summaryrefslogtreecommitdiffstats
path: root/Documentation/devicetree/bindings/arm/idle-states.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/devicetree/bindings/arm/idle-states.txt')
-rw-r--r--Documentation/devicetree/bindings/arm/idle-states.txt706
1 files changed, 0 insertions, 706 deletions
diff --git a/Documentation/devicetree/bindings/arm/idle-states.txt b/Documentation/devicetree/bindings/arm/idle-states.txt
deleted file mode 100644
index 771f5d20ae18..000000000000
--- a/Documentation/devicetree/bindings/arm/idle-states.txt
+++ /dev/null
@@ -1,706 +0,0 @@
-==========================================
-ARM idle states binding description
-==========================================
-
-==========================================
-1 - Introduction
-==========================================
-
-ARM systems contain HW capable of managing power consumption dynamically,
-where cores can be put in different low-power states (ranging from simple
-wfi to power gating) according to OS PM policies. The CPU states representing
-the range of dynamic idle states that a processor can enter at run-time, can be
-specified through device tree bindings representing the parameters required
-to enter/exit specific idle states on a given processor.
-
-According to the Server Base System Architecture document (SBSA, [3]), the
-power states an ARM CPU can be put into are identified by the following list:
-
-- Running
-- Idle_standby
-- Idle_retention
-- Sleep
-- Off
-
-The power states described in the SBSA document define the basic CPU states on
-top of which ARM platforms implement power management schemes that allow an OS
-PM implementation to put the processor in different idle states (which include
-states listed above; "off" state is not an idle state since it does not have
-wake-up capabilities, hence it is not considered in this document).
-
-Idle state parameters (e.g. entry latency) are platform specific and need to be
-characterized with bindings that provide the required information to OS PM
-code so that it can build the required tables and use them at runtime.
-
-The device tree binding definition for ARM idle states is the subject of this
-document.
-
-===========================================
-2 - idle-states definitions
-===========================================
-
-Idle states are characterized for a specific system through a set of
-timing and energy related properties, that underline the HW behaviour
-triggered upon idle states entry and exit.
-
-The following diagram depicts the CPU execution phases and related timing
-properties required to enter and exit an idle state:
-
-..__[EXEC]__|__[PREP]__|__[ENTRY]__|__[IDLE]__|__[EXIT]__|__[EXEC]__..
- | | | | |
-
- |<------ entry ------->|
- | latency |
- |<- exit ->|
- | latency |
- |<-------- min-residency -------->|
- |<------- wakeup-latency ------->|
-
- Diagram 1: CPU idle state execution phases
-
-EXEC: Normal CPU execution.
-
-PREP: Preparation phase before committing the hardware to idle mode
- like cache flushing. This is abortable on pending wake-up
- event conditions. The abort latency is assumed to be negligible
- (i.e. less than the ENTRY + EXIT duration). If aborted, CPU
- goes back to EXEC. This phase is optional. If not abortable,
- this should be included in the ENTRY phase instead.
-
-ENTRY: The hardware is committed to idle mode. This period must run
- to completion up to IDLE before anything else can happen.
-
-IDLE: This is the actual energy-saving idle period. This may last
- between 0 and infinite time, until a wake-up event occurs.
-
-EXIT: Period during which the CPU is brought back to operational
- mode (EXEC).
-
-entry-latency: Worst case latency required to enter the idle state. The
-exit-latency may be guaranteed only after entry-latency has passed.
-
-min-residency: Minimum period, including preparation and entry, for a given
-idle state to be worthwhile energywise.
-
-wakeup-latency: Maximum delay between the signaling of a wake-up event and the
-CPU being able to execute normal code again. If not specified, this is assumed
-to be entry-latency + exit-latency.
-
-These timing parameters can be used by an OS in different circumstances.
-
-An idle CPU requires the expected min-residency time to select the most
-appropriate idle state based on the expected expiry time of the next IRQ
-(i.e. wake-up) that causes the CPU to return to the EXEC phase.
-
-An operating system scheduler may need to compute the shortest wake-up delay
-for CPUs in the system by detecting how long will it take to get a CPU out
-of an idle state, e.g.:
-
-wakeup-delay = exit-latency + max(entry-latency - (now - entry-timestamp), 0)
-
-In other words, the scheduler can make its scheduling decision by selecting
-(e.g. waking-up) the CPU with the shortest wake-up delay.
-The wake-up delay must take into account the entry latency if that period
-has not expired. The abortable nature of the PREP period can be ignored
-if it cannot be relied upon (e.g. the PREP deadline may occur much sooner than
-the worst case since it depends on the CPU operating conditions, i.e. caches
-state).
-
-An OS has to reliably probe the wakeup-latency since some devices can enforce
-latency constraint guarantees to work properly, so the OS has to detect the
-worst case wake-up latency it can incur if a CPU is allowed to enter an
-idle state, and possibly to prevent that to guarantee reliable device
-functioning.
-
-The min-residency time parameter deserves further explanation since it is
-expressed in time units but must factor in energy consumption coefficients.
-
-The energy consumption of a cpu when it enters a power state can be roughly
-characterised by the following graph:
-
- |
- |
- |
- e |
- n | /---
- e | /------
- r | /------
- g | /-----
- y | /------
- | ----
- | /|
- | / |
- | / |
- | / |
- | / |
- | / |
- |/ |
- -----|-------+----------------------------------
- 0| 1 time(ms)
-
- Graph 1: Energy vs time example
-
-The graph is split in two parts delimited by time 1ms on the X-axis.
-The graph curve with X-axis values = { x | 0 < x < 1ms } has a steep slope
-and denotes the energy costs incurred while entering and leaving the idle
-state.
-The graph curve in the area delimited by X-axis values = {x | x > 1ms } has
-shallower slope and essentially represents the energy consumption of the idle
-state.
-
-min-residency is defined for a given idle state as the minimum expected
-residency time for a state (inclusive of preparation and entry) after
-which choosing that state become the most energy efficient option. A good
-way to visualise this, is by taking the same graph above and comparing some
-states energy consumptions plots.
-
-For sake of simplicity, let's consider a system with two idle states IDLE1,
-and IDLE2:
-
- |
- |
- |
- | /-- IDLE1
- e | /---
- n | /----
- e | /---
- r | /-----/--------- IDLE2
- g | /-------/---------
- y | ------------ /---|
- | / /---- |
- | / /--- |
- | / /---- |
- | / /--- |
- | --- |
- | / |
- | / |
- |/ | time
- ---/----------------------------+------------------------
- |IDLE1-energy < IDLE2-energy | IDLE2-energy < IDLE1-energy
- |
- IDLE2-min-residency
-
- Graph 2: idle states min-residency example
-
-In graph 2 above, that takes into account idle states entry/exit energy
-costs, it is clear that if the idle state residency time (i.e. time till next
-wake-up IRQ) is less than IDLE2-min-residency, IDLE1 is the better idle state
-choice energywise.
-
-This is mainly down to the fact that IDLE1 entry/exit energy costs are lower
-than IDLE2.
-
-However, the lower power consumption (i.e. shallower energy curve slope) of
-idle state IDLE2 implies that after a suitable time, IDLE2 becomes more energy
-efficient.
-
-The time at which IDLE2 becomes more energy efficient than IDLE1 (and other
-shallower states in a system with multiple idle states) is defined
-IDLE2-min-residency and corresponds to the time when energy consumption of
-IDLE1 and IDLE2 states breaks even.
-
-The definitions provided in this section underpin the idle states
-properties specification that is the subject of the following sections.
-
-===========================================
-3 - idle-states node
-===========================================
-
-ARM processor idle states are defined within the idle-states node, which is
-a direct child of the cpus node [1] and provides a container where the
-processor idle states, defined as device tree nodes, are listed.
-
-- idle-states node
-
- Usage: Optional - On ARM systems, it is a container of processor idle
- states nodes. If the system does not provide CPU
- power management capabilities, or the processor just
- supports idle_standby, an idle-states node is not
- required.
-
- Description: idle-states node is a container node, where its
- subnodes describe the CPU idle states.
-
- Node name must be "idle-states".
-
- The idle-states node's parent node must be the cpus node.
-
- The idle-states node's child nodes can be:
-
- - one or more state nodes
-
- Any other configuration is considered invalid.
-
- An idle-states node defines the following properties:
-
- - entry-method
- Value type: <stringlist>
- Usage and definition depend on ARM architecture version.
- # On ARM v8 64-bit this property is required and must
- be:
- - "psci"
- # On ARM 32-bit systems this property is optional
-
-This assumes that the "enable-method" property is set to "psci" in the cpu
-node[6] that is responsible for setting up CPU idle management in the OS
-implementation.
-
-The nodes describing the idle states (state) can only be defined
-within the idle-states node, any other configuration is considered invalid
-and therefore must be ignored.
-
-===========================================
-4 - state node
-===========================================
-
-A state node represents an idle state description and must be defined as
-follows:
-
-- state node
-
- Description: must be child of the idle-states node
-
- The state node name shall follow standard device tree naming
- rules ([5], 2.2.1 "Node names"), in particular state nodes which
- are siblings within a single common parent must be given a unique name.
-
- The idle state entered by executing the wfi instruction (idle_standby
- SBSA,[3][4]) is considered standard on all ARM platforms and therefore
- must not be listed.
-
- With the definitions provided above, the following list represents
- the valid properties for a state node:
-
- - compatible
- Usage: Required
- Value type: <stringlist>
- Definition: Must be "arm,idle-state".
-
- - local-timer-stop
- Usage: See definition
- Value type: <none>
- Definition: if present the CPU local timer control logic is
- lost on state entry, otherwise it is retained.
-
- - entry-latency-us
- Usage: Required
- Value type: <prop-encoded-array>
- Definition: u32 value representing worst case latency in
- microseconds required to enter the idle state.
-
- - exit-latency-us
- Usage: Required
- Value type: <prop-encoded-array>
- Definition: u32 value representing worst case latency
- in microseconds required to exit the idle state.
- The exit-latency-us duration may be guaranteed
- only after entry-latency-us has passed.
-
- - min-residency-us
- Usage: Required
- Value type: <prop-encoded-array>
- Definition: u32 value representing minimum residency duration
- in microseconds, inclusive of preparation and
- entry, for this idle state to be considered
- worthwhile energy wise (refer to section 2 of
- this document for a complete description).
-
- - wakeup-latency-us:
- Usage: Optional
- Value type: <prop-encoded-array>
- Definition: u32 value representing maximum delay between the
- signaling of a wake-up event and the CPU being
- able to execute normal code again. If omitted,
- this is assumed to be equal to:
-
- entry-latency-us + exit-latency-us
-
- It is important to supply this value on systems
- where the duration of PREP phase (see diagram 1,
- section 2) is non-neglibigle.
- In such systems entry-latency-us + exit-latency-us
- will exceed wakeup-latency-us by this duration.
-
- - status:
- Usage: Optional
- Value type: <string>
- Definition: A standard device tree property [5] that indicates
- the operational status of an idle-state.
- If present, it shall be:
- "okay": to indicate that the idle state is
- operational.
- "disabled": to indicate that the idle state has
- been disabled in firmware so it is not
- operational.
- If the property is not present the idle-state must
- be considered operational.
-
- - idle-state-name:
- Usage: Optional
- Value type: <string>
- Definition: A string used as a descriptive name for the idle
- state.
-
- In addition to the properties listed above, a state node may require
- additional properties specific to the entry-method defined in the
- idle-states node. Please refer to the entry-method bindings
- documentation for properties definitions.
-
-===========================================
-4 - Examples
-===========================================
-
-Example 1 (ARM 64-bit, 16-cpu system, PSCI enable-method):
-
-cpus {
- #size-cells = <0>;
- #address-cells = <2>;
-
- CPU0: cpu@0 {
- device_type = "cpu";
- compatible = "arm,cortex-a57";
- reg = <0x0 0x0>;
- enable-method = "psci";
- cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
- &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
- };
-
- CPU1: cpu@1 {
- device_type = "cpu";
- compatible = "arm,cortex-a57";
- reg = <0x0 0x1>;
- enable-method = "psci";
- cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
- &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
- };
-
- CPU2: cpu@100 {
- device_type = "cpu";
- compatible = "arm,cortex-a57";
- reg = <0x0 0x100>;
- enable-method = "psci";
- cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
- &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
- };
-
- CPU3: cpu@101 {
- device_type = "cpu";
- compatible = "arm,cortex-a57";
- reg = <0x0 0x101>;
- enable-method = "psci";
- cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
- &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
- };
-
- CPU4: cpu@10000 {
- device_type = "cpu";
- compatible = "arm,cortex-a57";
- reg = <0x0 0x10000>;
- enable-method = "psci";
- cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
- &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
- };
-
- CPU5: cpu@10001 {
- device_type = "cpu";
- compatible = "arm,cortex-a57";
- reg = <0x0 0x10001>;
- enable-method = "psci";
- cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
- &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
- };
-
- CPU6: cpu@10100 {
- device_type = "cpu";
- compatible = "arm,cortex-a57";
- reg = <0x0 0x10100>;
- enable-method = "psci";
- cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
- &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
- };
-
- CPU7: cpu@10101 {
- device_type = "cpu";
- compatible = "arm,cortex-a57";
- reg = <0x0 0x10101>;
- enable-method = "psci";
- cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
- &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
- };
-
- CPU8: cpu@100000000 {
- device_type = "cpu";
- compatible = "arm,cortex-a53";
- reg = <0x1 0x0>;
- enable-method = "psci";
- cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
- &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
- };
-
- CPU9: cpu@100000001 {
- device_type = "cpu";
- compatible = "arm,cortex-a53";
- reg = <0x1 0x1>;
- enable-method = "psci";
- cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
- &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
- };
-
- CPU10: cpu@100000100 {
- device_type = "cpu";
- compatible = "arm,cortex-a53";
- reg = <0x1 0x100>;
- enable-method = "psci";
- cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
- &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
- };
-
- CPU11: cpu@100000101 {
- device_type = "cpu";
- compatible = "arm,cortex-a53";
- reg = <0x1 0x101>;
- enable-method = "psci";
- cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
- &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
- };
-
- CPU12: cpu@100010000 {
- device_type = "cpu";
- compatible = "arm,cortex-a53";
- reg = <0x1 0x10000>;
- enable-method = "psci";
- cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
- &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
- };
-
- CPU13: cpu@100010001 {
- device_type = "cpu";
- compatible = "arm,cortex-a53";
- reg = <0x1 0x10001>;
- enable-method = "psci";
- cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
- &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
- };
-
- CPU14: cpu@100010100 {
- device_type = "cpu";
- compatible = "arm,cortex-a53";
- reg = <0x1 0x10100>;
- enable-method = "psci";
- cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
- &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
- };
-
- CPU15: cpu@100010101 {
- device_type = "cpu";
- compatible = "arm,cortex-a53";
- reg = <0x1 0x10101>;
- enable-method = "psci";
- cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
- &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
- };
-
- idle-states {
- entry-method = "psci";
-
- CPU_RETENTION_0_0: cpu-retention-0-0 {
- compatible = "arm,idle-state";
- arm,psci-suspend-param = <0x0010000>;
- entry-latency-us = <20>;
- exit-latency-us = <40>;
- min-residency-us = <80>;
- };
-
- CLUSTER_RETENTION_0: cluster-retention-0 {
- compatible = "arm,idle-state";
- local-timer-stop;
- arm,psci-suspend-param = <0x1010000>;
- entry-latency-us = <50>;
- exit-latency-us = <100>;
- min-residency-us = <250>;
- wakeup-latency-us = <130>;
- };
-
- CPU_SLEEP_0_0: cpu-sleep-0-0 {
- compatible = "arm,idle-state";
- local-timer-stop;
- arm,psci-suspend-param = <0x0010000>;
- entry-latency-us = <250>;
- exit-latency-us = <500>;
- min-residency-us = <950>;
- };
-
- CLUSTER_SLEEP_0: cluster-sleep-0 {
- compatible = "arm,idle-state";
- local-timer-stop;
- arm,psci-suspend-param = <0x1010000>;
- entry-latency-us = <600>;
- exit-latency-us = <1100>;
- min-residency-us = <2700>;
- wakeup-latency-us = <1500>;
- };
-
- CPU_RETENTION_1_0: cpu-retention-1-0 {
- compatible = "arm,idle-state";
- arm,psci-suspend-param = <0x0010000>;
- entry-latency-us = <20>;
- exit-latency-us = <40>;
- min-residency-us = <90>;
- };
-
- CLUSTER_RETENTION_1: cluster-retention-1 {
- compatible = "arm,idle-state";
- local-timer-stop;
- arm,psci-suspend-param = <0x1010000>;
- entry-latency-us = <50>;
- exit-latency-us = <100>;
- min-residency-us = <270>;
- wakeup-latency-us = <100>;
- };
-
- CPU_SLEEP_1_0: cpu-sleep-1-0 {
- compatible = "arm,idle-state";
- local-timer-stop;
- arm,psci-suspend-param = <0x0010000>;
- entry-latency-us = <70>;
- exit-latency-us = <100>;
- min-residency-us = <300>;
- wakeup-latency-us = <150>;
- };
-
- CLUSTER_SLEEP_1: cluster-sleep-1 {
- compatible = "arm,idle-state";
- local-timer-stop;
- arm,psci-suspend-param = <0x1010000>;
- entry-latency-us = <500>;
- exit-latency-us = <1200>;
- min-residency-us = <3500>;
- wakeup-latency-us = <1300>;
- };
- };
-
-};
-
-Example 2 (ARM 32-bit, 8-cpu system, two clusters):
-
-cpus {
- #size-cells = <0>;
- #address-cells = <1>;
-
- CPU0: cpu@0 {
- device_type = "cpu";
- compatible = "arm,cortex-a15";
- reg = <0x0>;
- cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>;
- };
-
- CPU1: cpu@1 {
- device_type = "cpu";
- compatible = "arm,cortex-a15";
- reg = <0x1>;
- cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>;
- };
-
- CPU2: cpu@2 {
- device_type = "cpu";
- compatible = "arm,cortex-a15";
- reg = <0x2>;
- cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>;
- };
-
- CPU3: cpu@3 {
- device_type = "cpu";
- compatible = "arm,cortex-a15";
- reg = <0x3>;
- cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>;
- };
-
- CPU4: cpu@100 {
- device_type = "cpu";
- compatible = "arm,cortex-a7";
- reg = <0x100>;
- cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>;
- };
-
- CPU5: cpu@101 {
- device_type = "cpu";
- compatible = "arm,cortex-a7";
- reg = <0x101>;
- cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>;
- };
-
- CPU6: cpu@102 {
- device_type = "cpu";
- compatible = "arm,cortex-a7";
- reg = <0x102>;
- cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>;
- };
-
- CPU7: cpu@103 {
- device_type = "cpu";
- compatible = "arm,cortex-a7";
- reg = <0x103>;
- cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>;
- };
-
- idle-states {
- CPU_SLEEP_0_0: cpu-sleep-0-0 {
- compatible = "arm,idle-state";
- local-timer-stop;
- entry-latency-us = <200>;
- exit-latency-us = <100>;
- min-residency-us = <400>;
- wakeup-latency-us = <250>;
- };
-
- CLUSTER_SLEEP_0: cluster-sleep-0 {
- compatible = "arm,idle-state";
- local-timer-stop;
- entry-latency-us = <500>;
- exit-latency-us = <1500>;
- min-residency-us = <2500>;
- wakeup-latency-us = <1700>;
- };
-
- CPU_SLEEP_1_0: cpu-sleep-1-0 {
- compatible = "arm,idle-state";
- local-timer-stop;
- entry-latency-us = <300>;
- exit-latency-us = <500>;
- min-residency-us = <900>;
- wakeup-latency-us = <600>;
- };
-
- CLUSTER_SLEEP_1: cluster-sleep-1 {
- compatible = "arm,idle-state";
- local-timer-stop;
- entry-latency-us = <800>;
- exit-latency-us = <2000>;
- min-residency-us = <6500>;
- wakeup-latency-us = <2300>;
- };
- };
-
-};
-
-===========================================
-5 - References
-===========================================
-
-[1] ARM Linux Kernel documentation - CPUs bindings
- Documentation/devicetree/bindings/arm/cpus.yaml
-
-[2] ARM Linux Kernel documentation - PSCI bindings
- Documentation/devicetree/bindings/arm/psci.yaml
-
-[3] ARM Server Base System Architecture (SBSA)
- http://infocenter.arm.com/help/index.jsp
-
-[4] ARM Architecture Reference Manuals
- http://infocenter.arm.com/help/index.jsp
-
-[5] Devicetree Specification
- https://www.devicetree.org/specifications/
-
-[6] ARM Linux Kernel documentation - Booting AArch64 Linux
- Documentation/arm64/booting.rst