summaryrefslogtreecommitdiffstats
path: root/arch/sparc/kernel/smp_64.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/sparc/kernel/smp_64.c')
-rw-r--r--arch/sparc/kernel/smp_64.c1408
1 files changed, 1408 insertions, 0 deletions
diff --git a/arch/sparc/kernel/smp_64.c b/arch/sparc/kernel/smp_64.c
new file mode 100644
index 000000000000..46329799f346
--- /dev/null
+++ b/arch/sparc/kernel/smp_64.c
@@ -0,0 +1,1408 @@
+/* smp.c: Sparc64 SMP support.
+ *
+ * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/mm.h>
+#include <linux/pagemap.h>
+#include <linux/threads.h>
+#include <linux/smp.h>
+#include <linux/interrupt.h>
+#include <linux/kernel_stat.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/spinlock.h>
+#include <linux/fs.h>
+#include <linux/seq_file.h>
+#include <linux/cache.h>
+#include <linux/jiffies.h>
+#include <linux/profile.h>
+#include <linux/lmb.h>
+#include <linux/cpu.h>
+
+#include <asm/head.h>
+#include <asm/ptrace.h>
+#include <asm/atomic.h>
+#include <asm/tlbflush.h>
+#include <asm/mmu_context.h>
+#include <asm/cpudata.h>
+#include <asm/hvtramp.h>
+#include <asm/io.h>
+#include <asm/timer.h>
+
+#include <asm/irq.h>
+#include <asm/irq_regs.h>
+#include <asm/page.h>
+#include <asm/pgtable.h>
+#include <asm/oplib.h>
+#include <asm/uaccess.h>
+#include <asm/starfire.h>
+#include <asm/tlb.h>
+#include <asm/sections.h>
+#include <asm/prom.h>
+#include <asm/mdesc.h>
+#include <asm/ldc.h>
+#include <asm/hypervisor.h>
+
+int sparc64_multi_core __read_mostly;
+
+DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
+cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
+ { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
+
+EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
+EXPORT_SYMBOL(cpu_core_map);
+
+static cpumask_t smp_commenced_mask;
+
+void smp_info(struct seq_file *m)
+{
+ int i;
+
+ seq_printf(m, "State:\n");
+ for_each_online_cpu(i)
+ seq_printf(m, "CPU%d:\t\tonline\n", i);
+}
+
+void smp_bogo(struct seq_file *m)
+{
+ int i;
+
+ for_each_online_cpu(i)
+ seq_printf(m,
+ "Cpu%dClkTck\t: %016lx\n",
+ i, cpu_data(i).clock_tick);
+}
+
+extern void setup_sparc64_timer(void);
+
+static volatile unsigned long callin_flag = 0;
+
+void __cpuinit smp_callin(void)
+{
+ int cpuid = hard_smp_processor_id();
+
+ __local_per_cpu_offset = __per_cpu_offset(cpuid);
+
+ if (tlb_type == hypervisor)
+ sun4v_ktsb_register();
+
+ __flush_tlb_all();
+
+ setup_sparc64_timer();
+
+ if (cheetah_pcache_forced_on)
+ cheetah_enable_pcache();
+
+ local_irq_enable();
+
+ callin_flag = 1;
+ __asm__ __volatile__("membar #Sync\n\t"
+ "flush %%g6" : : : "memory");
+
+ /* Clear this or we will die instantly when we
+ * schedule back to this idler...
+ */
+ current_thread_info()->new_child = 0;
+
+ /* Attach to the address space of init_task. */
+ atomic_inc(&init_mm.mm_count);
+ current->active_mm = &init_mm;
+
+ /* inform the notifiers about the new cpu */
+ notify_cpu_starting(cpuid);
+
+ while (!cpu_isset(cpuid, smp_commenced_mask))
+ rmb();
+
+ ipi_call_lock();
+ cpu_set(cpuid, cpu_online_map);
+ ipi_call_unlock();
+
+ /* idle thread is expected to have preempt disabled */
+ preempt_disable();
+}
+
+void cpu_panic(void)
+{
+ printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
+ panic("SMP bolixed\n");
+}
+
+/* This tick register synchronization scheme is taken entirely from
+ * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
+ *
+ * The only change I've made is to rework it so that the master
+ * initiates the synchonization instead of the slave. -DaveM
+ */
+
+#define MASTER 0
+#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
+
+#define NUM_ROUNDS 64 /* magic value */
+#define NUM_ITERS 5 /* likewise */
+
+static DEFINE_SPINLOCK(itc_sync_lock);
+static unsigned long go[SLAVE + 1];
+
+#define DEBUG_TICK_SYNC 0
+
+static inline long get_delta (long *rt, long *master)
+{
+ unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
+ unsigned long tcenter, t0, t1, tm;
+ unsigned long i;
+
+ for (i = 0; i < NUM_ITERS; i++) {
+ t0 = tick_ops->get_tick();
+ go[MASTER] = 1;
+ membar_safe("#StoreLoad");
+ while (!(tm = go[SLAVE]))
+ rmb();
+ go[SLAVE] = 0;
+ wmb();
+ t1 = tick_ops->get_tick();
+
+ if (t1 - t0 < best_t1 - best_t0)
+ best_t0 = t0, best_t1 = t1, best_tm = tm;
+ }
+
+ *rt = best_t1 - best_t0;
+ *master = best_tm - best_t0;
+
+ /* average best_t0 and best_t1 without overflow: */
+ tcenter = (best_t0/2 + best_t1/2);
+ if (best_t0 % 2 + best_t1 % 2 == 2)
+ tcenter++;
+ return tcenter - best_tm;
+}
+
+void smp_synchronize_tick_client(void)
+{
+ long i, delta, adj, adjust_latency = 0, done = 0;
+ unsigned long flags, rt, master_time_stamp, bound;
+#if DEBUG_TICK_SYNC
+ struct {
+ long rt; /* roundtrip time */
+ long master; /* master's timestamp */
+ long diff; /* difference between midpoint and master's timestamp */
+ long lat; /* estimate of itc adjustment latency */
+ } t[NUM_ROUNDS];
+#endif
+
+ go[MASTER] = 1;
+
+ while (go[MASTER])
+ rmb();
+
+ local_irq_save(flags);
+ {
+ for (i = 0; i < NUM_ROUNDS; i++) {
+ delta = get_delta(&rt, &master_time_stamp);
+ if (delta == 0) {
+ done = 1; /* let's lock on to this... */
+ bound = rt;
+ }
+
+ if (!done) {
+ if (i > 0) {
+ adjust_latency += -delta;
+ adj = -delta + adjust_latency/4;
+ } else
+ adj = -delta;
+
+ tick_ops->add_tick(adj);
+ }
+#if DEBUG_TICK_SYNC
+ t[i].rt = rt;
+ t[i].master = master_time_stamp;
+ t[i].diff = delta;
+ t[i].lat = adjust_latency/4;
+#endif
+ }
+ }
+ local_irq_restore(flags);
+
+#if DEBUG_TICK_SYNC
+ for (i = 0; i < NUM_ROUNDS; i++)
+ printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
+ t[i].rt, t[i].master, t[i].diff, t[i].lat);
+#endif
+
+ printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
+ "(last diff %ld cycles, maxerr %lu cycles)\n",
+ smp_processor_id(), delta, rt);
+}
+
+static void smp_start_sync_tick_client(int cpu);
+
+static void smp_synchronize_one_tick(int cpu)
+{
+ unsigned long flags, i;
+
+ go[MASTER] = 0;
+
+ smp_start_sync_tick_client(cpu);
+
+ /* wait for client to be ready */
+ while (!go[MASTER])
+ rmb();
+
+ /* now let the client proceed into his loop */
+ go[MASTER] = 0;
+ membar_safe("#StoreLoad");
+
+ spin_lock_irqsave(&itc_sync_lock, flags);
+ {
+ for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
+ while (!go[MASTER])
+ rmb();
+ go[MASTER] = 0;
+ wmb();
+ go[SLAVE] = tick_ops->get_tick();
+ membar_safe("#StoreLoad");
+ }
+ }
+ spin_unlock_irqrestore(&itc_sync_lock, flags);
+}
+
+#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
+/* XXX Put this in some common place. XXX */
+static unsigned long kimage_addr_to_ra(void *p)
+{
+ unsigned long val = (unsigned long) p;
+
+ return kern_base + (val - KERNBASE);
+}
+
+static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
+{
+ extern unsigned long sparc64_ttable_tl0;
+ extern unsigned long kern_locked_tte_data;
+ struct hvtramp_descr *hdesc;
+ unsigned long trampoline_ra;
+ struct trap_per_cpu *tb;
+ u64 tte_vaddr, tte_data;
+ unsigned long hv_err;
+ int i;
+
+ hdesc = kzalloc(sizeof(*hdesc) +
+ (sizeof(struct hvtramp_mapping) *
+ num_kernel_image_mappings - 1),
+ GFP_KERNEL);
+ if (!hdesc) {
+ printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
+ "hvtramp_descr.\n");
+ return;
+ }
+
+ hdesc->cpu = cpu;
+ hdesc->num_mappings = num_kernel_image_mappings;
+
+ tb = &trap_block[cpu];
+ tb->hdesc = hdesc;
+
+ hdesc->fault_info_va = (unsigned long) &tb->fault_info;
+ hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
+
+ hdesc->thread_reg = thread_reg;
+
+ tte_vaddr = (unsigned long) KERNBASE;
+ tte_data = kern_locked_tte_data;
+
+ for (i = 0; i < hdesc->num_mappings; i++) {
+ hdesc->maps[i].vaddr = tte_vaddr;
+ hdesc->maps[i].tte = tte_data;
+ tte_vaddr += 0x400000;
+ tte_data += 0x400000;
+ }
+
+ trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
+
+ hv_err = sun4v_cpu_start(cpu, trampoline_ra,
+ kimage_addr_to_ra(&sparc64_ttable_tl0),
+ __pa(hdesc));
+ if (hv_err)
+ printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
+ "gives error %lu\n", hv_err);
+}
+#endif
+
+extern unsigned long sparc64_cpu_startup;
+
+/* The OBP cpu startup callback truncates the 3rd arg cookie to
+ * 32-bits (I think) so to be safe we have it read the pointer
+ * contained here so we work on >4GB machines. -DaveM
+ */
+static struct thread_info *cpu_new_thread = NULL;
+
+static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
+{
+ struct trap_per_cpu *tb = &trap_block[cpu];
+ unsigned long entry =
+ (unsigned long)(&sparc64_cpu_startup);
+ unsigned long cookie =
+ (unsigned long)(&cpu_new_thread);
+ struct task_struct *p;
+ int timeout, ret;
+
+ p = fork_idle(cpu);
+ if (IS_ERR(p))
+ return PTR_ERR(p);
+ callin_flag = 0;
+ cpu_new_thread = task_thread_info(p);
+
+ if (tlb_type == hypervisor) {
+#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
+ if (ldom_domaining_enabled)
+ ldom_startcpu_cpuid(cpu,
+ (unsigned long) cpu_new_thread);
+ else
+#endif
+ prom_startcpu_cpuid(cpu, entry, cookie);
+ } else {
+ struct device_node *dp = of_find_node_by_cpuid(cpu);
+
+ prom_startcpu(dp->node, entry, cookie);
+ }
+
+ for (timeout = 0; timeout < 50000; timeout++) {
+ if (callin_flag)
+ break;
+ udelay(100);
+ }
+
+ if (callin_flag) {
+ ret = 0;
+ } else {
+ printk("Processor %d is stuck.\n", cpu);
+ ret = -ENODEV;
+ }
+ cpu_new_thread = NULL;
+
+ if (tb->hdesc) {
+ kfree(tb->hdesc);
+ tb->hdesc = NULL;
+ }
+
+ return ret;
+}
+
+static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
+{
+ u64 result, target;
+ int stuck, tmp;
+
+ if (this_is_starfire) {
+ /* map to real upaid */
+ cpu = (((cpu & 0x3c) << 1) |
+ ((cpu & 0x40) >> 4) |
+ (cpu & 0x3));
+ }
+
+ target = (cpu << 14) | 0x70;
+again:
+ /* Ok, this is the real Spitfire Errata #54.
+ * One must read back from a UDB internal register
+ * after writes to the UDB interrupt dispatch, but
+ * before the membar Sync for that write.
+ * So we use the high UDB control register (ASI 0x7f,
+ * ADDR 0x20) for the dummy read. -DaveM
+ */
+ tmp = 0x40;
+ __asm__ __volatile__(
+ "wrpr %1, %2, %%pstate\n\t"
+ "stxa %4, [%0] %3\n\t"
+ "stxa %5, [%0+%8] %3\n\t"
+ "add %0, %8, %0\n\t"
+ "stxa %6, [%0+%8] %3\n\t"
+ "membar #Sync\n\t"
+ "stxa %%g0, [%7] %3\n\t"
+ "membar #Sync\n\t"
+ "mov 0x20, %%g1\n\t"
+ "ldxa [%%g1] 0x7f, %%g0\n\t"
+ "membar #Sync"
+ : "=r" (tmp)
+ : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
+ "r" (data0), "r" (data1), "r" (data2), "r" (target),
+ "r" (0x10), "0" (tmp)
+ : "g1");
+
+ /* NOTE: PSTATE_IE is still clear. */
+ stuck = 100000;
+ do {
+ __asm__ __volatile__("ldxa [%%g0] %1, %0"
+ : "=r" (result)
+ : "i" (ASI_INTR_DISPATCH_STAT));
+ if (result == 0) {
+ __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
+ : : "r" (pstate));
+ return;
+ }
+ stuck -= 1;
+ if (stuck == 0)
+ break;
+ } while (result & 0x1);
+ __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
+ : : "r" (pstate));
+ if (stuck == 0) {
+ printk("CPU[%d]: mondo stuckage result[%016lx]\n",
+ smp_processor_id(), result);
+ } else {
+ udelay(2);
+ goto again;
+ }
+}
+
+static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
+{
+ u64 *mondo, data0, data1, data2;
+ u16 *cpu_list;
+ u64 pstate;
+ int i;
+
+ __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
+ cpu_list = __va(tb->cpu_list_pa);
+ mondo = __va(tb->cpu_mondo_block_pa);
+ data0 = mondo[0];
+ data1 = mondo[1];
+ data2 = mondo[2];
+ for (i = 0; i < cnt; i++)
+ spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
+}
+
+/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
+ * packet, but we have no use for that. However we do take advantage of
+ * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
+ */
+static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
+{
+ int nack_busy_id, is_jbus, need_more;
+ u64 *mondo, pstate, ver, busy_mask;
+ u16 *cpu_list;
+
+ cpu_list = __va(tb->cpu_list_pa);
+ mondo = __va(tb->cpu_mondo_block_pa);
+
+ /* Unfortunately, someone at Sun had the brilliant idea to make the
+ * busy/nack fields hard-coded by ITID number for this Ultra-III
+ * derivative processor.
+ */
+ __asm__ ("rdpr %%ver, %0" : "=r" (ver));
+ is_jbus = ((ver >> 32) == __JALAPENO_ID ||
+ (ver >> 32) == __SERRANO_ID);
+
+ __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
+
+retry:
+ need_more = 0;
+ __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
+ : : "r" (pstate), "i" (PSTATE_IE));
+
+ /* Setup the dispatch data registers. */
+ __asm__ __volatile__("stxa %0, [%3] %6\n\t"
+ "stxa %1, [%4] %6\n\t"
+ "stxa %2, [%5] %6\n\t"
+ "membar #Sync\n\t"
+ : /* no outputs */
+ : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
+ "r" (0x40), "r" (0x50), "r" (0x60),
+ "i" (ASI_INTR_W));
+
+ nack_busy_id = 0;
+ busy_mask = 0;
+ {
+ int i;
+
+ for (i = 0; i < cnt; i++) {
+ u64 target, nr;
+
+ nr = cpu_list[i];
+ if (nr == 0xffff)
+ continue;
+
+ target = (nr << 14) | 0x70;
+ if (is_jbus) {
+ busy_mask |= (0x1UL << (nr * 2));
+ } else {
+ target |= (nack_busy_id << 24);
+ busy_mask |= (0x1UL <<
+ (nack_busy_id * 2));
+ }
+ __asm__ __volatile__(
+ "stxa %%g0, [%0] %1\n\t"
+ "membar #Sync\n\t"
+ : /* no outputs */
+ : "r" (target), "i" (ASI_INTR_W));
+ nack_busy_id++;
+ if (nack_busy_id == 32) {
+ need_more = 1;
+ break;
+ }
+ }
+ }
+
+ /* Now, poll for completion. */
+ {
+ u64 dispatch_stat, nack_mask;
+ long stuck;
+
+ stuck = 100000 * nack_busy_id;
+ nack_mask = busy_mask << 1;
+ do {
+ __asm__ __volatile__("ldxa [%%g0] %1, %0"
+ : "=r" (dispatch_stat)
+ : "i" (ASI_INTR_DISPATCH_STAT));
+ if (!(dispatch_stat & (busy_mask | nack_mask))) {
+ __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
+ : : "r" (pstate));
+ if (unlikely(need_more)) {
+ int i, this_cnt = 0;
+ for (i = 0; i < cnt; i++) {
+ if (cpu_list[i] == 0xffff)
+ continue;
+ cpu_list[i] = 0xffff;
+ this_cnt++;
+ if (this_cnt == 32)
+ break;
+ }
+ goto retry;
+ }
+ return;
+ }
+ if (!--stuck)
+ break;
+ } while (dispatch_stat & busy_mask);
+
+ __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
+ : : "r" (pstate));
+
+ if (dispatch_stat & busy_mask) {
+ /* Busy bits will not clear, continue instead
+ * of freezing up on this cpu.
+ */
+ printk("CPU[%d]: mondo stuckage result[%016lx]\n",
+ smp_processor_id(), dispatch_stat);
+ } else {
+ int i, this_busy_nack = 0;
+
+ /* Delay some random time with interrupts enabled
+ * to prevent deadlock.
+ */
+ udelay(2 * nack_busy_id);
+
+ /* Clear out the mask bits for cpus which did not
+ * NACK us.
+ */
+ for (i = 0; i < cnt; i++) {
+ u64 check_mask, nr;
+
+ nr = cpu_list[i];
+ if (nr == 0xffff)
+ continue;
+
+ if (is_jbus)
+ check_mask = (0x2UL << (2*nr));
+ else
+ check_mask = (0x2UL <<
+ this_busy_nack);
+ if ((dispatch_stat & check_mask) == 0)
+ cpu_list[i] = 0xffff;
+ this_busy_nack += 2;
+ if (this_busy_nack == 64)
+ break;
+ }
+
+ goto retry;
+ }
+ }
+}
+
+/* Multi-cpu list version. */
+static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
+{
+ int retries, this_cpu, prev_sent, i, saw_cpu_error;
+ unsigned long status;
+ u16 *cpu_list;
+
+ this_cpu = smp_processor_id();
+
+ cpu_list = __va(tb->cpu_list_pa);
+
+ saw_cpu_error = 0;
+ retries = 0;
+ prev_sent = 0;
+ do {
+ int forward_progress, n_sent;
+
+ status = sun4v_cpu_mondo_send(cnt,
+ tb->cpu_list_pa,
+ tb->cpu_mondo_block_pa);
+
+ /* HV_EOK means all cpus received the xcall, we're done. */
+ if (likely(status == HV_EOK))
+ break;
+
+ /* First, see if we made any forward progress.
+ *
+ * The hypervisor indicates successful sends by setting
+ * cpu list entries to the value 0xffff.
+ */
+ n_sent = 0;
+ for (i = 0; i < cnt; i++) {
+ if (likely(cpu_list[i] == 0xffff))
+ n_sent++;
+ }
+
+ forward_progress = 0;
+ if (n_sent > prev_sent)
+ forward_progress = 1;
+
+ prev_sent = n_sent;
+
+ /* If we get a HV_ECPUERROR, then one or more of the cpus
+ * in the list are in error state. Use the cpu_state()
+ * hypervisor call to find out which cpus are in error state.
+ */
+ if (unlikely(status == HV_ECPUERROR)) {
+ for (i = 0; i < cnt; i++) {
+ long err;
+ u16 cpu;
+
+ cpu = cpu_list[i];
+ if (cpu == 0xffff)
+ continue;
+
+ err = sun4v_cpu_state(cpu);
+ if (err == HV_CPU_STATE_ERROR) {
+ saw_cpu_error = (cpu + 1);
+ cpu_list[i] = 0xffff;
+ }
+ }
+ } else if (unlikely(status != HV_EWOULDBLOCK))
+ goto fatal_mondo_error;
+
+ /* Don't bother rewriting the CPU list, just leave the
+ * 0xffff and non-0xffff entries in there and the
+ * hypervisor will do the right thing.
+ *
+ * Only advance timeout state if we didn't make any
+ * forward progress.
+ */
+ if (unlikely(!forward_progress)) {
+ if (unlikely(++retries > 10000))
+ goto fatal_mondo_timeout;
+
+ /* Delay a little bit to let other cpus catch up
+ * on their cpu mondo queue work.
+ */
+ udelay(2 * cnt);
+ }
+ } while (1);
+
+ if (unlikely(saw_cpu_error))
+ goto fatal_mondo_cpu_error;
+
+ return;
+
+fatal_mondo_cpu_error:
+ printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
+ "(including %d) were in error state\n",
+ this_cpu, saw_cpu_error - 1);
+ return;
+
+fatal_mondo_timeout:
+ printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
+ " progress after %d retries.\n",
+ this_cpu, retries);
+ goto dump_cpu_list_and_out;
+
+fatal_mondo_error:
+ printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
+ this_cpu, status);
+ printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
+ "mondo_block_pa(%lx)\n",
+ this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
+
+dump_cpu_list_and_out:
+ printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
+ for (i = 0; i < cnt; i++)
+ printk("%u ", cpu_list[i]);
+ printk("]\n");
+}
+
+static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
+
+static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
+{
+ struct trap_per_cpu *tb;
+ int this_cpu, i, cnt;
+ unsigned long flags;
+ u16 *cpu_list;
+ u64 *mondo;
+
+ /* We have to do this whole thing with interrupts fully disabled.
+ * Otherwise if we send an xcall from interrupt context it will
+ * corrupt both our mondo block and cpu list state.
+ *
+ * One consequence of this is that we cannot use timeout mechanisms
+ * that depend upon interrupts being delivered locally. So, for
+ * example, we cannot sample jiffies and expect it to advance.
+ *
+ * Fortunately, udelay() uses %stick/%tick so we can use that.
+ */
+ local_irq_save(flags);
+
+ this_cpu = smp_processor_id();
+ tb = &trap_block[this_cpu];
+
+ mondo = __va(tb->cpu_mondo_block_pa);
+ mondo[0] = data0;
+ mondo[1] = data1;
+ mondo[2] = data2;
+ wmb();
+
+ cpu_list = __va(tb->cpu_list_pa);
+
+ /* Setup the initial cpu list. */
+ cnt = 0;
+ for_each_cpu(i, mask) {
+ if (i == this_cpu || !cpu_online(i))
+ continue;
+ cpu_list[cnt++] = i;
+ }
+
+ if (cnt)
+ xcall_deliver_impl(tb, cnt);
+
+ local_irq_restore(flags);
+}
+
+/* Send cross call to all processors mentioned in MASK_P
+ * except self. Really, there are only two cases currently,
+ * "&cpu_online_map" and "&mm->cpu_vm_mask".
+ */
+static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
+{
+ u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
+
+ xcall_deliver(data0, data1, data2, mask);
+}
+
+/* Send cross call to all processors except self. */
+static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
+{
+ smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
+}
+
+extern unsigned long xcall_sync_tick;
+
+static void smp_start_sync_tick_client(int cpu)
+{
+ xcall_deliver((u64) &xcall_sync_tick, 0, 0,
+ &cpumask_of_cpu(cpu));
+}
+
+extern unsigned long xcall_call_function;
+
+void arch_send_call_function_ipi(cpumask_t mask)
+{
+ xcall_deliver((u64) &xcall_call_function, 0, 0, &mask);
+}
+
+extern unsigned long xcall_call_function_single;
+
+void arch_send_call_function_single_ipi(int cpu)
+{
+ xcall_deliver((u64) &xcall_call_function_single, 0, 0,
+ &cpumask_of_cpu(cpu));
+}
+
+void smp_call_function_client(int irq, struct pt_regs *regs)
+{
+ clear_softint(1 << irq);
+ generic_smp_call_function_interrupt();
+}
+
+void smp_call_function_single_client(int irq, struct pt_regs *regs)
+{
+ clear_softint(1 << irq);
+ generic_smp_call_function_single_interrupt();
+}
+
+static void tsb_sync(void *info)
+{
+ struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
+ struct mm_struct *mm = info;
+
+ /* It is not valid to test "currrent->active_mm == mm" here.
+ *
+ * The value of "current" is not changed atomically with
+ * switch_mm(). But that's OK, we just need to check the
+ * current cpu's trap block PGD physical address.
+ */
+ if (tp->pgd_paddr == __pa(mm->pgd))
+ tsb_context_switch(mm);
+}
+
+void smp_tsb_sync(struct mm_struct *mm)
+{
+ smp_call_function_mask(mm->cpu_vm_mask, tsb_sync, mm, 1);
+}
+
+extern unsigned long xcall_flush_tlb_mm;
+extern unsigned long xcall_flush_tlb_pending;
+extern unsigned long xcall_flush_tlb_kernel_range;
+extern unsigned long xcall_fetch_glob_regs;
+extern unsigned long xcall_receive_signal;
+extern unsigned long xcall_new_mmu_context_version;
+#ifdef CONFIG_KGDB
+extern unsigned long xcall_kgdb_capture;
+#endif
+
+#ifdef DCACHE_ALIASING_POSSIBLE
+extern unsigned long xcall_flush_dcache_page_cheetah;
+#endif
+extern unsigned long xcall_flush_dcache_page_spitfire;
+
+#ifdef CONFIG_DEBUG_DCFLUSH
+extern atomic_t dcpage_flushes;
+extern atomic_t dcpage_flushes_xcall;
+#endif
+
+static inline void __local_flush_dcache_page(struct page *page)
+{
+#ifdef DCACHE_ALIASING_POSSIBLE
+ __flush_dcache_page(page_address(page),
+ ((tlb_type == spitfire) &&
+ page_mapping(page) != NULL));
+#else
+ if (page_mapping(page) != NULL &&
+ tlb_type == spitfire)
+ __flush_icache_page(__pa(page_address(page)));
+#endif
+}
+
+void smp_flush_dcache_page_impl(struct page *page, int cpu)
+{
+ int this_cpu;
+
+ if (tlb_type == hypervisor)
+ return;
+
+#ifdef CONFIG_DEBUG_DCFLUSH
+ atomic_inc(&dcpage_flushes);
+#endif
+
+ this_cpu = get_cpu();
+
+ if (cpu == this_cpu) {
+ __local_flush_dcache_page(page);
+ } else if (cpu_online(cpu)) {
+ void *pg_addr = page_address(page);
+ u64 data0 = 0;
+
+ if (tlb_type == spitfire) {
+ data0 = ((u64)&xcall_flush_dcache_page_spitfire);
+ if (page_mapping(page) != NULL)
+ data0 |= ((u64)1 << 32);
+ } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
+#ifdef DCACHE_ALIASING_POSSIBLE
+ data0 = ((u64)&xcall_flush_dcache_page_cheetah);
+#endif
+ }
+ if (data0) {
+ xcall_deliver(data0, __pa(pg_addr),
+ (u64) pg_addr, &cpumask_of_cpu(cpu));
+#ifdef CONFIG_DEBUG_DCFLUSH
+ atomic_inc(&dcpage_flushes_xcall);
+#endif
+ }
+ }
+
+ put_cpu();
+}
+
+void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
+{
+ void *pg_addr;
+ int this_cpu;
+ u64 data0;
+
+ if (tlb_type == hypervisor)
+ return;
+
+ this_cpu = get_cpu();
+
+#ifdef CONFIG_DEBUG_DCFLUSH
+ atomic_inc(&dcpage_flushes);
+#endif
+ data0 = 0;
+ pg_addr = page_address(page);
+ if (tlb_type == spitfire) {
+ data0 = ((u64)&xcall_flush_dcache_page_spitfire);
+ if (page_mapping(page) != NULL)
+ data0 |= ((u64)1 << 32);
+ } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
+#ifdef DCACHE_ALIASING_POSSIBLE
+ data0 = ((u64)&xcall_flush_dcache_page_cheetah);
+#endif
+ }
+ if (data0) {
+ xcall_deliver(data0, __pa(pg_addr),
+ (u64) pg_addr, &cpu_online_map);
+#ifdef CONFIG_DEBUG_DCFLUSH
+ atomic_inc(&dcpage_flushes_xcall);
+#endif
+ }
+ __local_flush_dcache_page(page);
+
+ put_cpu();
+}
+
+void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
+{
+ struct mm_struct *mm;
+ unsigned long flags;
+
+ clear_softint(1 << irq);
+
+ /* See if we need to allocate a new TLB context because
+ * the version of the one we are using is now out of date.
+ */
+ mm = current->active_mm;
+ if (unlikely(!mm || (mm == &init_mm)))
+ return;
+
+ spin_lock_irqsave(&mm->context.lock, flags);
+
+ if (unlikely(!CTX_VALID(mm->context)))
+ get_new_mmu_context(mm);
+
+ spin_unlock_irqrestore(&mm->context.lock, flags);
+
+ load_secondary_context(mm);
+ __flush_tlb_mm(CTX_HWBITS(mm->context),
+ SECONDARY_CONTEXT);
+}
+
+void smp_new_mmu_context_version(void)
+{
+ smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
+}
+
+#ifdef CONFIG_KGDB
+void kgdb_roundup_cpus(unsigned long flags)
+{
+ smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
+}
+#endif
+
+void smp_fetch_global_regs(void)
+{
+ smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
+}
+
+/* We know that the window frames of the user have been flushed
+ * to the stack before we get here because all callers of us
+ * are flush_tlb_*() routines, and these run after flush_cache_*()
+ * which performs the flushw.
+ *
+ * The SMP TLB coherency scheme we use works as follows:
+ *
+ * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
+ * space has (potentially) executed on, this is the heuristic
+ * we use to avoid doing cross calls.
+ *
+ * Also, for flushing from kswapd and also for clones, we
+ * use cpu_vm_mask as the list of cpus to make run the TLB.
+ *
+ * 2) TLB context numbers are shared globally across all processors
+ * in the system, this allows us to play several games to avoid
+ * cross calls.
+ *
+ * One invariant is that when a cpu switches to a process, and
+ * that processes tsk->active_mm->cpu_vm_mask does not have the
+ * current cpu's bit set, that tlb context is flushed locally.
+ *
+ * If the address space is non-shared (ie. mm->count == 1) we avoid
+ * cross calls when we want to flush the currently running process's
+ * tlb state. This is done by clearing all cpu bits except the current
+ * processor's in current->active_mm->cpu_vm_mask and performing the
+ * flush locally only. This will force any subsequent cpus which run
+ * this task to flush the context from the local tlb if the process
+ * migrates to another cpu (again).
+ *
+ * 3) For shared address spaces (threads) and swapping we bite the
+ * bullet for most cases and perform the cross call (but only to
+ * the cpus listed in cpu_vm_mask).
+ *
+ * The performance gain from "optimizing" away the cross call for threads is
+ * questionable (in theory the big win for threads is the massive sharing of
+ * address space state across processors).
+ */
+
+/* This currently is only used by the hugetlb arch pre-fault
+ * hook on UltraSPARC-III+ and later when changing the pagesize
+ * bits of the context register for an address space.
+ */
+void smp_flush_tlb_mm(struct mm_struct *mm)
+{
+ u32 ctx = CTX_HWBITS(mm->context);
+ int cpu = get_cpu();
+
+ if (atomic_read(&mm->mm_users) == 1) {
+ mm->cpu_vm_mask = cpumask_of_cpu(cpu);
+ goto local_flush_and_out;
+ }
+
+ smp_cross_call_masked(&xcall_flush_tlb_mm,
+ ctx, 0, 0,
+ &mm->cpu_vm_mask);
+
+local_flush_and_out:
+ __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
+
+ put_cpu();
+}
+
+void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
+{
+ u32 ctx = CTX_HWBITS(mm->context);
+ int cpu = get_cpu();
+
+ if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
+ mm->cpu_vm_mask = cpumask_of_cpu(cpu);
+ else
+ smp_cross_call_masked(&xcall_flush_tlb_pending,
+ ctx, nr, (unsigned long) vaddrs,
+ &mm->cpu_vm_mask);
+
+ __flush_tlb_pending(ctx, nr, vaddrs);
+
+ put_cpu();
+}
+
+void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
+{
+ start &= PAGE_MASK;
+ end = PAGE_ALIGN(end);
+ if (start != end) {
+ smp_cross_call(&xcall_flush_tlb_kernel_range,
+ 0, start, end);
+
+ __flush_tlb_kernel_range(start, end);
+ }
+}
+
+/* CPU capture. */
+/* #define CAPTURE_DEBUG */
+extern unsigned long xcall_capture;
+
+static atomic_t smp_capture_depth = ATOMIC_INIT(0);
+static atomic_t smp_capture_registry = ATOMIC_INIT(0);
+static unsigned long penguins_are_doing_time;
+
+void smp_capture(void)
+{
+ int result = atomic_add_ret(1, &smp_capture_depth);
+
+ if (result == 1) {
+ int ncpus = num_online_cpus();
+
+#ifdef CAPTURE_DEBUG
+ printk("CPU[%d]: Sending penguins to jail...",
+ smp_processor_id());
+#endif
+ penguins_are_doing_time = 1;
+ atomic_inc(&smp_capture_registry);
+ smp_cross_call(&xcall_capture, 0, 0, 0);
+ while (atomic_read(&smp_capture_registry) != ncpus)
+ rmb();
+#ifdef CAPTURE_DEBUG
+ printk("done\n");
+#endif
+ }
+}
+
+void smp_release(void)
+{
+ if (atomic_dec_and_test(&smp_capture_depth)) {
+#ifdef CAPTURE_DEBUG
+ printk("CPU[%d]: Giving pardon to "
+ "imprisoned penguins\n",
+ smp_processor_id());
+#endif
+ penguins_are_doing_time = 0;
+ membar_safe("#StoreLoad");
+ atomic_dec(&smp_capture_registry);
+ }
+}
+
+/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
+ * set, so they can service tlb flush xcalls...
+ */
+extern void prom_world(int);
+
+void smp_penguin_jailcell(int irq, struct pt_regs *regs)
+{
+ clear_softint(1 << irq);
+
+ preempt_disable();
+
+ __asm__ __volatile__("flushw");
+ prom_world(1);
+ atomic_inc(&smp_capture_registry);
+ membar_safe("#StoreLoad");
+ while (penguins_are_doing_time)
+ rmb();
+ atomic_dec(&smp_capture_registry);
+ prom_world(0);
+
+ preempt_enable();
+}
+
+/* /proc/profile writes can call this, don't __init it please. */
+int setup_profiling_timer(unsigned int multiplier)
+{
+ return -EINVAL;
+}
+
+void __init smp_prepare_cpus(unsigned int max_cpus)
+{
+}
+
+void __devinit smp_prepare_boot_cpu(void)
+{
+}
+
+void __init smp_setup_processor_id(void)
+{
+ if (tlb_type == spitfire)
+ xcall_deliver_impl = spitfire_xcall_deliver;
+ else if (tlb_type == cheetah || tlb_type == cheetah_plus)
+ xcall_deliver_impl = cheetah_xcall_deliver;
+ else
+ xcall_deliver_impl = hypervisor_xcall_deliver;
+}
+
+void __devinit smp_fill_in_sib_core_maps(void)
+{
+ unsigned int i;
+
+ for_each_present_cpu(i) {
+ unsigned int j;
+
+ cpus_clear(cpu_core_map[i]);
+ if (cpu_data(i).core_id == 0) {
+ cpu_set(i, cpu_core_map[i]);
+ continue;
+ }
+
+ for_each_present_cpu(j) {
+ if (cpu_data(i).core_id ==
+ cpu_data(j).core_id)
+ cpu_set(j, cpu_core_map[i]);
+ }
+ }
+
+ for_each_present_cpu(i) {
+ unsigned int j;
+
+ cpus_clear(per_cpu(cpu_sibling_map, i));
+ if (cpu_data(i).proc_id == -1) {
+ cpu_set(i, per_cpu(cpu_sibling_map, i));
+ continue;
+ }
+
+ for_each_present_cpu(j) {
+ if (cpu_data(i).proc_id ==
+ cpu_data(j).proc_id)
+ cpu_set(j, per_cpu(cpu_sibling_map, i));
+ }
+ }
+}
+
+int __cpuinit __cpu_up(unsigned int cpu)
+{
+ int ret = smp_boot_one_cpu(cpu);
+
+ if (!ret) {
+ cpu_set(cpu, smp_commenced_mask);
+ while (!cpu_isset(cpu, cpu_online_map))
+ mb();
+ if (!cpu_isset(cpu, cpu_online_map)) {
+ ret = -ENODEV;
+ } else {
+ /* On SUN4V, writes to %tick and %stick are
+ * not allowed.
+ */
+ if (tlb_type != hypervisor)
+ smp_synchronize_one_tick(cpu);
+ }
+ }
+ return ret;
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+void cpu_play_dead(void)
+{
+ int cpu = smp_processor_id();
+ unsigned long pstate;
+
+ idle_task_exit();
+
+ if (tlb_type == hypervisor) {
+ struct trap_per_cpu *tb = &trap_block[cpu];
+
+ sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
+ tb->cpu_mondo_pa, 0);
+ sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
+ tb->dev_mondo_pa, 0);
+ sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
+ tb->resum_mondo_pa, 0);
+ sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
+ tb->nonresum_mondo_pa, 0);
+ }
+
+ cpu_clear(cpu, smp_commenced_mask);
+ membar_safe("#Sync");
+
+ local_irq_disable();
+
+ __asm__ __volatile__(
+ "rdpr %%pstate, %0\n\t"
+ "wrpr %0, %1, %%pstate"
+ : "=r" (pstate)
+ : "i" (PSTATE_IE));
+
+ while (1)
+ barrier();
+}
+
+int __cpu_disable(void)
+{
+ int cpu = smp_processor_id();
+ cpuinfo_sparc *c;
+ int i;
+
+ for_each_cpu_mask(i, cpu_core_map[cpu])
+ cpu_clear(cpu, cpu_core_map[i]);
+ cpus_clear(cpu_core_map[cpu]);
+
+ for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
+ cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
+ cpus_clear(per_cpu(cpu_sibling_map, cpu));
+
+ c = &cpu_data(cpu);
+
+ c->core_id = 0;
+ c->proc_id = -1;
+
+ smp_wmb();
+
+ /* Make sure no interrupts point to this cpu. */
+ fixup_irqs();
+
+ local_irq_enable();
+ mdelay(1);
+ local_irq_disable();
+
+ ipi_call_lock();
+ cpu_clear(cpu, cpu_online_map);
+ ipi_call_unlock();
+
+ return 0;
+}
+
+void __cpu_die(unsigned int cpu)
+{
+ int i;
+
+ for (i = 0; i < 100; i++) {
+ smp_rmb();
+ if (!cpu_isset(cpu, smp_commenced_mask))
+ break;
+ msleep(100);
+ }
+ if (cpu_isset(cpu, smp_commenced_mask)) {
+ printk(KERN_ERR "CPU %u didn't die...\n", cpu);
+ } else {
+#if defined(CONFIG_SUN_LDOMS)
+ unsigned long hv_err;
+ int limit = 100;
+
+ do {
+ hv_err = sun4v_cpu_stop(cpu);
+ if (hv_err == HV_EOK) {
+ cpu_clear(cpu, cpu_present_map);
+ break;
+ }
+ } while (--limit > 0);
+ if (limit <= 0) {
+ printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
+ hv_err);
+ }
+#endif
+ }
+}
+#endif
+
+void __init smp_cpus_done(unsigned int max_cpus)
+{
+}
+
+void smp_send_reschedule(int cpu)
+{
+ xcall_deliver((u64) &xcall_receive_signal, 0, 0,
+ &cpumask_of_cpu(cpu));
+}
+
+void smp_receive_signal_client(int irq, struct pt_regs *regs)
+{
+ clear_softint(1 << irq);
+}
+
+/* This is a nop because we capture all other cpus
+ * anyways when making the PROM active.
+ */
+void smp_send_stop(void)
+{
+}
+
+unsigned long __per_cpu_base __read_mostly;
+unsigned long __per_cpu_shift __read_mostly;
+
+EXPORT_SYMBOL(__per_cpu_base);
+EXPORT_SYMBOL(__per_cpu_shift);
+
+void __init real_setup_per_cpu_areas(void)
+{
+ unsigned long paddr, goal, size, i;
+ char *ptr;
+
+ /* Copy section for each CPU (we discard the original) */
+ goal = PERCPU_ENOUGH_ROOM;
+
+ __per_cpu_shift = PAGE_SHIFT;
+ for (size = PAGE_SIZE; size < goal; size <<= 1UL)
+ __per_cpu_shift++;
+
+ paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE);
+ if (!paddr) {
+ prom_printf("Cannot allocate per-cpu memory.\n");
+ prom_halt();
+ }
+
+ ptr = __va(paddr);
+ __per_cpu_base = ptr - __per_cpu_start;
+
+ for (i = 0; i < NR_CPUS; i++, ptr += size)
+ memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
+
+ /* Setup %g5 for the boot cpu. */
+ __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
+}