diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/ABI/testing/procfs-smaps_rollup | 14 | ||||
-rw-r--r-- | Documentation/admin-guide/cgroup-v2.rst | 10 | ||||
-rw-r--r-- | Documentation/admin-guide/kernel-parameters.txt | 19 | ||||
-rw-r--r-- | Documentation/core-api/kernel-api.rst | 2 | ||||
-rw-r--r-- | Documentation/dev-tools/kmemleak.rst | 48 | ||||
-rw-r--r-- | Documentation/filesystems/proc.txt | 41 |
6 files changed, 111 insertions, 23 deletions
diff --git a/Documentation/ABI/testing/procfs-smaps_rollup b/Documentation/ABI/testing/procfs-smaps_rollup index 0a54ed0d63c9..274df44d8b1b 100644 --- a/Documentation/ABI/testing/procfs-smaps_rollup +++ b/Documentation/ABI/testing/procfs-smaps_rollup @@ -3,18 +3,28 @@ Date: August 2017 Contact: Daniel Colascione <dancol@google.com> Description: This file provides pre-summed memory information for a - process. The format is identical to /proc/pid/smaps, + process. The format is almost identical to /proc/pid/smaps, except instead of an entry for each VMA in a process, smaps_rollup has a single entry (tagged "[rollup]") for which each field is the sum of the corresponding fields from all the maps in /proc/pid/smaps. - For more details, see the procfs man page. + Additionally, the fields Pss_Anon, Pss_File and Pss_Shmem + are not present in /proc/pid/smaps. These fields represent + the sum of the Pss field of each type (anon, file, shmem). + For more details, see Documentation/filesystems/proc.txt + and the procfs man page. Typical output looks like this: 00100000-ff709000 ---p 00000000 00:00 0 [rollup] + Size: 1192 kB + KernelPageSize: 4 kB + MMUPageSize: 4 kB Rss: 884 kB Pss: 385 kB + Pss_Anon: 301 kB + Pss_File: 80 kB + Pss_Shmem: 4 kB Shared_Clean: 696 kB Shared_Dirty: 0 kB Private_Clean: 120 kB diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst index a5c845338d6d..a9548de56ac9 100644 --- a/Documentation/admin-guide/cgroup-v2.rst +++ b/Documentation/admin-guide/cgroup-v2.rst @@ -1146,6 +1146,11 @@ PAGE_SIZE multiple when read back. otherwise, a value change in this file generates a file modified event. + Note that all fields in this file are hierarchical and the + file modified event can be generated due to an event down the + hierarchy. For for the local events at the cgroup level see + memory.events.local. + low The number of times the cgroup is reclaimed due to high memory pressure even though its usage is under @@ -1185,6 +1190,11 @@ PAGE_SIZE multiple when read back. The number of processes belonging to this cgroup killed by any kind of OOM killer. + memory.events.local + Similar to memory.events but the fields in the file are local + to the cgroup i.e. not hierarchical. The file modified event + generated on this file reflects only the local events. + memory.stat A read-only flat-keyed file which exists on non-root cgroups. diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt index f1c433daef6b..099c5a4be95b 100644 --- a/Documentation/admin-guide/kernel-parameters.txt +++ b/Documentation/admin-guide/kernel-parameters.txt @@ -805,12 +805,10 @@ tracking down these problems. debug_pagealloc= - [KNL] When CONFIG_DEBUG_PAGEALLOC is set, this - parameter enables the feature at boot time. In - default, it is disabled. We can avoid allocating huge - chunk of memory for debug pagealloc if we don't enable - it at boot time and the system will work mostly same - with the kernel built without CONFIG_DEBUG_PAGEALLOC. + [KNL] When CONFIG_DEBUG_PAGEALLOC is set, this parameter + enables the feature at boot time. By default, it is + disabled and the system will work mostly the same as a + kernel built without CONFIG_DEBUG_PAGEALLOC. on: enable the feature debugpat [X86] Enable PAT debugging @@ -1670,6 +1668,15 @@ initrd= [BOOT] Specify the location of the initial ramdisk + init_on_alloc= [MM] Fill newly allocated pages and heap objects with + zeroes. + Format: 0 | 1 + Default set by CONFIG_INIT_ON_ALLOC_DEFAULT_ON. + + init_on_free= [MM] Fill freed pages and heap objects with zeroes. + Format: 0 | 1 + Default set by CONFIG_INIT_ON_FREE_DEFAULT_ON. + init_pkru= [x86] Specify the default memory protection keys rights register contents for all processes. 0x55555554 by default (disallow access to all but pkey 0). Can diff --git a/Documentation/core-api/kernel-api.rst b/Documentation/core-api/kernel-api.rst index 824f24ccf401..08af5caf036d 100644 --- a/Documentation/core-api/kernel-api.rst +++ b/Documentation/core-api/kernel-api.rst @@ -54,7 +54,7 @@ The Linux kernel provides more basic utility functions. Bit Operations -------------- -.. kernel-doc:: arch/x86/include/asm/bitops.h +.. kernel-doc:: include/asm-generic/bitops-instrumented.h :internal: Bitmap Operations diff --git a/Documentation/dev-tools/kmemleak.rst b/Documentation/dev-tools/kmemleak.rst index e6f51260ff32..3621cd5e1eef 100644 --- a/Documentation/dev-tools/kmemleak.rst +++ b/Documentation/dev-tools/kmemleak.rst @@ -2,8 +2,8 @@ Kernel Memory Leak Detector =========================== Kmemleak provides a way of detecting possible kernel memory leaks in a -way similar to a tracing garbage collector -(https://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29#Tracing_garbage_collectors), +way similar to a `tracing garbage collector +<https://en.wikipedia.org/wiki/Tracing_garbage_collection>`_, with the difference that the orphan objects are not freed but only reported via /sys/kernel/debug/kmemleak. A similar method is used by the Valgrind tool (``memcheck --leak-check``) to detect the memory leaks in @@ -15,10 +15,13 @@ Usage CONFIG_DEBUG_KMEMLEAK in "Kernel hacking" has to be enabled. A kernel thread scans the memory every 10 minutes (by default) and prints the -number of new unreferenced objects found. To display the details of all -the possible memory leaks:: +number of new unreferenced objects found. If the ``debugfs`` isn't already +mounted, mount with:: # mount -t debugfs nodev /sys/kernel/debug/ + +To display the details of all the possible scanned memory leaks:: + # cat /sys/kernel/debug/kmemleak To trigger an intermediate memory scan:: @@ -72,6 +75,9 @@ If CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF are enabled, the kmemleak is disabled by default. Passing ``kmemleak=on`` on the kernel command line enables the function. +If you are getting errors like "Error while writing to stdout" or "write_loop: +Invalid argument", make sure kmemleak is properly enabled. + Basic Algorithm --------------- @@ -218,3 +224,37 @@ the pointer is calculated by other methods than the usual container_of macro or the pointer is stored in a location not scanned by kmemleak. Page allocations and ioremap are not tracked. + +Testing with kmemleak-test +-------------------------- + +To check if you have all set up to use kmemleak, you can use the kmemleak-test +module, a module that deliberately leaks memory. Set CONFIG_DEBUG_KMEMLEAK_TEST +as module (it can't be used as bult-in) and boot the kernel with kmemleak +enabled. Load the module and perform a scan with:: + + # modprobe kmemleak-test + # echo scan > /sys/kernel/debug/kmemleak + +Note that the you may not get results instantly or on the first scanning. When +kmemleak gets results, it'll log ``kmemleak: <count of leaks> new suspected +memory leaks``. Then read the file to see then:: + + # cat /sys/kernel/debug/kmemleak + unreferenced object 0xffff89862ca702e8 (size 32): + comm "modprobe", pid 2088, jiffies 4294680594 (age 375.486s) + hex dump (first 32 bytes): + 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk + 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkkkkkkkkkk. + backtrace: + [<00000000e0a73ec7>] 0xffffffffc01d2036 + [<000000000c5d2a46>] do_one_initcall+0x41/0x1df + [<0000000046db7e0a>] do_init_module+0x55/0x200 + [<00000000542b9814>] load_module+0x203c/0x2480 + [<00000000c2850256>] __do_sys_finit_module+0xba/0xe0 + [<000000006564e7ef>] do_syscall_64+0x43/0x110 + [<000000007c873fa6>] entry_SYSCALL_64_after_hwframe+0x44/0xa9 + ... + +Removing the module with ``rmmod kmemleak_test`` should also trigger some +kmemleak results. diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt index a226061fa109..d750b6926899 100644 --- a/Documentation/filesystems/proc.txt +++ b/Documentation/filesystems/proc.txt @@ -154,9 +154,11 @@ Table 1-1: Process specific entries in /proc symbol the task is blocked in - or "0" if not blocked. pagemap Page table stack Report full stack trace, enable via CONFIG_STACKTRACE - smaps an extension based on maps, showing the memory consumption of + smaps An extension based on maps, showing the memory consumption of each mapping and flags associated with it - numa_maps an extension based on maps, showing the memory locality and + smaps_rollup Accumulated smaps stats for all mappings of the process. This + can be derived from smaps, but is faster and more convenient + numa_maps An extension based on maps, showing the memory locality and binding policy as well as mem usage (in pages) of each mapping. .............................................................................. @@ -366,7 +368,7 @@ Table 1-4: Contents of the stat files (as of 2.6.30-rc7) exit_code the thread's exit_code in the form reported by the waitpid system call .............................................................................. -The /proc/PID/maps file containing the currently mapped memory regions and +The /proc/PID/maps file contains the currently mapped memory regions and their access permissions. The format is: @@ -417,11 +419,14 @@ is not associated with a file: or if empty, the mapping is anonymous. The /proc/PID/smaps is an extension based on maps, showing the memory -consumption for each of the process's mappings. For each of mappings there -is a series of lines such as the following: +consumption for each of the process's mappings. For each mapping (aka Virtual +Memory Area, or VMA) there is a series of lines such as the following: 08048000-080bc000 r-xp 00000000 03:02 13130 /bin/bash + Size: 1084 kB +KernelPageSize: 4 kB +MMUPageSize: 4 kB Rss: 892 kB Pss: 374 kB Shared_Clean: 892 kB @@ -443,11 +448,14 @@ Locked: 0 kB THPeligible: 0 VmFlags: rd ex mr mw me dw -the first of these lines shows the same information as is displayed for the -mapping in /proc/PID/maps. The remaining lines show the size of the mapping -(size), the amount of the mapping that is currently resident in RAM (RSS), the -process' proportional share of this mapping (PSS), the number of clean and -dirty private pages in the mapping. +The first of these lines shows the same information as is displayed for the +mapping in /proc/PID/maps. Following lines show the size of the mapping +(size); the size of each page allocated when backing a VMA (KernelPageSize), +which is usually the same as the size in the page table entries; the page size +used by the MMU when backing a VMA (in most cases, the same as KernelPageSize); +the amount of the mapping that is currently resident in RAM (RSS); the +process' proportional share of this mapping (PSS); and the number of clean and +dirty shared and private pages in the mapping. The "proportional set size" (PSS) of a process is the count of pages it has in memory, where each page is divided by the number of processes sharing it. @@ -532,6 +540,19 @@ guarantees: 2) If there is something at a given vaddr during the entirety of the life of the smaps/maps walk, there will be some output for it. +The /proc/PID/smaps_rollup file includes the same fields as /proc/PID/smaps, +but their values are the sums of the corresponding values for all mappings of +the process. Additionally, it contains these fields: + +Pss_Anon +Pss_File +Pss_Shmem + +They represent the proportional shares of anonymous, file, and shmem pages, as +described for smaps above. These fields are omitted in smaps since each +mapping identifies the type (anon, file, or shmem) of all pages it contains. +Thus all information in smaps_rollup can be derived from smaps, but at a +significantly higher cost. The /proc/PID/clear_refs is used to reset the PG_Referenced and ACCESSED/YOUNG bits on both physical and virtual pages associated with a process, and the |