diff options
Diffstat (limited to 'Documentation/networking')
-rw-r--r-- | Documentation/networking/3c509.txt | 2 | ||||
-rw-r--r-- | Documentation/networking/README.ipw2100 | 3 | ||||
-rw-r--r-- | Documentation/networking/README.ipw2200 | 4 | ||||
-rw-r--r-- | Documentation/networking/README.sb1000 | 4 | ||||
-rw-r--r-- | Documentation/networking/arcnet.txt | 4 | ||||
-rw-r--r-- | Documentation/networking/bonding.txt | 86 | ||||
-rw-r--r-- | Documentation/networking/caif/spi_porting.txt | 208 | ||||
-rw-r--r-- | Documentation/networking/decnet.txt | 2 | ||||
-rw-r--r-- | Documentation/networking/fore200e.txt | 2 | ||||
-rw-r--r-- | Documentation/networking/ip-sysctl.txt | 2 | ||||
-rw-r--r-- | Documentation/networking/ipddp.txt | 5 | ||||
-rw-r--r-- | Documentation/networking/iphase.txt | 2 | ||||
-rw-r--r-- | Documentation/networking/packet_mmap.txt | 30 | ||||
-rw-r--r-- | Documentation/networking/pktgen.txt | 5 | ||||
-rw-r--r-- | Documentation/networking/ray_cs.txt | 4 | ||||
-rw-r--r-- | Documentation/networking/s2io.txt | 3 | ||||
-rw-r--r-- | Documentation/networking/tlan.txt | 4 | ||||
-rw-r--r-- | Documentation/networking/udplite.txt | 13 | ||||
-rw-r--r-- | Documentation/networking/wavelan.txt | 3 |
19 files changed, 349 insertions, 37 deletions
diff --git a/Documentation/networking/3c509.txt b/Documentation/networking/3c509.txt index 3c45d5dcd63b..dcc9eaf59395 100644 --- a/Documentation/networking/3c509.txt +++ b/Documentation/networking/3c509.txt @@ -31,7 +31,7 @@ models: Large portions of this documentation were heavily borrowed from the guide written the original author of the 3c509 driver, Donald Becker. The master copy of that document, which contains notes on older versions of the driver, -currently resides on Scyld web server: http://www.scyld.com/network/3c509.html. +currently resides on Scyld web server: http://www.scyld.com/. (1) Special Driver Features diff --git a/Documentation/networking/README.ipw2100 b/Documentation/networking/README.ipw2100 index f3fcaa41f774..6f85e1d06031 100644 --- a/Documentation/networking/README.ipw2100 +++ b/Documentation/networking/README.ipw2100 @@ -72,8 +72,7 @@ such, if you are interested in deploying or shipping a driver as part of solution intended to be used for purposes other than development, please obtain a tested driver from Intel Customer Support at: -http://support.intel.com/support/notebook/sb/CS-006408.htm - +http://www.intel.com/support/wireless/sb/CS-006408.htm 1. Introduction ----------------------------------------------- diff --git a/Documentation/networking/README.ipw2200 b/Documentation/networking/README.ipw2200 index 80c728522c4c..616a8e540b0b 100644 --- a/Documentation/networking/README.ipw2200 +++ b/Documentation/networking/README.ipw2200 @@ -85,7 +85,7 @@ such, if you are interested in deploying or shipping a driver as part of solution intended to be used for purposes other than development, please obtain a tested driver from Intel Customer Support at: -http://support.intel.com/support/notebook/sb/CS-006408.htm +http://support.intel.com 1. Introduction @@ -171,7 +171,7 @@ Where the supported parameter are: led Can be used to turn on experimental LED code. - 0 = Off, 1 = On. Default is 0. + 0 = Off, 1 = On. Default is 1. mode Can be used to set the default mode of the adapter. diff --git a/Documentation/networking/README.sb1000 b/Documentation/networking/README.sb1000 index f82d42584e98..f92c2aac56a9 100644 --- a/Documentation/networking/README.sb1000 +++ b/Documentation/networking/README.sb1000 @@ -27,8 +27,8 @@ cable modem easy. in Franco's original source code distribution .tar.gz file. Support for the sb1000 driver can be found at: - http://home.adelphia.net/~siglercm/sb1000.html - http://linuxpower.cx/~cable/ + http://web.archive.org/web/*/http://home.adelphia.net/~siglercm/sb1000.html + http://web.archive.org/web/*/http://linuxpower.cx/~cable/ along with these utilities. diff --git a/Documentation/networking/arcnet.txt b/Documentation/networking/arcnet.txt index 796012540386..9ff579502151 100644 --- a/Documentation/networking/arcnet.txt +++ b/Documentation/networking/arcnet.txt @@ -68,7 +68,7 @@ REAL NAME" to listserv@tichy.ch.uj.edu.pl. Then, to submit messages to the list, mail to linux-arcnet@tichy.ch.uj.edu.pl. There are archives of the mailing list at: - http://tichy.ch.uj.edu.pl/lists/linux-arcnet + http://epistolary.org/mailman/listinfo.cgi/arcnet The people on linux-net@vger.kernel.org have also been known to be very helpful, especially when we're talking about ALPHA Linux kernels that may or @@ -79,7 +79,7 @@ Other Drivers and Info ---------------------- You can try my ARCNET page on the World Wide Web at: - http://www.worldvisions.ca/~apenwarr/arcnet/ + http://www.qis.net/~jschmitz/arcnet/ Also, SMC (one of the companies that makes ARCnet cards) has a WWW site you might be interested in, which includes several drivers for various cards diff --git a/Documentation/networking/bonding.txt b/Documentation/networking/bonding.txt index 61f516b135b4..d2b62b71b617 100644 --- a/Documentation/networking/bonding.txt +++ b/Documentation/networking/bonding.txt @@ -49,6 +49,7 @@ Table of Contents 3.3 Configuring Bonding Manually with Ifenslave 3.3.1 Configuring Multiple Bonds Manually 3.4 Configuring Bonding Manually via Sysfs +3.5 Overriding Configuration for Special Cases 4. Querying Bonding Configuration 4.1 Bonding Configuration @@ -1318,8 +1319,87 @@ echo 2000 > /sys/class/net/bond1/bonding/arp_interval echo +eth2 > /sys/class/net/bond1/bonding/slaves echo +eth3 > /sys/class/net/bond1/bonding/slaves - -4. Querying Bonding Configuration +3.5 Overriding Configuration for Special Cases +---------------------------------------------- +When using the bonding driver, the physical port which transmits a frame is +typically selected by the bonding driver, and is not relevant to the user or +system administrator. The output port is simply selected using the policies of +the selected bonding mode. On occasion however, it is helpful to direct certain +classes of traffic to certain physical interfaces on output to implement +slightly more complex policies. For example, to reach a web server over a +bonded interface in which eth0 connects to a private network, while eth1 +connects via a public network, it may be desirous to bias the bond to send said +traffic over eth0 first, using eth1 only as a fall back, while all other traffic +can safely be sent over either interface. Such configurations may be achieved +using the traffic control utilities inherent in linux. + +By default the bonding driver is multiqueue aware and 16 queues are created +when the driver initializes (see Documentation/networking/multiqueue.txt +for details). If more or less queues are desired the module parameter +tx_queues can be used to change this value. There is no sysfs parameter +available as the allocation is done at module init time. + +The output of the file /proc/net/bonding/bondX has changed so the output Queue +ID is now printed for each slave: + +Bonding Mode: fault-tolerance (active-backup) +Primary Slave: None +Currently Active Slave: eth0 +MII Status: up +MII Polling Interval (ms): 0 +Up Delay (ms): 0 +Down Delay (ms): 0 + +Slave Interface: eth0 +MII Status: up +Link Failure Count: 0 +Permanent HW addr: 00:1a:a0:12:8f:cb +Slave queue ID: 0 + +Slave Interface: eth1 +MII Status: up +Link Failure Count: 0 +Permanent HW addr: 00:1a:a0:12:8f:cc +Slave queue ID: 2 + +The queue_id for a slave can be set using the command: + +# echo "eth1:2" > /sys/class/net/bond0/bonding/queue_id + +Any interface that needs a queue_id set should set it with multiple calls +like the one above until proper priorities are set for all interfaces. On +distributions that allow configuration via initscripts, multiple 'queue_id' +arguments can be added to BONDING_OPTS to set all needed slave queues. + +These queue id's can be used in conjunction with the tc utility to configure +a multiqueue qdisc and filters to bias certain traffic to transmit on certain +slave devices. For instance, say we wanted, in the above configuration to +force all traffic bound to 192.168.1.100 to use eth1 in the bond as its output +device. The following commands would accomplish this: + +# tc qdisc add dev bond0 handle 1 root multiq + +# tc filter add dev bond0 protocol ip parent 1: prio 1 u32 match ip dst \ + 192.168.1.100 action skbedit queue_mapping 2 + +These commands tell the kernel to attach a multiqueue queue discipline to the +bond0 interface and filter traffic enqueued to it, such that packets with a dst +ip of 192.168.1.100 have their output queue mapping value overwritten to 2. +This value is then passed into the driver, causing the normal output path +selection policy to be overridden, selecting instead qid 2, which maps to eth1. + +Note that qid values begin at 1. Qid 0 is reserved to initiate to the driver +that normal output policy selection should take place. One benefit to simply +leaving the qid for a slave to 0 is the multiqueue awareness in the bonding +driver that is now present. This awareness allows tc filters to be placed on +slave devices as well as bond devices and the bonding driver will simply act as +a pass-through for selecting output queues on the slave device rather than +output port selection. + +This feature first appeared in bonding driver version 3.7.0 and support for +output slave selection was limited to round-robin and active-backup modes. + +4 Querying Bonding Configuration ================================= 4.1 Bonding Configuration @@ -2432,7 +2512,7 @@ be found at: https://lists.sourceforge.net/lists/listinfo/bonding-devel Donald Becker's Ethernet Drivers and diag programs may be found at : - - http://www.scyld.com/network/ + - http://web.archive.org/web/*/http://www.scyld.com/network/ You will also find a lot of information regarding Ethernet, NWay, MII, etc. at www.scyld.com. diff --git a/Documentation/networking/caif/spi_porting.txt b/Documentation/networking/caif/spi_porting.txt new file mode 100644 index 000000000000..61d7c9247453 --- /dev/null +++ b/Documentation/networking/caif/spi_porting.txt @@ -0,0 +1,208 @@ +- CAIF SPI porting - + +- CAIF SPI basics: + +Running CAIF over SPI needs some extra setup, owing to the nature of SPI. +Two extra GPIOs have been added in order to negotiate the transfers + between the master and the slave. The minimum requirement for running +CAIF over SPI is a SPI slave chip and two GPIOs (more details below). +Please note that running as a slave implies that you need to keep up +with the master clock. An overrun or underrun event is fatal. + +- CAIF SPI framework: + +To make porting as easy as possible, the CAIF SPI has been divided in +two parts. The first part (called the interface part) deals with all +generic functionality such as length framing, SPI frame negotiation +and SPI frame delivery and transmission. The other part is the CAIF +SPI slave device part, which is the module that you have to write if +you want to run SPI CAIF on a new hardware. This part takes care of +the physical hardware, both with regard to SPI and to GPIOs. + +- Implementing a CAIF SPI device: + + - Functionality provided by the CAIF SPI slave device: + + In order to implement a SPI device you will, as a minimum, + need to implement the following + functions: + + int (*init_xfer) (struct cfspi_xfer * xfer, struct cfspi_dev *dev): + + This function is called by the CAIF SPI interface to give + you a chance to set up your hardware to be ready to receive + a stream of data from the master. The xfer structure contains + both physical and logical adresses, as well as the total length + of the transfer in both directions.The dev parameter can be used + to map to different CAIF SPI slave devices. + + void (*sig_xfer) (bool xfer, struct cfspi_dev *dev): + + This function is called by the CAIF SPI interface when the output + (SPI_INT) GPIO needs to change state. The boolean value of the xfer + variable indicates whether the GPIO should be asserted (HIGH) or + deasserted (LOW). The dev parameter can be used to map to different CAIF + SPI slave devices. + + - Functionality provided by the CAIF SPI interface: + + void (*ss_cb) (bool assert, struct cfspi_ifc *ifc); + + This function is called by the CAIF SPI slave device in order to + signal a change of state of the input GPIO (SS) to the interface. + Only active edges are mandatory to be reported. + This function can be called from IRQ context (recommended in order + not to introduce latency). The ifc parameter should be the pointer + returned from the platform probe function in the SPI device structure. + + void (*xfer_done_cb) (struct cfspi_ifc *ifc); + + This function is called by the CAIF SPI slave device in order to + report that a transfer is completed. This function should only be + called once both the transmission and the reception are completed. + This function can be called from IRQ context (recommended in order + not to introduce latency). The ifc parameter should be the pointer + returned from the platform probe function in the SPI device structure. + + - Connecting the bits and pieces: + + - Filling in the SPI slave device structure: + + Connect the necessary callback functions. + Indicate clock speed (used to calculate toggle delays). + Chose a suitable name (helps debugging if you use several CAIF + SPI slave devices). + Assign your private data (can be used to map to your structure). + + - Filling in the SPI slave platform device structure: + Add name of driver to connect to ("cfspi_sspi"). + Assign the SPI slave device structure as platform data. + +- Padding: + +In order to optimize throughput, a number of SPI padding options are provided. +Padding can be enabled independently for uplink and downlink transfers. +Padding can be enabled for the head, the tail and for the total frame size. +The padding needs to be correctly configured on both sides of the link. +The padding can be changed via module parameters in cfspi_sspi.c or via +the sysfs directory of the cfspi_sspi driver (before device registration). + +- CAIF SPI device template: + +/* + * Copyright (C) ST-Ericsson AB 2010 + * Author: Daniel Martensson / Daniel.Martensson@stericsson.com + * License terms: GNU General Public License (GPL), version 2. + * + */ + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/device.h> +#include <linux/wait.h> +#include <linux/interrupt.h> +#include <linux/dma-mapping.h> +#include <net/caif/caif_spi.h> + +MODULE_LICENSE("GPL"); + +struct sspi_struct { + struct cfspi_dev sdev; + struct cfspi_xfer *xfer; +}; + +static struct sspi_struct slave; +static struct platform_device slave_device; + +static irqreturn_t sspi_irq(int irq, void *arg) +{ + /* You only need to trigger on an edge to the active state of the + * SS signal. Once a edge is detected, the ss_cb() function should be + * called with the parameter assert set to true. It is OK + * (and even advised) to call the ss_cb() function in IRQ context in + * order not to add any delay. */ + + return IRQ_HANDLED; +} + +static void sspi_complete(void *context) +{ + /* Normally the DMA or the SPI framework will call you back + * in something similar to this. The only thing you need to + * do is to call the xfer_done_cb() function, providing the pointer + * to the CAIF SPI interface. It is OK to call this function + * from IRQ context. */ +} + +static int sspi_init_xfer(struct cfspi_xfer *xfer, struct cfspi_dev *dev) +{ + /* Store transfer info. For a normal implementation you should + * set up your DMA here and make sure that you are ready to + * receive the data from the master SPI. */ + + struct sspi_struct *sspi = (struct sspi_struct *)dev->priv; + + sspi->xfer = xfer; + + return 0; +} + +void sspi_sig_xfer(bool xfer, struct cfspi_dev *dev) +{ + /* If xfer is true then you should assert the SPI_INT to indicate to + * the master that you are ready to recieve the data from the master + * SPI. If xfer is false then you should de-assert SPI_INT to indicate + * that the transfer is done. + */ + + struct sspi_struct *sspi = (struct sspi_struct *)dev->priv; +} + +static void sspi_release(struct device *dev) +{ + /* + * Here you should release your SPI device resources. + */ +} + +static int __init sspi_init(void) +{ + /* Here you should initialize your SPI device by providing the + * necessary functions, clock speed, name and private data. Once + * done, you can register your device with the + * platform_device_register() function. This function will return + * with the CAIF SPI interface initialized. This is probably also + * the place where you should set up your GPIOs, interrupts and SPI + * resources. */ + + int res = 0; + + /* Initialize slave device. */ + slave.sdev.init_xfer = sspi_init_xfer; + slave.sdev.sig_xfer = sspi_sig_xfer; + slave.sdev.clk_mhz = 13; + slave.sdev.priv = &slave; + slave.sdev.name = "spi_sspi"; + slave_device.dev.release = sspi_release; + + /* Initialize platform device. */ + slave_device.name = "cfspi_sspi"; + slave_device.dev.platform_data = &slave.sdev; + + /* Register platform device. */ + res = platform_device_register(&slave_device); + if (res) { + printk(KERN_WARNING "sspi_init: failed to register dev.\n"); + return -ENODEV; + } + + return res; +} + +static void __exit sspi_exit(void) +{ + platform_device_del(&slave_device); +} + +module_init(sspi_init); +module_exit(sspi_exit); diff --git a/Documentation/networking/decnet.txt b/Documentation/networking/decnet.txt index d8968958d839..e12a4900cf72 100644 --- a/Documentation/networking/decnet.txt +++ b/Documentation/networking/decnet.txt @@ -4,7 +4,7 @@ 1) Other documentation.... o Project Home Pages - http://www.chygwyn.com/DECnet/ - Kernel info + http://www.chygwyn.com/ - Kernel info http://linux-decnet.sourceforge.net/ - Userland tools http://www.sourceforge.net/projects/linux-decnet/ - Status page diff --git a/Documentation/networking/fore200e.txt b/Documentation/networking/fore200e.txt index b1f337f0f4ca..6e0d2a9613ec 100644 --- a/Documentation/networking/fore200e.txt +++ b/Documentation/networking/fore200e.txt @@ -39,7 +39,7 @@ version. Alternative binary firmware images can be found somewhere on the ForeThought CD-ROM supplied with your adapter by FORE Systems. You can also get the latest firmware images from FORE Systems at -http://www.fore.com. Register TACTics Online and go to +http://en.wikipedia.org/wiki/FORE_Systems. Register TACTics Online and go to the 'software updates' pages. The firmware binaries are part of the various ForeThought software distributions. diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt index d0536b5a4e01..f350c69b2bb4 100644 --- a/Documentation/networking/ip-sysctl.txt +++ b/Documentation/networking/ip-sysctl.txt @@ -903,7 +903,7 @@ arp_ignore - INTEGER arp_notify - BOOLEAN Define mode for notification of address and device changes. 0 - (default): do nothing - 1 - Generate gratuitous arp replies when device is brought up + 1 - Generate gratuitous arp requests when device is brought up or hardware address changes. arp_accept - BOOLEAN diff --git a/Documentation/networking/ipddp.txt b/Documentation/networking/ipddp.txt index 661a5558dd8e..ba5c217fffe0 100644 --- a/Documentation/networking/ipddp.txt +++ b/Documentation/networking/ipddp.txt @@ -36,11 +36,6 @@ AppleTalk-IP to IP decapsulation. Basic instructions for user space tools ======================================= -To enable AppleTalk-IP decapsulation/encapsulation you will need the -proper tools. You can get the tools for decapsulation from -http://spacs1.spacs.k12.wi.us/~jschlst/index.html and for encapsulation -from http://www.maths.unm.edu/~bradford/ltpc.html - I will briefly describe the operation of the tools, but you will need to consult the supporting documentation for each set of tools. diff --git a/Documentation/networking/iphase.txt b/Documentation/networking/iphase.txt index 55eac4a784e2..670b72f16585 100644 --- a/Documentation/networking/iphase.txt +++ b/Documentation/networking/iphase.txt @@ -22,7 +22,7 @@ The features and limitations of this driver are as follows: - All variants of Interphase ATM PCI (i)Chip adapter cards are supported, including x575 (OC3, control memory 128K , 512K and packet memory 128K, 512K and 1M), x525 (UTP25) and x531 (DS3 and E3). See - http://www.iphase.com/site/iphase-web/?epi_menuItemID=e196f04b4b3b40502f150882e21046a0 + http://www.iphase.com/ for details. - Only x86 platforms are supported. - SMP is supported. diff --git a/Documentation/networking/packet_mmap.txt b/Documentation/networking/packet_mmap.txt index 98f71a5cef00..073894d1c093 100644 --- a/Documentation/networking/packet_mmap.txt +++ b/Documentation/networking/packet_mmap.txt @@ -8,7 +8,7 @@ capture network traffic with utilities like tcpdump or any other that needs raw access to network interface. You can find the latest version of this document at: - http://pusa.uv.es/~ulisses/packet_mmap/ + http://wiki.ipxwarzone.com/index.php5?title=Linux_packet_mmap Howto can be found at: http://wiki.gnu-log.net (packet_mmap) @@ -56,7 +56,7 @@ support for PACKET_MMAP, and also probably the libpcap included in your distribu I'm aware of two implementations of PACKET_MMAP in libpcap: - http://pusa.uv.es/~ulisses/packet_mmap/ (by Simon Patarin, based on libpcap 0.6.2) + http://wiki.ipxwarzone.com/ (by Simon Patarin, based on libpcap 0.6.2) http://public.lanl.gov/cpw/ (by Phil Wood, based on lastest libpcap) The rest of this document is intended for people who want to understand @@ -493,6 +493,32 @@ The user can also use poll() to check if a buffer is available: pfd.events = POLLOUT; retval = poll(&pfd, 1, timeout); +------------------------------------------------------------------------------- ++ PACKET_TIMESTAMP +------------------------------------------------------------------------------- + +The PACKET_TIMESTAMP setting determines the source of the timestamp in +the packet meta information. If your NIC is capable of timestamping +packets in hardware, you can request those hardware timestamps to used. +Note: you may need to enable the generation of hardware timestamps with +SIOCSHWTSTAMP. + +PACKET_TIMESTAMP accepts the same integer bit field as +SO_TIMESTAMPING. However, only the SOF_TIMESTAMPING_SYS_HARDWARE +and SOF_TIMESTAMPING_RAW_HARDWARE values are recognized by +PACKET_TIMESTAMP. SOF_TIMESTAMPING_SYS_HARDWARE takes precedence over +SOF_TIMESTAMPING_RAW_HARDWARE if both bits are set. + + int req = 0; + req |= SOF_TIMESTAMPING_SYS_HARDWARE; + setsockopt(fd, SOL_PACKET, PACKET_TIMESTAMP, (void *) &req, sizeof(req)) + +If PACKET_TIMESTAMP is not set, a software timestamp generated inside +the networking stack is used (the behavior before this setting was added). + +See include/linux/net_tstamp.h and Documentation/networking/timestamping +for more information on hardware timestamps. + -------------------------------------------------------------------------------- + THANKS -------------------------------------------------------------------------------- diff --git a/Documentation/networking/pktgen.txt b/Documentation/networking/pktgen.txt index 61bb645d50e0..75e4fd708ccb 100644 --- a/Documentation/networking/pktgen.txt +++ b/Documentation/networking/pktgen.txt @@ -151,6 +151,8 @@ Examples: pgset stop aborts injection. Also, ^C aborts generator. + pgset "rate 300M" set rate to 300 Mb/s + pgset "ratep 1000000" set rate to 1Mpps Example scripts =============== @@ -241,6 +243,9 @@ src6 flows flowlen +rate +ratep + References: ftp://robur.slu.se/pub/Linux/net-development/pktgen-testing/ ftp://robur.slu.se/pub/Linux/net-development/pktgen-testing/examples/ diff --git a/Documentation/networking/ray_cs.txt b/Documentation/networking/ray_cs.txt index 145d27a52395..c0c12307ed9d 100644 --- a/Documentation/networking/ray_cs.txt +++ b/Documentation/networking/ray_cs.txt @@ -13,8 +13,8 @@ wireless LAN cards. As of kernel 2.3.18, the ray_cs driver is part of the Linux kernel source. My web page for the development of ray_cs is at -http://world.std.com/~corey/raylink.html and I can be emailed at -corey@world.std.com +http://web.ralinktech.com/ralink/Home/Support/Linux.html +and I can be emailed at corey@world.std.com The kernel driver is based on ray_cs-1.62.tgz diff --git a/Documentation/networking/s2io.txt b/Documentation/networking/s2io.txt index c3d6b4d5d014..9d4e0f4df5a8 100644 --- a/Documentation/networking/s2io.txt +++ b/Documentation/networking/s2io.txt @@ -133,7 +133,8 @@ bring down CPU utilization. ** For AMD opteron platforms with 8131 chipset, MMRBC=1 and MOST=1 are recommended as safe parameters. For more information, please review the AMD8131 errata at -http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/26310.pdf +http://vip.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/ +26310_AMD-8131_HyperTransport_PCI-X_Tunnel_Revision_Guide_rev_3_18.pdf 6. Available Downloads Neterion "s2io" driver in Red Hat and Suse 2.6-based distributions is kept up diff --git a/Documentation/networking/tlan.txt b/Documentation/networking/tlan.txt index 7e6aa5b20c37..34550dfcef74 100644 --- a/Documentation/networking/tlan.txt +++ b/Documentation/networking/tlan.txt @@ -2,7 +2,7 @@ (C) 1998 James Banks (C) 1999-2001 Torben Mathiasen <tmm@image.dk, torben.mathiasen@compaq.com> -For driver information/updates visit http://opensource.compaq.com +For driver information/updates visit http://www.compaq.com TLAN driver for Linux, version 1.14a @@ -113,5 +113,5 @@ III. Things to try if you have problems. There is also a tlan mailing list which you can join by sending "subscribe tlan" in the body of an email to majordomo@vuser.vu.union.edu. -There is also a tlan website at http://opensource.compaq.com +There is also a tlan website at http://www.compaq.com diff --git a/Documentation/networking/udplite.txt b/Documentation/networking/udplite.txt index 855d8da57a23..d727a3829100 100644 --- a/Documentation/networking/udplite.txt +++ b/Documentation/networking/udplite.txt @@ -11,11 +11,13 @@ This file briefly describes the existing kernel support and the socket API. For in-depth information, you can consult: - o The UDP-Lite Homepage: http://www.erg.abdn.ac.uk/users/gerrit/udp-lite/ + o The UDP-Lite Homepage: + http://web.archive.org/web/*/http://www.erg.abdn.ac.uk/users/gerrit/udp-lite/ From here you can also download some example application source code. o The UDP-Lite HOWTO on - http://www.erg.abdn.ac.uk/users/gerrit/udp-lite/files/UDP-Lite-HOWTO.txt + http://web.archive.org/web/*/http://www.erg.abdn.ac.uk/users/gerrit/udp-lite/ + files/UDP-Lite-HOWTO.txt o The Wireshark UDP-Lite WiKi (with capture files): http://wiki.wireshark.org/Lightweight_User_Datagram_Protocol @@ -26,12 +28,7 @@ I) APPLICATIONS Several applications have been ported successfully to UDP-Lite. Ethereal - (now called wireshark) has UDP-Litev4/v6 support by default. The tarball on - - http://www.erg.abdn.ac.uk/users/gerrit/udp-lite/files/udplite_linux.tar.gz - - has source code for several v4/v6 client-server and network testing examples. - + (now called wireshark) has UDP-Litev4/v6 support by default. Porting applications to UDP-Lite is straightforward: only socket level and IPPROTO need to be changed; senders additionally set the checksum coverage length (default = header length = 8). Details are in the next section. diff --git a/Documentation/networking/wavelan.txt b/Documentation/networking/wavelan.txt index afa6e521c685..90e0ac4e15da 100644 --- a/Documentation/networking/wavelan.txt +++ b/Documentation/networking/wavelan.txt @@ -50,7 +50,8 @@ and a Lucent Modem, and NOT 802.11 compatible. ----------------- o Config : Not yet in kernel o Location : Pcmcia package 3.1.10+ - o on-line doc : http://www.fasta.fh-dortmund.de/users/andy/wvlan/ + o on-line doc : + http://web.archive.org/web/*/http://www.fasta.fh-dortmund.de/users/andy/wvlan/ This is the driver for the current generation of Wavelan IEEE, which is 802.11 compatible. Depending on version, it is 2 Mb/s or 11 |