summaryrefslogtreecommitdiffstats
path: root/Documentation/driver-api/device-io.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/driver-api/device-io.rst')
-rw-r--r--Documentation/driver-api/device-io.rst201
1 files changed, 201 insertions, 0 deletions
diff --git a/Documentation/driver-api/device-io.rst b/Documentation/driver-api/device-io.rst
new file mode 100644
index 000000000000..b00b23903078
--- /dev/null
+++ b/Documentation/driver-api/device-io.rst
@@ -0,0 +1,201 @@
+.. Copyright 2001 Matthew Wilcox
+..
+.. This documentation is free software; you can redistribute
+.. it and/or modify it under the terms of the GNU General Public
+.. License as published by the Free Software Foundation; either
+.. version 2 of the License, or (at your option) any later
+.. version.
+
+===============================
+Bus-Independent Device Accesses
+===============================
+
+:Author: Matthew Wilcox
+:Author: Alan Cox
+
+Introduction
+============
+
+Linux provides an API which abstracts performing IO across all busses
+and devices, allowing device drivers to be written independently of bus
+type.
+
+Memory Mapped IO
+================
+
+Getting Access to the Device
+----------------------------
+
+The most widely supported form of IO is memory mapped IO. That is, a
+part of the CPU's address space is interpreted not as accesses to
+memory, but as accesses to a device. Some architectures define devices
+to be at a fixed address, but most have some method of discovering
+devices. The PCI bus walk is a good example of such a scheme. This
+document does not cover how to receive such an address, but assumes you
+are starting with one. Physical addresses are of type unsigned long.
+
+This address should not be used directly. Instead, to get an address
+suitable for passing to the accessor functions described below, you
+should call :c:func:`ioremap()`. An address suitable for accessing
+the device will be returned to you.
+
+After you've finished using the device (say, in your module's exit
+routine), call :c:func:`iounmap()` in order to return the address
+space to the kernel. Most architectures allocate new address space each
+time you call :c:func:`ioremap()`, and they can run out unless you
+call :c:func:`iounmap()`.
+
+Accessing the device
+--------------------
+
+The part of the interface most used by drivers is reading and writing
+memory-mapped registers on the device. Linux provides interfaces to read
+and write 8-bit, 16-bit, 32-bit and 64-bit quantities. Due to a
+historical accident, these are named byte, word, long and quad accesses.
+Both read and write accesses are supported; there is no prefetch support
+at this time.
+
+The functions are named readb(), readw(), readl(), readq(),
+readb_relaxed(), readw_relaxed(), readl_relaxed(), readq_relaxed(),
+writeb(), writew(), writel() and writeq().
+
+Some devices (such as framebuffers) would like to use larger transfers than
+8 bytes at a time. For these devices, the :c:func:`memcpy_toio()`,
+:c:func:`memcpy_fromio()` and :c:func:`memset_io()` functions are
+provided. Do not use memset or memcpy on IO addresses; they are not
+guaranteed to copy data in order.
+
+The read and write functions are defined to be ordered. That is the
+compiler is not permitted to reorder the I/O sequence. When the ordering
+can be compiler optimised, you can use __readb() and friends to
+indicate the relaxed ordering. Use this with care.
+
+While the basic functions are defined to be synchronous with respect to
+each other and ordered with respect to each other the busses the devices
+sit on may themselves have asynchronicity. In particular many authors
+are burned by the fact that PCI bus writes are posted asynchronously. A
+driver author must issue a read from the same device to ensure that
+writes have occurred in the specific cases the author cares. This kind
+of property cannot be hidden from driver writers in the API. In some
+cases, the read used to flush the device may be expected to fail (if the
+card is resetting, for example). In that case, the read should be done
+from config space, which is guaranteed to soft-fail if the card doesn't
+respond.
+
+The following is an example of flushing a write to a device when the
+driver would like to ensure the write's effects are visible prior to
+continuing execution::
+
+ static inline void
+ qla1280_disable_intrs(struct scsi_qla_host *ha)
+ {
+ struct device_reg *reg;
+
+ reg = ha->iobase;
+ /* disable risc and host interrupts */
+ WRT_REG_WORD(&reg->ictrl, 0);
+ /*
+ * The following read will ensure that the above write
+ * has been received by the device before we return from this
+ * function.
+ */
+ RD_REG_WORD(&reg->ictrl);
+ ha->flags.ints_enabled = 0;
+ }
+
+In addition to write posting, on some large multiprocessing systems
+(e.g. SGI Challenge, Origin and Altix machines) posted writes won't be
+strongly ordered coming from different CPUs. Thus it's important to
+properly protect parts of your driver that do memory-mapped writes with
+locks and use the :c:func:`mmiowb()` to make sure they arrive in the
+order intended. Issuing a regular readX() will also ensure write ordering,
+but should only be used when the
+driver has to be sure that the write has actually arrived at the device
+(not that it's simply ordered with respect to other writes), since a
+full readX() is a relatively expensive operation.
+
+Generally, one should use :c:func:`mmiowb()` prior to releasing a spinlock
+that protects regions using :c:func:`writeb()` or similar functions that
+aren't surrounded by readb() calls, which will ensure ordering
+and flushing. The following pseudocode illustrates what might occur if
+write ordering isn't guaranteed via :c:func:`mmiowb()` or one of the
+readX() functions::
+
+ CPU A: spin_lock_irqsave(&dev_lock, flags)
+ CPU A: ...
+ CPU A: writel(newval, ring_ptr);
+ CPU A: spin_unlock_irqrestore(&dev_lock, flags)
+ ...
+ CPU B: spin_lock_irqsave(&dev_lock, flags)
+ CPU B: writel(newval2, ring_ptr);
+ CPU B: ...
+ CPU B: spin_unlock_irqrestore(&dev_lock, flags)
+
+In the case above, newval2 could be written to ring_ptr before newval.
+Fixing it is easy though::
+
+ CPU A: spin_lock_irqsave(&dev_lock, flags)
+ CPU A: ...
+ CPU A: writel(newval, ring_ptr);
+ CPU A: mmiowb(); /* ensure no other writes beat us to the device */
+ CPU A: spin_unlock_irqrestore(&dev_lock, flags)
+ ...
+ CPU B: spin_lock_irqsave(&dev_lock, flags)
+ CPU B: writel(newval2, ring_ptr);
+ CPU B: ...
+ CPU B: mmiowb();
+ CPU B: spin_unlock_irqrestore(&dev_lock, flags)
+
+See tg3.c for a real world example of how to use :c:func:`mmiowb()`
+
+PCI ordering rules also guarantee that PIO read responses arrive after any
+outstanding DMA writes from that bus, since for some devices the result of
+a readb() call may signal to the driver that a DMA transaction is
+complete. In many cases, however, the driver may want to indicate that the
+next readb() call has no relation to any previous DMA writes
+performed by the device. The driver can use readb_relaxed() for
+these cases, although only some platforms will honor the relaxed
+semantics. Using the relaxed read functions will provide significant
+performance benefits on platforms that support it. The qla2xxx driver
+provides examples of how to use readX_relaxed(). In many cases, a majority
+of the driver's readX() calls can safely be converted to readX_relaxed()
+calls, since only a few will indicate or depend on DMA completion.
+
+Port Space Accesses
+===================
+
+Port Space Explained
+--------------------
+
+Another form of IO commonly supported is Port Space. This is a range of
+addresses separate to the normal memory address space. Access to these
+addresses is generally not as fast as accesses to the memory mapped
+addresses, and it also has a potentially smaller address space.
+
+Unlike memory mapped IO, no preparation is required to access port
+space.
+
+Accessing Port Space
+--------------------
+
+Accesses to this space are provided through a set of functions which
+allow 8-bit, 16-bit and 32-bit accesses; also known as byte, word and
+long. These functions are :c:func:`inb()`, :c:func:`inw()`,
+:c:func:`inl()`, :c:func:`outb()`, :c:func:`outw()` and
+:c:func:`outl()`.
+
+Some variants are provided for these functions. Some devices require
+that accesses to their ports are slowed down. This functionality is
+provided by appending a ``_p`` to the end of the function.
+There are also equivalents to memcpy. The :c:func:`ins()` and
+:c:func:`outs()` functions copy bytes, words or longs to the given
+port.
+
+Public Functions Provided
+=========================
+
+.. kernel-doc:: arch/x86/include/asm/io.h
+ :internal:
+
+.. kernel-doc:: lib/pci_iomap.c
+ :export: