diff options
Diffstat (limited to 'Documentation/fb/framebuffer.txt')
-rw-r--r-- | Documentation/fb/framebuffer.txt | 343 |
1 files changed, 0 insertions, 343 deletions
diff --git a/Documentation/fb/framebuffer.txt b/Documentation/fb/framebuffer.txt deleted file mode 100644 index 58c5ae2e9f59..000000000000 --- a/Documentation/fb/framebuffer.txt +++ /dev/null @@ -1,343 +0,0 @@ - The Frame Buffer Device - ----------------------- - -Maintained by Geert Uytterhoeven <geert@linux-m68k.org> -Last revised: May 10, 2001 - - -0. Introduction ---------------- - -The frame buffer device provides an abstraction for the graphics hardware. It -represents the frame buffer of some video hardware and allows application -software to access the graphics hardware through a well-defined interface, so -the software doesn't need to know anything about the low-level (hardware -register) stuff. - -The device is accessed through special device nodes, usually located in the -/dev directory, i.e. /dev/fb*. - - -1. User's View of /dev/fb* --------------------------- - -From the user's point of view, the frame buffer device looks just like any -other device in /dev. It's a character device using major 29; the minor -specifies the frame buffer number. - -By convention, the following device nodes are used (numbers indicate the device -minor numbers): - - 0 = /dev/fb0 First frame buffer - 1 = /dev/fb1 Second frame buffer - ... - 31 = /dev/fb31 32nd frame buffer - -For backwards compatibility, you may want to create the following symbolic -links: - - /dev/fb0current -> fb0 - /dev/fb1current -> fb1 - -and so on... - -The frame buffer devices are also `normal' memory devices, this means, you can -read and write their contents. You can, for example, make a screen snapshot by - - cp /dev/fb0 myfile - -There also can be more than one frame buffer at a time, e.g. if you have a -graphics card in addition to the built-in hardware. The corresponding frame -buffer devices (/dev/fb0 and /dev/fb1 etc.) work independently. - -Application software that uses the frame buffer device (e.g. the X server) will -use /dev/fb0 by default (older software uses /dev/fb0current). You can specify -an alternative frame buffer device by setting the environment variable -$FRAMEBUFFER to the path name of a frame buffer device, e.g. (for sh/bash -users): - - export FRAMEBUFFER=/dev/fb1 - -or (for csh users): - - setenv FRAMEBUFFER /dev/fb1 - -After this the X server will use the second frame buffer. - - -2. Programmer's View of /dev/fb* --------------------------------- - -As you already know, a frame buffer device is a memory device like /dev/mem and -it has the same features. You can read it, write it, seek to some location in -it and mmap() it (the main usage). The difference is just that the memory that -appears in the special file is not the whole memory, but the frame buffer of -some video hardware. - -/dev/fb* also allows several ioctls on it, by which lots of information about -the hardware can be queried and set. The color map handling works via ioctls, -too. Look into <linux/fb.h> for more information on what ioctls exist and on -which data structures they work. Here's just a brief overview: - - - You can request unchangeable information about the hardware, like name, - organization of the screen memory (planes, packed pixels, ...) and address - and length of the screen memory. - - - You can request and change variable information about the hardware, like - visible and virtual geometry, depth, color map format, timing, and so on. - If you try to change that information, the driver maybe will round up some - values to meet the hardware's capabilities (or return EINVAL if that isn't - possible). - - - You can get and set parts of the color map. Communication is done with 16 - bits per color part (red, green, blue, transparency) to support all - existing hardware. The driver does all the computations needed to apply - it to the hardware (round it down to less bits, maybe throw away - transparency). - -All this hardware abstraction makes the implementation of application programs -easier and more portable. E.g. the X server works completely on /dev/fb* and -thus doesn't need to know, for example, how the color registers of the concrete -hardware are organized. XF68_FBDev is a general X server for bitmapped, -unaccelerated video hardware. The only thing that has to be built into -application programs is the screen organization (bitplanes or chunky pixels -etc.), because it works on the frame buffer image data directly. - -For the future it is planned that frame buffer drivers for graphics cards and -the like can be implemented as kernel modules that are loaded at runtime. Such -a driver just has to call register_framebuffer() and supply some functions. -Writing and distributing such drivers independently from the kernel will save -much trouble... - - -3. Frame Buffer Resolution Maintenance --------------------------------------- - -Frame buffer resolutions are maintained using the utility `fbset'. It can -change the video mode properties of a frame buffer device. Its main usage is -to change the current video mode, e.g. during boot up in one of your /etc/rc.* -or /etc/init.d/* files. - -Fbset uses a video mode database stored in a configuration file, so you can -easily add your own modes and refer to them with a simple identifier. - - -4. The X Server ---------------- - -The X server (XF68_FBDev) is the most notable application program for the frame -buffer device. Starting with XFree86 release 3.2, the X server is part of -XFree86 and has 2 modes: - - - If the `Display' subsection for the `fbdev' driver in the /etc/XF86Config - file contains a - - Modes "default" - - line, the X server will use the scheme discussed above, i.e. it will start - up in the resolution determined by /dev/fb0 (or $FRAMEBUFFER, if set). You - still have to specify the color depth (using the Depth keyword) and virtual - resolution (using the Virtual keyword) though. This is the default for the - configuration file supplied with XFree86. It's the most simple - configuration, but it has some limitations. - - - Therefore it's also possible to specify resolutions in the /etc/XF86Config - file. This allows for on-the-fly resolution switching while retaining the - same virtual desktop size. The frame buffer device that's used is still - /dev/fb0current (or $FRAMEBUFFER), but the available resolutions are - defined by /etc/XF86Config now. The disadvantage is that you have to - specify the timings in a different format (but `fbset -x' may help). - -To tune a video mode, you can use fbset or xvidtune. Note that xvidtune doesn't -work 100% with XF68_FBDev: the reported clock values are always incorrect. - - -5. Video Mode Timings ---------------------- - -A monitor draws an image on the screen by using an electron beam (3 electron -beams for color models, 1 electron beam for monochrome monitors). The front of -the screen is covered by a pattern of colored phosphors (pixels). If a phosphor -is hit by an electron, it emits a photon and thus becomes visible. - -The electron beam draws horizontal lines (scanlines) from left to right, and -from the top to the bottom of the screen. By modifying the intensity of the -electron beam, pixels with various colors and intensities can be shown. - -After each scanline the electron beam has to move back to the left side of the -screen and to the next line: this is called the horizontal retrace. After the -whole screen (frame) was painted, the beam moves back to the upper left corner: -this is called the vertical retrace. During both the horizontal and vertical -retrace, the electron beam is turned off (blanked). - -The speed at which the electron beam paints the pixels is determined by the -dotclock in the graphics board. For a dotclock of e.g. 28.37516 MHz (millions -of cycles per second), each pixel is 35242 ps (picoseconds) long: - - 1/(28.37516E6 Hz) = 35.242E-9 s - -If the screen resolution is 640x480, it will take - - 640*35.242E-9 s = 22.555E-6 s - -to paint the 640 (xres) pixels on one scanline. But the horizontal retrace -also takes time (e.g. 272 `pixels'), so a full scanline takes - - (640+272)*35.242E-9 s = 32.141E-6 s - -We'll say that the horizontal scanrate is about 31 kHz: - - 1/(32.141E-6 s) = 31.113E3 Hz - -A full screen counts 480 (yres) lines, but we have to consider the vertical -retrace too (e.g. 49 `lines'). So a full screen will take - - (480+49)*32.141E-6 s = 17.002E-3 s - -The vertical scanrate is about 59 Hz: - - 1/(17.002E-3 s) = 58.815 Hz - -This means the screen data is refreshed about 59 times per second. To have a -stable picture without visible flicker, VESA recommends a vertical scanrate of -at least 72 Hz. But the perceived flicker is very human dependent: some people -can use 50 Hz without any trouble, while I'll notice if it's less than 80 Hz. - -Since the monitor doesn't know when a new scanline starts, the graphics board -will supply a synchronization pulse (horizontal sync or hsync) for each -scanline. Similarly it supplies a synchronization pulse (vertical sync or -vsync) for each new frame. The position of the image on the screen is -influenced by the moments at which the synchronization pulses occur. - -The following picture summarizes all timings. The horizontal retrace time is -the sum of the left margin, the right margin and the hsync length, while the -vertical retrace time is the sum of the upper margin, the lower margin and the -vsync length. - - +----------+---------------------------------------------+----------+-------+ - | | ↑ | | | - | | |upper_margin | | | - | | ↓ | | | - +----------###############################################----------+-------+ - | # ↑ # | | - | # | # | | - | # | # | | - | # | # | | - | left # | # right | hsync | - | margin # | xres # margin | len | - |<-------->#<---------------+--------------------------->#<-------->|<----->| - | # | # | | - | # | # | | - | # | # | | - | # |yres # | | - | # | # | | - | # | # | | - | # | # | | - | # | # | | - | # | # | | - | # | # | | - | # | # | | - | # | # | | - | # ↓ # | | - +----------###############################################----------+-------+ - | | ↑ | | | - | | |lower_margin | | | - | | ↓ | | | - +----------+---------------------------------------------+----------+-------+ - | | ↑ | | | - | | |vsync_len | | | - | | ↓ | | | - +----------+---------------------------------------------+----------+-------+ - -The frame buffer device expects all horizontal timings in number of dotclocks -(in picoseconds, 1E-12 s), and vertical timings in number of scanlines. - - -6. Converting XFree86 timing values info frame buffer device timings --------------------------------------------------------------------- - -An XFree86 mode line consists of the following fields: - "800x600" 50 800 856 976 1040 600 637 643 666 - < name > DCF HR SH1 SH2 HFL VR SV1 SV2 VFL - -The frame buffer device uses the following fields: - - - pixclock: pixel clock in ps (pico seconds) - - left_margin: time from sync to picture - - right_margin: time from picture to sync - - upper_margin: time from sync to picture - - lower_margin: time from picture to sync - - hsync_len: length of horizontal sync - - vsync_len: length of vertical sync - -1) Pixelclock: - xfree: in MHz - fb: in picoseconds (ps) - - pixclock = 1000000 / DCF - -2) horizontal timings: - left_margin = HFL - SH2 - right_margin = SH1 - HR - hsync_len = SH2 - SH1 - -3) vertical timings: - upper_margin = VFL - SV2 - lower_margin = SV1 - VR - vsync_len = SV2 - SV1 - -Good examples for VESA timings can be found in the XFree86 source tree, -under "xc/programs/Xserver/hw/xfree86/doc/modeDB.txt". - - -7. References -------------- - -For more specific information about the frame buffer device and its -applications, please refer to the Linux-fbdev website: - - http://linux-fbdev.sourceforge.net/ - -and to the following documentation: - - - The manual pages for fbset: fbset(8), fb.modes(5) - - The manual pages for XFree86: XF68_FBDev(1), XF86Config(4/5) - - The mighty kernel sources: - o linux/drivers/video/ - o linux/include/linux/fb.h - o linux/include/video/ - - - -8. Mailing list ---------------- - -There is a frame buffer device related mailing list at kernel.org: -linux-fbdev@vger.kernel.org. - -Point your web browser to http://sourceforge.net/projects/linux-fbdev/ for -subscription information and archive browsing. - - -9. Downloading --------------- - -All necessary files can be found at - - ftp://ftp.uni-erlangen.de/pub/Linux/LOCAL/680x0/ - -and on its mirrors. - -The latest version of fbset can be found at - - http://www.linux-fbdev.org/ - - -10. Credits ----------- - -This readme was written by Geert Uytterhoeven, partly based on the original -`X-framebuffer.README' by Roman Hodek and Martin Schaller. Section 6 was -provided by Frank Neumann. - -The frame buffer device abstraction was designed by Martin Schaller. |