diff options
Diffstat (limited to 'Documentation/scheduler/completion.rst')
-rw-r--r-- | Documentation/scheduler/completion.rst | 293 |
1 files changed, 293 insertions, 0 deletions
diff --git a/Documentation/scheduler/completion.rst b/Documentation/scheduler/completion.rst new file mode 100644 index 000000000000..9f039b4f4b09 --- /dev/null +++ b/Documentation/scheduler/completion.rst @@ -0,0 +1,293 @@ +================================================ +Completions - "wait for completion" barrier APIs +================================================ + +Introduction: +------------- + +If you have one or more threads that must wait for some kernel activity +to have reached a point or a specific state, completions can provide a +race-free solution to this problem. Semantically they are somewhat like a +pthread_barrier() and have similar use-cases. + +Completions are a code synchronization mechanism which is preferable to any +misuse of locks/semaphores and busy-loops. Any time you think of using +yield() or some quirky msleep(1) loop to allow something else to proceed, +you probably want to look into using one of the wait_for_completion*() +calls and complete() instead. + +The advantage of using completions is that they have a well defined, focused +purpose which makes it very easy to see the intent of the code, but they +also result in more efficient code as all threads can continue execution +until the result is actually needed, and both the waiting and the signalling +is highly efficient using low level scheduler sleep/wakeup facilities. + +Completions are built on top of the waitqueue and wakeup infrastructure of +the Linux scheduler. The event the threads on the waitqueue are waiting for +is reduced to a simple flag in 'struct completion', appropriately called "done". + +As completions are scheduling related, the code can be found in +kernel/sched/completion.c. + + +Usage: +------ + +There are three main parts to using completions: + + - the initialization of the 'struct completion' synchronization object + - the waiting part through a call to one of the variants of wait_for_completion(), + - the signaling side through a call to complete() or complete_all(). + +There are also some helper functions for checking the state of completions. +Note that while initialization must happen first, the waiting and signaling +part can happen in any order. I.e. it's entirely normal for a thread +to have marked a completion as 'done' before another thread checks whether +it has to wait for it. + +To use completions you need to #include <linux/completion.h> and +create a static or dynamic variable of type 'struct completion', +which has only two fields:: + + struct completion { + unsigned int done; + wait_queue_head_t wait; + }; + +This provides the ->wait waitqueue to place tasks on for waiting (if any), and +the ->done completion flag for indicating whether it's completed or not. + +Completions should be named to refer to the event that is being synchronized on. +A good example is:: + + wait_for_completion(&early_console_added); + + complete(&early_console_added); + +Good, intuitive naming (as always) helps code readability. Naming a completion +'complete' is not helpful unless the purpose is super obvious... + + +Initializing completions: +------------------------- + +Dynamically allocated completion objects should preferably be embedded in data +structures that are assured to be alive for the life-time of the function/driver, +to prevent races with asynchronous complete() calls from occurring. + +Particular care should be taken when using the _timeout() or _killable()/_interruptible() +variants of wait_for_completion(), as it must be assured that memory de-allocation +does not happen until all related activities (complete() or reinit_completion()) +have taken place, even if these wait functions return prematurely due to a timeout +or a signal triggering. + +Initializing of dynamically allocated completion objects is done via a call to +init_completion():: + + init_completion(&dynamic_object->done); + +In this call we initialize the waitqueue and set ->done to 0, i.e. "not completed" +or "not done". + +The re-initialization function, reinit_completion(), simply resets the +->done field to 0 ("not done"), without touching the waitqueue. +Callers of this function must make sure that there are no racy +wait_for_completion() calls going on in parallel. + +Calling init_completion() on the same completion object twice is +most likely a bug as it re-initializes the queue to an empty queue and +enqueued tasks could get "lost" - use reinit_completion() in that case, +but be aware of other races. + +For static declaration and initialization, macros are available. + +For static (or global) declarations in file scope you can use +DECLARE_COMPLETION():: + + static DECLARE_COMPLETION(setup_done); + DECLARE_COMPLETION(setup_done); + +Note that in this case the completion is boot time (or module load time) +initialized to 'not done' and doesn't require an init_completion() call. + +When a completion is declared as a local variable within a function, +then the initialization should always use DECLARE_COMPLETION_ONSTACK() +explicitly, not just to make lockdep happy, but also to make it clear +that limited scope had been considered and is intentional:: + + DECLARE_COMPLETION_ONSTACK(setup_done) + +Note that when using completion objects as local variables you must be +acutely aware of the short life time of the function stack: the function +must not return to a calling context until all activities (such as waiting +threads) have ceased and the completion object is completely unused. + +To emphasise this again: in particular when using some of the waiting API variants +with more complex outcomes, such as the timeout or signalling (_timeout(), +_killable() and _interruptible()) variants, the wait might complete +prematurely while the object might still be in use by another thread - and a return +from the wait_on_completion*() caller function will deallocate the function +stack and cause subtle data corruption if a complete() is done in some +other thread. Simple testing might not trigger these kinds of races. + +If unsure, use dynamically allocated completion objects, preferably embedded +in some other long lived object that has a boringly long life time which +exceeds the life time of any helper threads using the completion object, +or has a lock or other synchronization mechanism to make sure complete() +is not called on a freed object. + +A naive DECLARE_COMPLETION() on the stack triggers a lockdep warning. + +Waiting for completions: +------------------------ + +For a thread to wait for some concurrent activity to finish, it +calls wait_for_completion() on the initialized completion structure:: + + void wait_for_completion(struct completion *done) + +A typical usage scenario is:: + + CPU#1 CPU#2 + + struct completion setup_done; + + init_completion(&setup_done); + initialize_work(...,&setup_done,...); + + /* run non-dependent code */ /* do setup */ + + wait_for_completion(&setup_done); complete(setup_done); + +This is not implying any particular order between wait_for_completion() and +the call to complete() - if the call to complete() happened before the call +to wait_for_completion() then the waiting side simply will continue +immediately as all dependencies are satisfied; if not, it will block until +completion is signaled by complete(). + +Note that wait_for_completion() is calling spin_lock_irq()/spin_unlock_irq(), +so it can only be called safely when you know that interrupts are enabled. +Calling it from IRQs-off atomic contexts will result in hard-to-detect +spurious enabling of interrupts. + +The default behavior is to wait without a timeout and to mark the task as +uninterruptible. wait_for_completion() and its variants are only safe +in process context (as they can sleep) but not in atomic context, +interrupt context, with disabled IRQs, or preemption is disabled - see also +try_wait_for_completion() below for handling completion in atomic/interrupt +context. + +As all variants of wait_for_completion() can (obviously) block for a long +time depending on the nature of the activity they are waiting for, so in +most cases you probably don't want to call this with held mutexes. + + +wait_for_completion*() variants available: +------------------------------------------ + +The below variants all return status and this status should be checked in +most(/all) cases - in cases where the status is deliberately not checked you +probably want to make a note explaining this (e.g. see +arch/arm/kernel/smp.c:__cpu_up()). + +A common problem that occurs is to have unclean assignment of return types, +so take care to assign return-values to variables of the proper type. + +Checking for the specific meaning of return values also has been found +to be quite inaccurate, e.g. constructs like:: + + if (!wait_for_completion_interruptible_timeout(...)) + +... would execute the same code path for successful completion and for the +interrupted case - which is probably not what you want:: + + int wait_for_completion_interruptible(struct completion *done) + +This function marks the task TASK_INTERRUPTIBLE while it is waiting. +If a signal was received while waiting it will return -ERESTARTSYS; 0 otherwise:: + + unsigned long wait_for_completion_timeout(struct completion *done, unsigned long timeout) + +The task is marked as TASK_UNINTERRUPTIBLE and will wait at most 'timeout' +jiffies. If a timeout occurs it returns 0, else the remaining time in +jiffies (but at least 1). + +Timeouts are preferably calculated with msecs_to_jiffies() or usecs_to_jiffies(), +to make the code largely HZ-invariant. + +If the returned timeout value is deliberately ignored a comment should probably explain +why (e.g. see drivers/mfd/wm8350-core.c wm8350_read_auxadc()):: + + long wait_for_completion_interruptible_timeout(struct completion *done, unsigned long timeout) + +This function passes a timeout in jiffies and marks the task as +TASK_INTERRUPTIBLE. If a signal was received it will return -ERESTARTSYS; +otherwise it returns 0 if the completion timed out, or the remaining time in +jiffies if completion occurred. + +Further variants include _killable which uses TASK_KILLABLE as the +designated tasks state and will return -ERESTARTSYS if it is interrupted, +or 0 if completion was achieved. There is a _timeout variant as well:: + + long wait_for_completion_killable(struct completion *done) + long wait_for_completion_killable_timeout(struct completion *done, unsigned long timeout) + +The _io variants wait_for_completion_io() behave the same as the non-_io +variants, except for accounting waiting time as 'waiting on IO', which has +an impact on how the task is accounted in scheduling/IO stats:: + + void wait_for_completion_io(struct completion *done) + unsigned long wait_for_completion_io_timeout(struct completion *done, unsigned long timeout) + + +Signaling completions: +---------------------- + +A thread that wants to signal that the conditions for continuation have been +achieved calls complete() to signal exactly one of the waiters that it can +continue:: + + void complete(struct completion *done) + +... or calls complete_all() to signal all current and future waiters:: + + void complete_all(struct completion *done) + +The signaling will work as expected even if completions are signaled before +a thread starts waiting. This is achieved by the waiter "consuming" +(decrementing) the done field of 'struct completion'. Waiting threads +wakeup order is the same in which they were enqueued (FIFO order). + +If complete() is called multiple times then this will allow for that number +of waiters to continue - each call to complete() will simply increment the +done field. Calling complete_all() multiple times is a bug though. Both +complete() and complete_all() can be called in IRQ/atomic context safely. + +There can only be one thread calling complete() or complete_all() on a +particular 'struct completion' at any time - serialized through the wait +queue spinlock. Any such concurrent calls to complete() or complete_all() +probably are a design bug. + +Signaling completion from IRQ context is fine as it will appropriately +lock with spin_lock_irqsave()/spin_unlock_irqrestore() and it will never +sleep. + + +try_wait_for_completion()/completion_done(): +-------------------------------------------- + +The try_wait_for_completion() function will not put the thread on the wait +queue but rather returns false if it would need to enqueue (block) the thread, +else it consumes one posted completion and returns true:: + + bool try_wait_for_completion(struct completion *done) + +Finally, to check the state of a completion without changing it in any way, +call completion_done(), which returns false if there are no posted +completions that were not yet consumed by waiters (implying that there are +waiters) and true otherwise:: + + bool completion_done(struct completion *done) + +Both try_wait_for_completion() and completion_done() are safe to be called in +IRQ or atomic context. |