
bool "port channel support"
help
- This option enables support for attaching UML consoles and serial
- lines to host portals. They may be accessed with 'telnet <host>
- <port number>'. Any number of consoles and serial lines may be
- attached to a single portal, although what UML device you get when
- you telnet to that portal will be unpredictable.
- It is safe to say 'Y' here.
+ This option enables support for attaching UML consoles and serial
+ lines to host portals. They may be accessed with 'telnet <host>
+ <port number>'. Any number of consoles and serial lines may be
+ attached to a single portal, although what UML device you get when
+ you telnet to that portal will be unpredictable.
+ It is safe to say 'Y' here.
config PTY_CHAN
bool "pty channel support"
help
- This option enables support for attaching UML consoles and serial
- lines to host pseudo-terminals. Access to both traditional
- pseudo-terminals (/dev/pty*) and pts pseudo-terminals are controlled
- with this option. The assignment of UML devices to host devices
- will be announced in the kernel message log.
- It is safe to say 'Y' here.
+ This option enables support for attaching UML consoles and serial
+ lines to host pseudo-terminals. Access to both traditional
+ pseudo-terminals (/dev/pty*) and pts pseudo-terminals are controlled
+ with this option. The assignment of UML devices to host devices
+ will be announced in the kernel message log.
+ It is safe to say 'Y' here.
config TTY_CHAN
bool "tty channel support"
help
- This option enables support for attaching UML consoles and serial
- lines to host terminals. Access to both virtual consoles
- (/dev/tty*) and the slave side of pseudo-terminals (/dev/ttyp* and
- /dev/pts/*) are controlled by this option.
- It is safe to say 'Y' here.
+ This option enables support for attaching UML consoles and serial
+ lines to host terminals. Access to both virtual consoles
+ (/dev/tty*) and the slave side of pseudo-terminals (/dev/ttyp* and
+ /dev/pts/*) are controlled by this option.
+ It is safe to say 'Y' here.
config XTERM_CHAN
bool "xterm channel support"
help
- This option enables support for attaching UML consoles and serial
- lines to xterms. Each UML device so assigned will be brought up in
- its own xterm.
- It is safe to say 'Y' here.
+ This option enables support for attaching UML consoles and serial
+ lines to xterms. Each UML device so assigned will be brought up in
+ its own xterm.
+ It is safe to say 'Y' here.
config NOCONFIG_CHAN
bool
@@ -72,43 +72,43 @@ config CON_ZERO_CHAN
string "Default main console channel initialization"
default "fd:0,fd:1"
help
- This is the string describing the channel to which the main console
- will be attached by default. This value can be overridden from the
- command line. The default value is "fd:0,fd:1", which attaches the
- main console to stdin and stdout.
- It is safe to leave this unchanged.
+ This is the string describing the channel to which the main console
+ will be attached by default. This value can be overridden from the
+ command line. The default value is "fd:0,fd:1", which attaches the
+ main console to stdin and stdout.
+ It is safe to leave this unchanged.
config CON_CHAN
string "Default console channel initialization"
default "xterm"
help
- This is the string describing the channel to which all consoles
- except the main console will be attached by default. This value can
- be overridden from the command line. The default value is "xterm",
- which brings them up in xterms.
- It is safe to leave this unchanged, although you may wish to change
- this if you expect the UML that you build to be run in environments
- which don't have X or xterm available.
+ This is the string describing the channel to which all consoles
+ except the main console will be attached by default. This value can
+ be overridden from the command line. The default value is "xterm",
+ which brings them up in xterms.
+ It is safe to leave this unchanged, although you may wish to change
+ this if you expect the UML that you build to be run in environments
+ which don't have X or xterm available.
config SSL_CHAN
string "Default serial line channel initialization"
default "pty"
help
- This is the string describing the channel to which the serial lines
- will be attached by default. This value can be overridden from the
- command line. The default value is "pty", which attaches them to
- traditional pseudo-terminals.
- It is safe to leave this unchanged, although you may wish to change
- this if you expect the UML that you build to be run in environments
- which don't have a set of /dev/pty* devices.
+ This is the string describing the channel to which the serial lines
+ will be attached by default. This value can be overridden from the
+ command line. The default value is "pty", which attaches them to
+ traditional pseudo-terminals.
+ It is safe to leave this unchanged, although you may wish to change
+ this if you expect the UML that you build to be run in environments
+ which don't have a set of /dev/pty* devices.
config UML_SOUND
tristate "Sound support"
help
- This option enables UML sound support. If enabled, it will pull in
- soundcore and the UML hostaudio relay, which acts as a intermediary
- between the host's dsp and mixer devices and the UML sound system.
- It is safe to say 'Y' here.
+ This option enables UML sound support. If enabled, it will pull in
+ soundcore and the UML hostaudio relay, which acts as a intermediary
+ between the host's dsp and mixer devices and the UML sound system.
+ It is safe to say 'Y' here.
config SOUND
tristate
@@ -131,107 +131,107 @@ menu "UML Network Devices"
config UML_NET
bool "Virtual network device"
help
- While the User-Mode port cannot directly talk to any physical
- hardware devices, this choice and the following transport options
- provide one or more virtual network devices through which the UML
- kernels can talk to each other, the host, and with the host's help,
- machines on the outside world.
+ While the User-Mode port cannot directly talk to any physical
+ hardware devices, this choice and the following transport options
+ provide one or more virtual network devices through which the UML
+ kernels can talk to each other, the host, and with the host's help,
+ machines on the outside world.
- For more information, including explanations of the networking and
- sample configurations, see
- <http://user-mode-linux.sourceforge.net/old/networking.html>.
+ For more information, including explanations of the networking and
+ sample configurations, see
+ <http://user-mode-linux.sourceforge.net/old/networking.html>.
- If you'd like to be able to enable networking in the User-Mode
- linux environment, say Y; otherwise say N. Note that you must
- enable at least one of the following transport options to actually
- make use of UML networking.
+ If you'd like to be able to enable networking in the User-Mode
+ linux environment, say Y; otherwise say N. Note that you must
+ enable at least one of the following transport options to actually
+ make use of UML networking.
config UML_NET_ETHERTAP
bool "Ethertap transport"
depends on UML_NET
help
- The Ethertap User-Mode Linux network transport allows a single
- running UML to exchange packets with its host over one of the
- host's Ethertap devices, such as /dev/tap0. Additional running
- UMLs can use additional Ethertap devices, one per running UML.
- While the UML believes it's on a (multi-device, broadcast) virtual
- Ethernet network, it's in fact communicating over a point-to-point
- link with the host.
-
- To use this, your host kernel must have support for Ethertap
- devices. Also, if your host kernel is 2.4.x, it must have
- CONFIG_NETLINK_DEV configured as Y or M.
-
- For more information, see
- <http://user-mode-linux.sourceforge.net/old/networking.html> That site
- has examples of the UML command line to use to enable Ethertap
- networking.
-
- If you'd like to set up an IP network with the host and/or the
- outside world, say Y to this, the Daemon Transport and/or the
- Slip Transport. You'll need at least one of them, but may choose
- more than one without conflict. If you don't need UML networking,
- say N.
+ The Ethertap User-Mode Linux network transport allows a single
+ running UML to exchange packets with its host over one of the
+ host's Ethertap devices, such as /dev/tap0. Additional running
+ UMLs can use additional Ethertap devices, one per running UML.
+ While the UML believes it's on a (multi-device, broadcast) virtual
+ Ethernet network, it's in fact communicating over a point-to-point
+ link with the host.
+
+ To use this, your host kernel must have support for Ethertap
+ devices. Also, if your host kernel is 2.4.x, it must have
+ CONFIG_NETLINK_DEV configured as Y or M.
+
+ For more information, see
+ <http://user-mode-linux.sourceforge.net/old/networking.html> That site
+ has examples of the UML command line to use to enable Ethertap
+ networking.
+
+ If you'd like to set up an IP network with the host and/or the
+ outside world, say Y to this, the Daemon Transport and/or the
+ Slip Transport. You'll need at least one of them, but may choose
+ more than one without conflict. If you don't need UML networking,
+ say N.
config UML_NET_TUNTAP
bool "TUN/TAP transport"
depends on UML_NET
help
- The UML TUN/TAP network transport allows a UML instance to exchange
- packets with the host over a TUN/TAP device. This option will only
- work with a 2.4 host, unless you've applied the TUN/TAP patch to
- your 2.2 host kernel.
+ The UML TUN/TAP network transport allows a UML instance to exchange
+ packets with the host over a TUN/TAP device. This option will only
+ work with a 2.4 host, unless you've applied the TUN/TAP patch to
+ your 2.2 host kernel.
- To use this transport, your host kernel must have support for TUN/TAP
- devices, either built-in or as a module.
+ To use this transport, your host kernel must have support for TUN/TAP
+ devices, either built-in or as a module.
config UML_NET_SLIP
bool "SLIP transport"
depends on UML_NET
help
- The slip User-Mode Linux network transport allows a running UML to
- network with its host over a point-to-point link. Unlike Ethertap,
- which can carry any Ethernet frame (and hence even non-IP packets),
- the slip transport can only carry IP packets.
-
- To use this, your host must support slip devices.
-
- For more information, see
- <http://user-mode-linux.sourceforge.net/old/networking.html>.
- has examples of the UML command line to use to enable slip
- networking, and details of a few quirks with it.
-
- The Ethertap Transport is preferred over slip because of its
- limitations. If you prefer slip, however, say Y here. Otherwise
- choose the Multicast transport (to network multiple UMLs on
- multiple hosts), Ethertap (to network with the host and the
- outside world), and/or the Daemon transport (to network multiple
- UMLs on a single host). You may choose more than one without
- conflict. If you don't need UML networking, say N.
+ The slip User-Mode Linux network transport allows a running UML to
+ network with its host over a point-to-point link. Unlike Ethertap,
+ which can carry any Ethernet frame (and hence even non-IP packets),
+ the slip transport can only carry IP packets.
+
+ To use this, your host must support slip devices.
+
+ For more information, see
+ <http://user-mode-linux.sourceforge.net/old/networking.html>.
+ has examples of the UML command line to use to enable slip
+ networking, and details of a few quirks with it.
+
+ The Ethertap Transport is preferred over slip because of its
+ limitations. If you prefer slip, however, say Y here. Otherwise
+ choose the Multicast transport (to network multiple UMLs on
+ multiple hosts), Ethertap (to network with the host and the
+ outside world), and/or the Daemon transport (to network multiple
+ UMLs on a single host). You may choose more than one without
+ conflict. If you don't need UML networking, say N.
config UML_NET_DAEMON
bool "Daemon transport"
depends on UML_NET
help
- This User-Mode Linux network transport allows one or more running
- UMLs on a single host to communicate with each other, but not to
- the host.
-
- To use this form of networking, you'll need to run the UML
- networking daemon on the host.
-
- For more information, see
- <http://user-mode-linux.sourceforge.net/old/networking.html> That site
- has examples of the UML command line to use to enable Daemon
- networking.
-
- If you'd like to set up a network with other UMLs on a single host,
- say Y. If you need a network between UMLs on multiple physical
- hosts, choose the Multicast Transport. To set up a network with
- the host and/or other IP machines, say Y to the Ethertap or Slip
- transports. You'll need at least one of them, but may choose
- more than one without conflict. If you don't need UML networking,
- say N.
+ This User-Mode Linux network transport allows one or more running
+ UMLs on a single host to communicate with each other, but not to
+ the host.
+
+ To use this form of networking, you'll need to run the UML
+ networking daemon on the host.
+
+ For more information, see
+ <http://user-mode-linux.sourceforge.net/old/networking.html> That site
+ has examples of the UML command line to use to enable Daemon
+ networking.
+
+ If you'd like to set up a network with other UMLs on a single host,
+ say Y. If you need a network between UMLs on multiple physical
+ hosts, choose the Multicast Transport. To set up a network with
+ the host and/or other IP machines, say Y to the Ethertap or Slip
+ transports. You'll need at least one of them, but may choose
+ more than one without conflict. If you don't need UML networking,
+ say N.
config UML_NET_VECTOR
bool "Vector I/O high performance network devices"
@@ -270,26 +270,26 @@ config UML_NET_MCAST
bool "Multicast transport"
depends on UML_NET
help
- This Multicast User-Mode Linux network transport allows multiple
- UMLs (even ones running on different host machines!) to talk to
- each other over a virtual ethernet network. However, it requires
- at least one UML with one of the other transports to act as a
- bridge if any of them need to be able to talk to their hosts or any
- other IP machines.
-
- To use this, your host kernel(s) must support IP Multicasting.
-
- For more information, see
- <http://user-mode-linux.sourceforge.net/old/networking.html> That site
- has examples of the UML command line to use to enable Multicast
- networking, and notes about the security of this approach.
-
- If you need UMLs on multiple physical hosts to communicate as if
- they shared an Ethernet network, say Y. If you need to communicate
- with other IP machines, make sure you select one of the other
- transports (possibly in addition to Multicast; they're not
- exclusive). If you don't need to network UMLs say N to each of
- the transports.
+ This Multicast User-Mode Linux network transport allows multiple
+ UMLs (even ones running on different host machines!) to talk to
+ each other over a virtual ethernet network. However, it requires
+ at least one UML with one of the other transports to act as a
+ bridge if any of them need to be able to talk to their hosts or any
+ other IP machines.
+
+ To use this, your host kernel(s) must support IP Multicasting.
+
+ For more information, see
+ <http://user-mode-linux.sourceforge.net/old/networking.html> That site
+ has examples of the UML command line to use to enable Multicast
+ networking, and notes about the security of this approach.
+
+ If you need UMLs on multiple physical hosts to communicate as if
+ they shared an Ethernet network, say Y. If you need to communicate
+ with other IP machines, make sure you select one of the other
+ transports (possibly in addition to Multicast; they're not
+ exclusive). If you don't need to network UMLs say N to each of
+ the transports.
config UML_NET_PCAP
bool "pcap transport"
@@ -300,9 +300,9 @@ config UML_NET_PCAP
UML act as a network monitor for the host. You must have libcap
installed in order to build the pcap transport into UML.
- For more information, see
- <http://user-mode-linux.sourceforge.net/old/networking.html> That site
- has examples of the UML command line to use to enable this option.
+ For more information, see
+ <http://user-mode-linux.sourceforge.net/old/networking.html> That site
+ has examples of the UML command line to use to enable this option.
If you intend to use UML as a network monitor for the host, say
Y here. Otherwise, say N.
@@ -311,27 +311,27 @@ config UML_NET_SLIRP
bool "SLiRP transport"
depends on UML_NET
help
- The SLiRP User-Mode Linux network transport allows a running UML
- to network by invoking a program that can handle SLIP encapsulated
- packets. This is commonly (but not limited to) the application
- known as SLiRP, a program that can re-socket IP packets back onto
- the host on which it is run. Only IP packets are supported,
- unlike other network transports that can handle all Ethernet
- frames. In general, slirp allows the UML the same IP connectivity
- to the outside world that the host user is permitted, and unlike
- other transports, SLiRP works without the need of root level
- privleges, setuid binaries, or SLIP devices on the host. This
- also means not every type of connection is possible, but most
- situations can be accommodated with carefully crafted slirp
- commands that can be passed along as part of the network device's
- setup string. The effect of this transport on the UML is similar
- that of a host behind a firewall that masquerades all network
- connections passing through it (but is less secure).
-
- To use this you should first have slirp compiled somewhere
- accessible on the host, and have read its documentation. If you
- don't need UML networking, say N.
-
- Startup example: "eth0=slirp,FE:FD:01:02:03:04,/usr/local/bin/slirp"
+ The SLiRP User-Mode Linux network transport allows a running UML
+ to network by invoking a program that can handle SLIP encapsulated
+ packets. This is commonly (but not limited to) the application
+ known as SLiRP, a program that can re-socket IP packets back onto
+ he host on which it is run. Only IP packets are supported,
+ unlike other network transports that can handle all Ethernet
+ frames. In general, slirp allows the UML the same IP connectivity
+ to the outside world that the host user is permitted, and unlike
+ other transports, SLiRP works without the need of root level
+ privleges, setuid binaries, or SLIP devices on the host. This
+ also means not every type of connection is possible, but most
+ situations can be accommodated with carefully crafted slirp
+ commands that can be passed along as part of the network device's
+ setup string. The effect of this transport on the UML is similar
+ that of a host behind a firewall that masquerades all network
+ connections passing through it (but is less secure).
+
+ To use this you should first have slirp compiled somewhere
+ accessible on the host, and have read its documentation. If you
+ don't need UML networking, say N.
+
+ Startup example: "eth0=slirp,FE:FD:01:02:03:04,/usr/local/bin/slirp"
endmenu
diff --git a/arch/um/drivers/ubd_kern.c b/arch/um/drivers/ubd_kern.c
index aca09be2373e..33c1cd6a12ac 100644
--- a/arch/um/drivers/ubd_kern.c
+++ b/arch/um/drivers/ubd_kern.c
@@ -276,14 +276,14 @@ static int ubd_setup_common(char *str, int *index_out, char **error_out)
str++;
if(!strcmp(str, "sync")){
global_openflags = of_sync(global_openflags);
- goto out1;
+ return err;
}
err = -EINVAL;
major = simple_strtoul(str, &end, 0);
if((*end != '\0') || (end == str)){
*error_out = "Didn't parse major number";
- goto out1;
+ return err;
}
mutex_lock(&ubd_lock);
diff --git a/arch/um/include/asm/pgtable.h b/arch/um/include/asm/pgtable.h
index 9c04562310b3..b377df76cc28 100644
--- a/arch/um/include/asm/pgtable.h
+++ b/arch/um/include/asm/pgtable.h
@@ -263,7 +263,12 @@ static inline void set_pte(pte_t *pteptr, pte_t pteval)
*pteptr = pte_mknewpage(*pteptr);
if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
}
-#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
+
+static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
+ pte_t *pteptr, pte_t pteval)
+{
+ set_pte(pteptr, pteval);
+}
#define __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t pte_a, pte_t pte_b)
diff --git a/arch/um/kernel/irq.c b/arch/um/kernel/irq.c
index f4874b7ec503..598d7b3d9355 100644
--- a/arch/um/kernel/irq.c
+++ b/arch/um/kernel/irq.c
@@ -479,7 +479,7 @@ void __init init_IRQ(void)
irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq);
- for (i = 1; i < NR_IRQS; i++)
+ for (i = 1; i < LAST_IRQ; i++)
irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
/* Initialize EPOLL Loop */
os_setup_epoll();
diff --git a/arch/um/kernel/skas/uaccess.c b/arch/um/kernel/skas/uaccess.c
index 7f06fdbc7ee1..bd3cb694322c 100644
--- a/arch/um/kernel/skas/uaccess.c
+++ b/arch/um/kernel/skas/uaccess.c
@@ -59,7 +59,6 @@ static pte_t *maybe_map(unsigned long virt, int is_write)
static int do_op_one_page(unsigned long addr, int len, int is_write,
int (*op)(unsigned long addr, int len, void *arg), void *arg)
{
- jmp_buf buf;
struct page *page;
pte_t *pte;
int n;
diff --git a/arch/um/kernel/time.c b/arch/um/kernel/time.c
index 052de4c8acb2..0c572a48158e 100644
--- a/arch/um/kernel/time.c
+++ b/arch/um/kernel/time.c
@@ -56,7 +56,7 @@ static int itimer_one_shot(struct clock_event_device *evt)
static struct clock_event_device timer_clockevent = {
.name = "posix-timer",
.rating = 250,
- .cpumask = cpu_all_mask,
+ .cpumask = cpu_possible_mask,
.features = CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_ONESHOT,
.set_state_shutdown = itimer_shutdown,
diff --git a/arch/um/os-Linux/signal.c b/arch/um/os-Linux/signal.c
index bf0acb8aad8b..75b10235d369 100644
--- a/arch/um/os-Linux/signal.c
+++ b/arch/um/os-Linux/signal.c
@@ -31,29 +31,23 @@ void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
{
- struct uml_pt_regs *r;
+ struct uml_pt_regs r;
int save_errno = errno;
- r = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC);
- if (!r)
- panic("out of memory");
-
- r->is_user = 0;
+ r.is_user = 0;
if (sig == SIGSEGV) {
/* For segfaults, we want the data from the sigcontext. */
- get_regs_from_mc(r, mc);
- GET_FAULTINFO_FROM_MC(r->faultinfo, mc);
+ get_regs_from_mc(&r, mc);
+ GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
}
/* enable signals if sig isn't IRQ signal */
if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGALRM))
unblock_signals();
- (*sig_info[sig])(sig, si, r);
+ (*sig_info[sig])(sig, si, &r);
errno = save_errno;
-
- free(r);
}
/*
@@ -91,17 +85,11 @@ void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
static void timer_real_alarm_handler(mcontext_t *mc)
{
- struct uml_pt_regs *regs;
-
- regs = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC);
- if (!regs)
- panic("out of memory");
+ struct uml_pt_regs regs;
if (mc != NULL)
- get_regs_from_mc(regs, mc);
- timer_handler(SIGALRM, NULL, regs);
-
- free(regs);
+ get_regs_from_mc(&regs, mc);
+ timer_handler(SIGALRM, NULL, &regs);
}
void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
diff --git a/arch/um/os-Linux/umid.c b/arch/um/os-Linux/umid.c
index 998fbb445458..e261656fe9d7 100644
--- a/arch/um/os-Linux/umid.c
+++ b/arch/um/os-Linux/umid.c
@@ -135,12 +135,18 @@ out:
*/
static inline int is_umdir_used(char *dir)
{
- char file[strlen(uml_dir) + UMID_LEN + sizeof("/pid\0")];
- char pid[sizeof("nnnnn\0")], *end;
+ char pid[sizeof("nnnnn\0")], *end, *file;
int dead, fd, p, n, err;
+ size_t filelen;
- n = snprintf(file, sizeof(file), "%s/pid", dir);
- if (n >= sizeof(file)) {
+ err = asprintf(&file, "%s/pid", dir);
+ if (err < 0)
+ return 0;
+
+ filelen = strlen(file);
+
+ n = snprintf(file, filelen, "%s/pid", dir);
+ if (n >= filelen) {
printk(UM_KERN_ERR "is_umdir_used - pid filename too long\n");
err = -E2BIG;
goto out;
@@ -185,6 +191,7 @@ static inline int is_umdir_used(char *dir)
out_close:
close(fd);
out:
+ free(file);
return 0;
}
@@ -210,18 +217,21 @@ static int umdir_take_if_dead(char *dir)
static void __init create_pid_file(void)
{
- char file[strlen(uml_dir) + UMID_LEN + sizeof("/pid\0")];
- char pid[sizeof("nnnnn\0")];
+ char pid[sizeof("nnnnn\0")], *file;
int fd, n;
- if (umid_file_name("pid", file, sizeof(file)))
+ file = malloc(strlen(uml_dir) + UMID_LEN + sizeof("/pid\0"));
+ if (!file)
return;
+ if (umid_file_name("pid", file, sizeof(file)))
+ goto out;
+
fd = open(file, O_RDWR | O_CREAT | O_EXCL, 0644);
if (fd < 0) {
printk(UM_KERN_ERR "Open of machine pid file \"%s\" failed: "
"%s\n", file, strerror(errno));
- return;
+ goto out;
}
snprintf(pid, sizeof(pid), "%d\n", getpid());
@@ -231,6 +241,8 @@ static void __init create_pid_file(void)
errno);
close(fd);
+out:
+ free(file);
}
int __init set_umid(char *name)
@@ -385,13 +397,19 @@ __uml_setup("uml_dir=", set_uml_dir,
static void remove_umid_dir(void)
{
- char dir[strlen(uml_dir) + UMID_LEN + 1], err;
+ char *dir, err;
+
+ dir = malloc(strlen(uml_dir) + UMID_LEN + 1);
+ if (!dir)
+ return;
sprintf(dir, "%s%s", uml_dir, umid);
err = remove_files_and_dir(dir);
if (err)
os_warn("%s - remove_files_and_dir failed with err = %d\n",
__func__, err);
+
+ free(dir);
}
__uml_exitcall(remove_umid_dir);
diff --git a/fs/hostfs/hostfs.h b/fs/hostfs/hostfs.h
index 33b8423ef0c9..f4295aa19350 100644
--- a/fs/hostfs/hostfs.h
+++ b/fs/hostfs/hostfs.h
@@ -87,7 +87,7 @@ extern int do_mkdir(const char *file, int mode);
extern int hostfs_do_rmdir(const char *file);
extern int do_mknod(const char *file, int mode, unsigned int major,
unsigned int minor);
-extern int link_file(const char *from, const char *to);
+extern int link_file(const char *to, const char *from);
extern int hostfs_do_readlink(char *file, char *buf, int size);
extern int rename_file(char *from, char *to);
extern int rename2_file(char *from, char *to, unsigned int flags);