summaryrefslogtreecommitdiffstats
path: root/Documentation/hid
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/hid')
-rw-r--r--Documentation/hid/hiddev.txt205
-rw-r--r--Documentation/hid/hidraw.txt119
2 files changed, 324 insertions, 0 deletions
diff --git a/Documentation/hid/hiddev.txt b/Documentation/hid/hiddev.txt
new file mode 100644
index 000000000000..6e8c9f1d2f22
--- /dev/null
+++ b/Documentation/hid/hiddev.txt
@@ -0,0 +1,205 @@
+Care and feeding of your Human Interface Devices
+
+INTRODUCTION
+
+In addition to the normal input type HID devices, USB also uses the
+human interface device protocols for things that are not really human
+interfaces, but have similar sorts of communication needs. The two big
+examples for this are power devices (especially uninterruptable power
+supplies) and monitor control on higher end monitors.
+
+To support these disparate requirements, the Linux USB system provides
+HID events to two separate interfaces:
+* the input subsystem, which converts HID events into normal input
+device interfaces (such as keyboard, mouse and joystick) and a
+normalised event interface - see Documentation/input/input.txt
+* the hiddev interface, which provides fairly raw HID events
+
+The data flow for a HID event produced by a device is something like
+the following :
+
+ usb.c ---> hid-core.c ----> hid-input.c ----> [keyboard/mouse/joystick/event]
+ |
+ |
+ --> hiddev.c ----> POWER / MONITOR CONTROL
+
+In addition, other subsystems (apart from USB) can potentially feed
+events into the input subsystem, but these have no effect on the hid
+device interface.
+
+USING THE HID DEVICE INTERFACE
+
+The hiddev interface is a char interface using the normal USB major,
+with the minor numbers starting at 96 and finishing at 111. Therefore,
+you need the following commands:
+mknod /dev/usb/hiddev0 c 180 96
+mknod /dev/usb/hiddev1 c 180 97
+mknod /dev/usb/hiddev2 c 180 98
+mknod /dev/usb/hiddev3 c 180 99
+mknod /dev/usb/hiddev4 c 180 100
+mknod /dev/usb/hiddev5 c 180 101
+mknod /dev/usb/hiddev6 c 180 102
+mknod /dev/usb/hiddev7 c 180 103
+mknod /dev/usb/hiddev8 c 180 104
+mknod /dev/usb/hiddev9 c 180 105
+mknod /dev/usb/hiddev10 c 180 106
+mknod /dev/usb/hiddev11 c 180 107
+mknod /dev/usb/hiddev12 c 180 108
+mknod /dev/usb/hiddev13 c 180 109
+mknod /dev/usb/hiddev14 c 180 110
+mknod /dev/usb/hiddev15 c 180 111
+
+So you point your hiddev compliant user-space program at the correct
+interface for your device, and it all just works.
+
+Assuming that you have a hiddev compliant user-space program, of
+course. If you need to write one, read on.
+
+
+THE HIDDEV API
+This description should be read in conjunction with the HID
+specification, freely available from http://www.usb.org, and
+conveniently linked of http://www.linux-usb.org.
+
+The hiddev API uses a read() interface, and a set of ioctl() calls.
+
+HID devices exchange data with the host computer using data
+bundles called "reports". Each report is divided into "fields",
+each of which can have one or more "usages". In the hid-core,
+each one of these usages has a single signed 32 bit value.
+
+read():
+This is the event interface. When the HID device's state changes,
+it performs an interrupt transfer containing a report which contains
+the changed value. The hid-core.c module parses the report, and
+returns to hiddev.c the individual usages that have changed within
+the report. In its basic mode, the hiddev will make these individual
+usage changes available to the reader using a struct hiddev_event:
+
+ struct hiddev_event {
+ unsigned hid;
+ signed int value;
+ };
+
+containing the HID usage identifier for the status that changed, and
+the value that it was changed to. Note that the structure is defined
+within <linux/hiddev.h>, along with some other useful #defines and
+structures. The HID usage identifier is a composite of the HID usage
+page shifted to the 16 high order bits ORed with the usage code. The
+behavior of the read() function can be modified using the HIDIOCSFLAG
+ioctl() described below.
+
+
+ioctl():
+This is the control interface. There are a number of controls:
+
+HIDIOCGVERSION - int (read)
+Gets the version code out of the hiddev driver.
+
+HIDIOCAPPLICATION - (none)
+This ioctl call returns the HID application usage associated with the
+hid device. The third argument to ioctl() specifies which application
+index to get. This is useful when the device has more than one
+application collection. If the index is invalid (greater or equal to
+the number of application collections this device has) the ioctl
+returns -1. You can find out beforehand how many application
+collections the device has from the num_applications field from the
+hiddev_devinfo structure.
+
+HIDIOCGCOLLECTIONINFO - struct hiddev_collection_info (read/write)
+This returns a superset of the information above, providing not only
+application collections, but all the collections the device has. It
+also returns the level the collection lives in the hierarchy.
+The user passes in a hiddev_collection_info struct with the index
+field set to the index that should be returned. The ioctl fills in
+the other fields. If the index is larger than the last collection
+index, the ioctl returns -1 and sets errno to -EINVAL.
+
+HIDIOCGDEVINFO - struct hiddev_devinfo (read)
+Gets a hiddev_devinfo structure which describes the device.
+
+HIDIOCGSTRING - struct hiddev_string_descriptor (read/write)
+Gets a string descriptor from the device. The caller must fill in the
+"index" field to indicate which descriptor should be returned.
+
+HIDIOCINITREPORT - (none)
+Instructs the kernel to retrieve all input and feature report values
+from the device. At this point, all the usage structures will contain
+current values for the device, and will maintain it as the device
+changes. Note that the use of this ioctl is unnecessary in general,
+since later kernels automatically initialize the reports from the
+device at attach time.
+
+HIDIOCGNAME - string (variable length)
+Gets the device name
+
+HIDIOCGREPORT - struct hiddev_report_info (write)
+Instructs the kernel to get a feature or input report from the device,
+in order to selectively update the usage structures (in contrast to
+INITREPORT).
+
+HIDIOCSREPORT - struct hiddev_report_info (write)
+Instructs the kernel to send a report to the device. This report can
+be filled in by the user through HIDIOCSUSAGE calls (below) to fill in
+individual usage values in the report before sending the report in full
+to the device.
+
+HIDIOCGREPORTINFO - struct hiddev_report_info (read/write)
+Fills in a hiddev_report_info structure for the user. The report is
+looked up by type (input, output or feature) and id, so these fields
+must be filled in by the user. The ID can be absolute -- the actual
+report id as reported by the device -- or relative --
+HID_REPORT_ID_FIRST for the first report, and (HID_REPORT_ID_NEXT |
+report_id) for the next report after report_id. Without a-priori
+information about report ids, the right way to use this ioctl is to
+use the relative IDs above to enumerate the valid IDs. The ioctl
+returns non-zero when there is no more next ID. The real report ID is
+filled into the returned hiddev_report_info structure.
+
+HIDIOCGFIELDINFO - struct hiddev_field_info (read/write)
+Returns the field information associated with a report in a
+hiddev_field_info structure. The user must fill in report_id and
+report_type in this structure, as above. The field_index should also
+be filled in, which should be a number from 0 and maxfield-1, as
+returned from a previous HIDIOCGREPORTINFO call.
+
+HIDIOCGUCODE - struct hiddev_usage_ref (read/write)
+Returns the usage_code in a hiddev_usage_ref structure, given that
+given its report type, report id, field index, and index within the
+field have already been filled into the structure.
+
+HIDIOCGUSAGE - struct hiddev_usage_ref (read/write)
+Returns the value of a usage in a hiddev_usage_ref structure. The
+usage to be retrieved can be specified as above, or the user can
+choose to fill in the report_type field and specify the report_id as
+HID_REPORT_ID_UNKNOWN. In this case, the hiddev_usage_ref will be
+filled in with the report and field information associated with this
+usage if it is found.
+
+HIDIOCSUSAGE - struct hiddev_usage_ref (write)
+Sets the value of a usage in an output report. The user fills in
+the hiddev_usage_ref structure as above, but additionally fills in
+the value field.
+
+HIDIOGCOLLECTIONINDEX - struct hiddev_usage_ref (write)
+Returns the collection index associated with this usage. This
+indicates where in the collection hierarchy this usage sits.
+
+HIDIOCGFLAG - int (read)
+HIDIOCSFLAG - int (write)
+These operations respectively inspect and replace the mode flags
+that influence the read() call above. The flags are as follows:
+
+ HIDDEV_FLAG_UREF - read() calls will now return
+ struct hiddev_usage_ref instead of struct hiddev_event.
+ This is a larger structure, but in situations where the
+ device has more than one usage in its reports with the
+ same usage code, this mode serves to resolve such
+ ambiguity.
+
+ HIDDEV_FLAG_REPORT - This flag can only be used in conjunction
+ with HIDDEV_FLAG_UREF. With this flag set, when the device
+ sends a report, a struct hiddev_usage_ref will be returned
+ to read() filled in with the report_type and report_id, but
+ with field_index set to FIELD_INDEX_NONE. This serves as
+ additional notification when the device has sent a report.
diff --git a/Documentation/hid/hidraw.txt b/Documentation/hid/hidraw.txt
new file mode 100644
index 000000000000..029e6cb9a7e8
--- /dev/null
+++ b/Documentation/hid/hidraw.txt
@@ -0,0 +1,119 @@
+ HIDRAW - Raw Access to USB and Bluetooth Human Interface Devices
+ ==================================================================
+
+The hidraw driver provides a raw interface to USB and Bluetooth Human
+Interface Devices (HIDs). It differs from hiddev in that reports sent and
+received are not parsed by the HID parser, but are sent to and received from
+the device unmodified.
+
+Hidraw should be used if the userspace application knows exactly how to
+communicate with the hardware device, and is able to construct the HID
+reports manually. This is often the case when making userspace drivers for
+custom HID devices.
+
+Hidraw is also useful for communicating with non-conformant HID devices
+which send and receive data in a way that is inconsistent with their report
+descriptors. Because hiddev parses reports which are sent and received
+through it, checking them against the device's report descriptor, such
+communication with these non-conformant devices is impossible using hiddev.
+Hidraw is the only alternative, short of writing a custom kernel driver, for
+these non-conformant devices.
+
+A benefit of hidraw is that its use by userspace applications is independent
+of the underlying hardware type. Currently, Hidraw is implemented for USB
+and Bluetooth. In the future, as new hardware bus types are developed which
+use the HID specification, hidraw will be expanded to add support for these
+new bus types.
+
+Hidraw uses a dynamic major number, meaning that udev should be relied on to
+create hidraw device nodes. Udev will typically create the device nodes
+directly under /dev (eg: /dev/hidraw0). As this location is distribution-
+and udev rule-dependent, applications should use libudev to locate hidraw
+devices attached to the system. There is a tutorial on libudev with a
+working example at:
+ http://www.signal11.us/oss/udev/
+
+The HIDRAW API
+---------------
+
+read()
+-------
+read() will read a queued report received from the HID device. On USB
+devices, the reports read using read() are the reports sent from the device
+on the INTERRUPT IN endpoint. By default, read() will block until there is
+a report available to be read. read() can be made non-blocking, by passing
+the O_NONBLOCK flag to open(), or by setting the O_NONBLOCK flag using
+fcntl().
+
+On a device which uses numbered reports, the first byte of the returned data
+will be the report number; the report data follows, beginning in the second
+byte. For devices which do not use numbered reports, the report data
+will begin at the first byte.
+
+write()
+--------
+The write() function will write a report to the device. For USB devices, if
+the device has an INTERRUPT OUT endpoint, the report will be sent on that
+endpoint. If it does not, the report will be sent over the control endpoint,
+using a SET_REPORT transfer.
+
+The first byte of the buffer passed to write() should be set to the report
+number. If the device does not use numbered reports, the first byte should
+be set to 0. The report data itself should begin at the second byte.
+
+ioctl()
+--------
+Hidraw supports the following ioctls:
+
+HIDIOCGRDESCSIZE: Get Report Descriptor Size
+This ioctl will get the size of the device's report descriptor.
+
+HIDIOCGRDESC: Get Report Descriptor
+This ioctl returns the device's report descriptor using a
+hidraw_report_descriptor struct. Make sure to set the size field of the
+hidraw_report_descriptor struct to the size returned from HIDIOCGRDESCSIZE.
+
+HIDIOCGRAWINFO: Get Raw Info
+This ioctl will return a hidraw_devinfo struct containing the bus type, the
+vendor ID (VID), and product ID (PID) of the device. The bus type can be one
+of:
+ BUS_USB
+ BUS_HIL
+ BUS_BLUETOOTH
+ BUS_VIRTUAL
+which are defined in linux/input.h.
+
+HIDIOCGRAWNAME(len): Get Raw Name
+This ioctl returns a string containing the vendor and product strings of
+the device. The returned string is Unicode, UTF-8 encoded.
+
+HIDIOCGRAWPHYS(len): Get Physical Address
+This ioctl returns a string representing the physical address of the device.
+For USB devices, the string contains the physical path to the device (the
+USB controller, hubs, ports, etc). For Bluetooth devices, the string
+contains the hardware (MAC) address of the device.
+
+HIDIOCSFEATURE(len): Send a Feature Report
+This ioctl will send a feature report to the device. Per the HID
+specification, feature reports are always sent using the control endpoint.
+Set the first byte of the supplied buffer to the report number. For devices
+which do not use numbered reports, set the first byte to 0. The report data
+begins in the second byte. Make sure to set len accordingly, to one more
+than the length of the report (to account for the report number).
+
+HIDIOCGFEATURE(len): Get a Feature Report
+This ioctl will request a feature report from the device using the control
+endpoint. The first byte of the supplied buffer should be set to the report
+number of the requested report. For devices which do not use numbered
+reports, set the first byte to 0. The report will be returned starting at
+the first byte of the buffer (ie: the report number is not returned).
+
+Example
+---------
+In samples/, find hid-example.c, which shows examples of read(), write(),
+and all the ioctls for hidraw. The code may be used by anyone for any
+purpose, and can serve as a starting point for developing applications using
+hidraw.
+
+Document by:
+ Alan Ott <alan@signal11.us>, Signal 11 Software