summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/sev.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kernel/sev.c')
-rw-r--r--arch/x86/kernel/sev.c1495
1 files changed, 1495 insertions, 0 deletions
diff --git a/arch/x86/kernel/sev.c b/arch/x86/kernel/sev.c
new file mode 100644
index 000000000000..651b81cd648e
--- /dev/null
+++ b/arch/x86/kernel/sev.c
@@ -0,0 +1,1495 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * AMD Memory Encryption Support
+ *
+ * Copyright (C) 2019 SUSE
+ *
+ * Author: Joerg Roedel <jroedel@suse.de>
+ */
+
+#define pr_fmt(fmt) "SEV-ES: " fmt
+
+#include <linux/sched/debug.h> /* For show_regs() */
+#include <linux/percpu-defs.h>
+#include <linux/mem_encrypt.h>
+#include <linux/lockdep.h>
+#include <linux/printk.h>
+#include <linux/mm_types.h>
+#include <linux/set_memory.h>
+#include <linux/memblock.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+
+#include <asm/cpu_entry_area.h>
+#include <asm/stacktrace.h>
+#include <asm/sev.h>
+#include <asm/insn-eval.h>
+#include <asm/fpu/internal.h>
+#include <asm/processor.h>
+#include <asm/realmode.h>
+#include <asm/traps.h>
+#include <asm/svm.h>
+#include <asm/smp.h>
+#include <asm/cpu.h>
+
+#define DR7_RESET_VALUE 0x400
+
+/* For early boot hypervisor communication in SEV-ES enabled guests */
+static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
+
+/*
+ * Needs to be in the .data section because we need it NULL before bss is
+ * cleared
+ */
+static struct ghcb __initdata *boot_ghcb;
+
+/* #VC handler runtime per-CPU data */
+struct sev_es_runtime_data {
+ struct ghcb ghcb_page;
+
+ /* Physical storage for the per-CPU IST stack of the #VC handler */
+ char ist_stack[EXCEPTION_STKSZ] __aligned(PAGE_SIZE);
+
+ /*
+ * Physical storage for the per-CPU fall-back stack of the #VC handler.
+ * The fall-back stack is used when it is not safe to switch back to the
+ * interrupted stack in the #VC entry code.
+ */
+ char fallback_stack[EXCEPTION_STKSZ] __aligned(PAGE_SIZE);
+
+ /*
+ * Reserve one page per CPU as backup storage for the unencrypted GHCB.
+ * It is needed when an NMI happens while the #VC handler uses the real
+ * GHCB, and the NMI handler itself is causing another #VC exception. In
+ * that case the GHCB content of the first handler needs to be backed up
+ * and restored.
+ */
+ struct ghcb backup_ghcb;
+
+ /*
+ * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
+ * There is no need for it to be atomic, because nothing is written to
+ * the GHCB between the read and the write of ghcb_active. So it is safe
+ * to use it when a nested #VC exception happens before the write.
+ *
+ * This is necessary for example in the #VC->NMI->#VC case when the NMI
+ * happens while the first #VC handler uses the GHCB. When the NMI code
+ * raises a second #VC handler it might overwrite the contents of the
+ * GHCB written by the first handler. To avoid this the content of the
+ * GHCB is saved and restored when the GHCB is detected to be in use
+ * already.
+ */
+ bool ghcb_active;
+ bool backup_ghcb_active;
+
+ /*
+ * Cached DR7 value - write it on DR7 writes and return it on reads.
+ * That value will never make it to the real hardware DR7 as debugging
+ * is currently unsupported in SEV-ES guests.
+ */
+ unsigned long dr7;
+};
+
+struct ghcb_state {
+ struct ghcb *ghcb;
+};
+
+static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
+DEFINE_STATIC_KEY_FALSE(sev_es_enable_key);
+
+/* Needed in vc_early_forward_exception */
+void do_early_exception(struct pt_regs *regs, int trapnr);
+
+static void __init setup_vc_stacks(int cpu)
+{
+ struct sev_es_runtime_data *data;
+ struct cpu_entry_area *cea;
+ unsigned long vaddr;
+ phys_addr_t pa;
+
+ data = per_cpu(runtime_data, cpu);
+ cea = get_cpu_entry_area(cpu);
+
+ /* Map #VC IST stack */
+ vaddr = CEA_ESTACK_BOT(&cea->estacks, VC);
+ pa = __pa(data->ist_stack);
+ cea_set_pte((void *)vaddr, pa, PAGE_KERNEL);
+
+ /* Map VC fall-back stack */
+ vaddr = CEA_ESTACK_BOT(&cea->estacks, VC2);
+ pa = __pa(data->fallback_stack);
+ cea_set_pte((void *)vaddr, pa, PAGE_KERNEL);
+}
+
+static __always_inline bool on_vc_stack(struct pt_regs *regs)
+{
+ unsigned long sp = regs->sp;
+
+ /* User-mode RSP is not trusted */
+ if (user_mode(regs))
+ return false;
+
+ /* SYSCALL gap still has user-mode RSP */
+ if (ip_within_syscall_gap(regs))
+ return false;
+
+ return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
+}
+
+/*
+ * This function handles the case when an NMI is raised in the #VC
+ * exception handler entry code, before the #VC handler has switched off
+ * its IST stack. In this case, the IST entry for #VC must be adjusted,
+ * so that any nested #VC exception will not overwrite the stack
+ * contents of the interrupted #VC handler.
+ *
+ * The IST entry is adjusted unconditionally so that it can be also be
+ * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
+ * nested sev_es_ist_exit() call may adjust back the IST entry too
+ * early.
+ *
+ * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
+ * on the NMI IST stack, as they are only called from NMI handling code
+ * right now.
+ */
+void noinstr __sev_es_ist_enter(struct pt_regs *regs)
+{
+ unsigned long old_ist, new_ist;
+
+ /* Read old IST entry */
+ new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
+
+ /*
+ * If NMI happened while on the #VC IST stack, set the new IST
+ * value below regs->sp, so that the interrupted stack frame is
+ * not overwritten by subsequent #VC exceptions.
+ */
+ if (on_vc_stack(regs))
+ new_ist = regs->sp;
+
+ /*
+ * Reserve additional 8 bytes and store old IST value so this
+ * adjustment can be unrolled in __sev_es_ist_exit().
+ */
+ new_ist -= sizeof(old_ist);
+ *(unsigned long *)new_ist = old_ist;
+
+ /* Set new IST entry */
+ this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
+}
+
+void noinstr __sev_es_ist_exit(void)
+{
+ unsigned long ist;
+
+ /* Read IST entry */
+ ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
+
+ if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
+ return;
+
+ /* Read back old IST entry and write it to the TSS */
+ this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
+}
+
+static __always_inline struct ghcb *sev_es_get_ghcb(struct ghcb_state *state)
+{
+ struct sev_es_runtime_data *data;
+ struct ghcb *ghcb;
+
+ data = this_cpu_read(runtime_data);
+ ghcb = &data->ghcb_page;
+
+ if (unlikely(data->ghcb_active)) {
+ /* GHCB is already in use - save its contents */
+
+ if (unlikely(data->backup_ghcb_active)) {
+ /*
+ * Backup-GHCB is also already in use. There is no way
+ * to continue here so just kill the machine. To make
+ * panic() work, mark GHCBs inactive so that messages
+ * can be printed out.
+ */
+ data->ghcb_active = false;
+ data->backup_ghcb_active = false;
+
+ panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
+ }
+
+ /* Mark backup_ghcb active before writing to it */
+ data->backup_ghcb_active = true;
+
+ state->ghcb = &data->backup_ghcb;
+
+ /* Backup GHCB content */
+ *state->ghcb = *ghcb;
+ } else {
+ state->ghcb = NULL;
+ data->ghcb_active = true;
+ }
+
+ return ghcb;
+}
+
+/* Needed in vc_early_forward_exception */
+void do_early_exception(struct pt_regs *regs, int trapnr);
+
+static inline u64 sev_es_rd_ghcb_msr(void)
+{
+ return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
+}
+
+static __always_inline void sev_es_wr_ghcb_msr(u64 val)
+{
+ u32 low, high;
+
+ low = (u32)(val);
+ high = (u32)(val >> 32);
+
+ native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
+}
+
+static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
+ unsigned char *buffer)
+{
+ return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
+}
+
+static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
+{
+ char buffer[MAX_INSN_SIZE];
+ int res;
+
+ res = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
+ if (!res) {
+ ctxt->fi.vector = X86_TRAP_PF;
+ ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
+ ctxt->fi.cr2 = ctxt->regs->ip;
+ return ES_EXCEPTION;
+ }
+
+ if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, res))
+ return ES_DECODE_FAILED;
+
+ if (ctxt->insn.immediate.got)
+ return ES_OK;
+ else
+ return ES_DECODE_FAILED;
+}
+
+static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
+{
+ char buffer[MAX_INSN_SIZE];
+ int res, ret;
+
+ res = vc_fetch_insn_kernel(ctxt, buffer);
+ if (res) {
+ ctxt->fi.vector = X86_TRAP_PF;
+ ctxt->fi.error_code = X86_PF_INSTR;
+ ctxt->fi.cr2 = ctxt->regs->ip;
+ return ES_EXCEPTION;
+ }
+
+ ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
+ if (ret < 0)
+ return ES_DECODE_FAILED;
+ else
+ return ES_OK;
+}
+
+static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
+{
+ if (user_mode(ctxt->regs))
+ return __vc_decode_user_insn(ctxt);
+ else
+ return __vc_decode_kern_insn(ctxt);
+}
+
+static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
+ char *dst, char *buf, size_t size)
+{
+ unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
+ char __user *target = (char __user *)dst;
+ u64 d8;
+ u32 d4;
+ u16 d2;
+ u8 d1;
+
+ /*
+ * This function uses __put_user() independent of whether kernel or user
+ * memory is accessed. This works fine because __put_user() does no
+ * sanity checks of the pointer being accessed. All that it does is
+ * to report when the access failed.
+ *
+ * Also, this function runs in atomic context, so __put_user() is not
+ * allowed to sleep. The page-fault handler detects that it is running
+ * in atomic context and will not try to take mmap_sem and handle the
+ * fault, so additional pagefault_enable()/disable() calls are not
+ * needed.
+ *
+ * The access can't be done via copy_to_user() here because
+ * vc_write_mem() must not use string instructions to access unsafe
+ * memory. The reason is that MOVS is emulated by the #VC handler by
+ * splitting the move up into a read and a write and taking a nested #VC
+ * exception on whatever of them is the MMIO access. Using string
+ * instructions here would cause infinite nesting.
+ */
+ switch (size) {
+ case 1:
+ memcpy(&d1, buf, 1);
+ if (__put_user(d1, target))
+ goto fault;
+ break;
+ case 2:
+ memcpy(&d2, buf, 2);
+ if (__put_user(d2, target))
+ goto fault;
+ break;
+ case 4:
+ memcpy(&d4, buf, 4);
+ if (__put_user(d4, target))
+ goto fault;
+ break;
+ case 8:
+ memcpy(&d8, buf, 8);
+ if (__put_user(d8, target))
+ goto fault;
+ break;
+ default:
+ WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
+ return ES_UNSUPPORTED;
+ }
+
+ return ES_OK;
+
+fault:
+ if (user_mode(ctxt->regs))
+ error_code |= X86_PF_USER;
+
+ ctxt->fi.vector = X86_TRAP_PF;
+ ctxt->fi.error_code = error_code;
+ ctxt->fi.cr2 = (unsigned long)dst;
+
+ return ES_EXCEPTION;
+}
+
+static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
+ char *src, char *buf, size_t size)
+{
+ unsigned long error_code = X86_PF_PROT;
+ char __user *s = (char __user *)src;
+ u64 d8;
+ u32 d4;
+ u16 d2;
+ u8 d1;
+
+ /*
+ * This function uses __get_user() independent of whether kernel or user
+ * memory is accessed. This works fine because __get_user() does no
+ * sanity checks of the pointer being accessed. All that it does is
+ * to report when the access failed.
+ *
+ * Also, this function runs in atomic context, so __get_user() is not
+ * allowed to sleep. The page-fault handler detects that it is running
+ * in atomic context and will not try to take mmap_sem and handle the
+ * fault, so additional pagefault_enable()/disable() calls are not
+ * needed.
+ *
+ * The access can't be done via copy_from_user() here because
+ * vc_read_mem() must not use string instructions to access unsafe
+ * memory. The reason is that MOVS is emulated by the #VC handler by
+ * splitting the move up into a read and a write and taking a nested #VC
+ * exception on whatever of them is the MMIO access. Using string
+ * instructions here would cause infinite nesting.
+ */
+ switch (size) {
+ case 1:
+ if (__get_user(d1, s))
+ goto fault;
+ memcpy(buf, &d1, 1);
+ break;
+ case 2:
+ if (__get_user(d2, s))
+ goto fault;
+ memcpy(buf, &d2, 2);
+ break;
+ case 4:
+ if (__get_user(d4, s))
+ goto fault;
+ memcpy(buf, &d4, 4);
+ break;
+ case 8:
+ if (__get_user(d8, s))
+ goto fault;
+ memcpy(buf, &d8, 8);
+ break;
+ default:
+ WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
+ return ES_UNSUPPORTED;
+ }
+
+ return ES_OK;
+
+fault:
+ if (user_mode(ctxt->regs))
+ error_code |= X86_PF_USER;
+
+ ctxt->fi.vector = X86_TRAP_PF;
+ ctxt->fi.error_code = error_code;
+ ctxt->fi.cr2 = (unsigned long)src;
+
+ return ES_EXCEPTION;
+}
+
+static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
+ unsigned long vaddr, phys_addr_t *paddr)
+{
+ unsigned long va = (unsigned long)vaddr;
+ unsigned int level;
+ phys_addr_t pa;
+ pgd_t *pgd;
+ pte_t *pte;
+
+ pgd = __va(read_cr3_pa());
+ pgd = &pgd[pgd_index(va)];
+ pte = lookup_address_in_pgd(pgd, va, &level);
+ if (!pte) {
+ ctxt->fi.vector = X86_TRAP_PF;
+ ctxt->fi.cr2 = vaddr;
+ ctxt->fi.error_code = 0;
+
+ if (user_mode(ctxt->regs))
+ ctxt->fi.error_code |= X86_PF_USER;
+
+ return ES_EXCEPTION;
+ }
+
+ if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
+ /* Emulated MMIO to/from encrypted memory not supported */
+ return ES_UNSUPPORTED;
+
+ pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
+ pa |= va & ~page_level_mask(level);
+
+ *paddr = pa;
+
+ return ES_OK;
+}
+
+/* Include code shared with pre-decompression boot stage */
+#include "sev-shared.c"
+
+static __always_inline void sev_es_put_ghcb(struct ghcb_state *state)
+{
+ struct sev_es_runtime_data *data;
+ struct ghcb *ghcb;
+
+ data = this_cpu_read(runtime_data);
+ ghcb = &data->ghcb_page;
+
+ if (state->ghcb) {
+ /* Restore GHCB from Backup */
+ *ghcb = *state->ghcb;
+ data->backup_ghcb_active = false;
+ state->ghcb = NULL;
+ } else {
+ /*
+ * Invalidate the GHCB so a VMGEXIT instruction issued
+ * from userspace won't appear to be valid.
+ */
+ vc_ghcb_invalidate(ghcb);
+ data->ghcb_active = false;
+ }
+}
+
+void noinstr __sev_es_nmi_complete(void)
+{
+ struct ghcb_state state;
+ struct ghcb *ghcb;
+
+ ghcb = sev_es_get_ghcb(&state);
+
+ vc_ghcb_invalidate(ghcb);
+ ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
+ ghcb_set_sw_exit_info_1(ghcb, 0);
+ ghcb_set_sw_exit_info_2(ghcb, 0);
+
+ sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
+ VMGEXIT();
+
+ sev_es_put_ghcb(&state);
+}
+
+static u64 get_jump_table_addr(void)
+{
+ struct ghcb_state state;
+ unsigned long flags;
+ struct ghcb *ghcb;
+ u64 ret = 0;
+
+ local_irq_save(flags);
+
+ ghcb = sev_es_get_ghcb(&state);
+
+ vc_ghcb_invalidate(ghcb);
+ ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
+ ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
+ ghcb_set_sw_exit_info_2(ghcb, 0);
+
+ sev_es_wr_ghcb_msr(__pa(ghcb));
+ VMGEXIT();
+
+ if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
+ ghcb_sw_exit_info_2_is_valid(ghcb))
+ ret = ghcb->save.sw_exit_info_2;
+
+ sev_es_put_ghcb(&state);
+
+ local_irq_restore(flags);
+
+ return ret;
+}
+
+int sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
+{
+ u16 startup_cs, startup_ip;
+ phys_addr_t jump_table_pa;
+ u64 jump_table_addr;
+ u16 __iomem *jump_table;
+
+ jump_table_addr = get_jump_table_addr();
+
+ /* On UP guests there is no jump table so this is not a failure */
+ if (!jump_table_addr)
+ return 0;
+
+ /* Check if AP Jump Table is page-aligned */
+ if (jump_table_addr & ~PAGE_MASK)
+ return -EINVAL;
+
+ jump_table_pa = jump_table_addr & PAGE_MASK;
+
+ startup_cs = (u16)(rmh->trampoline_start >> 4);
+ startup_ip = (u16)(rmh->sev_es_trampoline_start -
+ rmh->trampoline_start);
+
+ jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
+ if (!jump_table)
+ return -EIO;
+
+ writew(startup_ip, &jump_table[0]);
+ writew(startup_cs, &jump_table[1]);
+
+ iounmap(jump_table);
+
+ return 0;
+}
+
+/*
+ * This is needed by the OVMF UEFI firmware which will use whatever it finds in
+ * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
+ * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
+ */
+int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
+{
+ struct sev_es_runtime_data *data;
+ unsigned long address, pflags;
+ int cpu;
+ u64 pfn;
+
+ if (!sev_es_active())
+ return 0;
+
+ pflags = _PAGE_NX | _PAGE_RW;
+
+ for_each_possible_cpu(cpu) {
+ data = per_cpu(runtime_data, cpu);
+
+ address = __pa(&data->ghcb_page);
+ pfn = address >> PAGE_SHIFT;
+
+ if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
+ return 1;
+ }
+
+ return 0;
+}
+
+static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
+{
+ struct pt_regs *regs = ctxt->regs;
+ enum es_result ret;
+ u64 exit_info_1;
+
+ /* Is it a WRMSR? */
+ exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
+
+ ghcb_set_rcx(ghcb, regs->cx);
+ if (exit_info_1) {
+ ghcb_set_rax(ghcb, regs->ax);
+ ghcb_set_rdx(ghcb, regs->dx);
+ }
+
+ ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
+
+ if ((ret == ES_OK) && (!exit_info_1)) {
+ regs->ax = ghcb->save.rax;
+ regs->dx = ghcb->save.rdx;
+ }
+
+ return ret;
+}
+
+/*
+ * This function runs on the first #VC exception after the kernel
+ * switched to virtual addresses.
+ */
+static bool __init sev_es_setup_ghcb(void)
+{
+ /* First make sure the hypervisor talks a supported protocol. */
+ if (!sev_es_negotiate_protocol())
+ return false;
+
+ /*
+ * Clear the boot_ghcb. The first exception comes in before the bss
+ * section is cleared.
+ */
+ memset(&boot_ghcb_page, 0, PAGE_SIZE);
+
+ /* Alright - Make the boot-ghcb public */
+ boot_ghcb = &boot_ghcb_page;
+
+ return true;
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+static void sev_es_ap_hlt_loop(void)
+{
+ struct ghcb_state state;
+ struct ghcb *ghcb;
+
+ ghcb = sev_es_get_ghcb(&state);
+
+ while (true) {
+ vc_ghcb_invalidate(ghcb);
+ ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
+ ghcb_set_sw_exit_info_1(ghcb, 0);
+ ghcb_set_sw_exit_info_2(ghcb, 0);
+
+ sev_es_wr_ghcb_msr(__pa(ghcb));
+ VMGEXIT();
+
+ /* Wakeup signal? */
+ if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
+ ghcb->save.sw_exit_info_2)
+ break;
+ }
+
+ sev_es_put_ghcb(&state);
+}
+
+/*
+ * Play_dead handler when running under SEV-ES. This is needed because
+ * the hypervisor can't deliver an SIPI request to restart the AP.
+ * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
+ * hypervisor wakes it up again.
+ */
+static void sev_es_play_dead(void)
+{
+ play_dead_common();
+
+ /* IRQs now disabled */
+
+ sev_es_ap_hlt_loop();
+
+ /*
+ * If we get here, the VCPU was woken up again. Jump to CPU
+ * startup code to get it back online.
+ */
+ start_cpu0();
+}
+#else /* CONFIG_HOTPLUG_CPU */
+#define sev_es_play_dead native_play_dead
+#endif /* CONFIG_HOTPLUG_CPU */
+
+#ifdef CONFIG_SMP
+static void __init sev_es_setup_play_dead(void)
+{
+ smp_ops.play_dead = sev_es_play_dead;
+}
+#else
+static inline void sev_es_setup_play_dead(void) { }
+#endif
+
+static void __init alloc_runtime_data(int cpu)
+{
+ struct sev_es_runtime_data *data;
+
+ data = memblock_alloc(sizeof(*data), PAGE_SIZE);
+ if (!data)
+ panic("Can't allocate SEV-ES runtime data");
+
+ per_cpu(runtime_data, cpu) = data;
+}
+
+static void __init init_ghcb(int cpu)
+{
+ struct sev_es_runtime_data *data;
+ int err;
+
+ data = per_cpu(runtime_data, cpu);
+
+ err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
+ sizeof(data->ghcb_page));
+ if (err)
+ panic("Can't map GHCBs unencrypted");
+
+ memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
+
+ data->ghcb_active = false;
+ data->backup_ghcb_active = false;
+}
+
+void __init sev_es_init_vc_handling(void)
+{
+ int cpu;
+
+ BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
+
+ if (!sev_es_active())
+ return;
+
+ if (!sev_es_check_cpu_features())
+ panic("SEV-ES CPU Features missing");
+
+ /* Enable SEV-ES special handling */
+ static_branch_enable(&sev_es_enable_key);
+
+ /* Initialize per-cpu GHCB pages */
+ for_each_possible_cpu(cpu) {
+ alloc_runtime_data(cpu);
+ init_ghcb(cpu);
+ setup_vc_stacks(cpu);
+ }
+
+ sev_es_setup_play_dead();
+
+ /* Secondary CPUs use the runtime #VC handler */
+ initial_vc_handler = (unsigned long)safe_stack_exc_vmm_communication;
+}
+
+static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
+{
+ int trapnr = ctxt->fi.vector;
+
+ if (trapnr == X86_TRAP_PF)
+ native_write_cr2(ctxt->fi.cr2);
+
+ ctxt->regs->orig_ax = ctxt->fi.error_code;
+ do_early_exception(ctxt->regs, trapnr);
+}
+
+static long *vc_insn_get_reg(struct es_em_ctxt *ctxt)
+{
+ long *reg_array;
+ int offset;
+
+ reg_array = (long *)ctxt->regs;
+ offset = insn_get_modrm_reg_off(&ctxt->insn, ctxt->regs);
+
+ if (offset < 0)
+ return NULL;
+
+ offset /= sizeof(long);
+
+ return reg_array + offset;
+}
+
+static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
+{
+ long *reg_array;
+ int offset;
+
+ reg_array = (long *)ctxt->regs;
+ offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
+
+ if (offset < 0)
+ return NULL;
+
+ offset /= sizeof(long);
+
+ return reg_array + offset;
+}
+static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
+ unsigned int bytes, bool read)
+{
+ u64 exit_code, exit_info_1, exit_info_2;
+ unsigned long ghcb_pa = __pa(ghcb);
+ enum es_result res;
+ phys_addr_t paddr;
+ void __user *ref;
+
+ ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
+ if (ref == (void __user *)-1L)
+ return ES_UNSUPPORTED;
+
+ exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
+
+ res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
+ if (res != ES_OK) {
+ if (res == ES_EXCEPTION && !read)
+ ctxt->fi.error_code |= X86_PF_WRITE;
+
+ return res;
+ }
+
+ exit_info_1 = paddr;
+ /* Can never be greater than 8 */
+ exit_info_2 = bytes;
+
+ ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
+
+ return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
+}
+
+static enum es_result vc_handle_mmio_twobyte_ops(struct ghcb *ghcb,
+ struct es_em_ctxt *ctxt)
+{
+ struct insn *insn = &ctxt->insn;
+ unsigned int bytes = 0;
+ enum es_result ret;
+ int sign_byte;
+ long *reg_data;
+
+ switch (insn->opcode.bytes[1]) {
+ /* MMIO Read w/ zero-extension */
+ case 0xb6:
+ bytes = 1;
+ fallthrough;
+ case 0xb7:
+ if (!bytes)
+ bytes = 2;
+
+ ret = vc_do_mmio(ghcb, ctxt, bytes, true);
+ if (ret)
+ break;
+
+ /* Zero extend based on operand size */
+ reg_data = vc_insn_get_reg(ctxt);
+ if (!reg_data)
+ return ES_DECODE_FAILED;
+
+ memset(reg_data, 0, insn->opnd_bytes);
+
+ memcpy(reg_data, ghcb->shared_buffer, bytes);
+ break;
+
+ /* MMIO Read w/ sign-extension */
+ case 0xbe:
+ bytes = 1;
+ fallthrough;
+ case 0xbf:
+ if (!bytes)
+ bytes = 2;
+
+ ret = vc_do_mmio(ghcb, ctxt, bytes, true);
+ if (ret)
+ break;
+
+ /* Sign extend based on operand size */
+ reg_data = vc_insn_get_reg(ctxt);
+ if (!reg_data)
+ return ES_DECODE_FAILED;
+
+ if (bytes == 1) {
+ u8 *val = (u8 *)ghcb->shared_buffer;
+
+ sign_byte = (*val & 0x80) ? 0xff : 0x00;
+ } else {
+ u16 *val = (u16 *)ghcb->shared_buffer;
+
+ sign_byte = (*val & 0x8000) ? 0xff : 0x00;
+ }
+ memset(reg_data, sign_byte, insn->opnd_bytes);
+
+ memcpy(reg_data, ghcb->shared_buffer, bytes);
+ break;
+
+ default:
+ ret = ES_UNSUPPORTED;
+ }
+
+ return ret;
+}
+
+/*
+ * The MOVS instruction has two memory operands, which raises the
+ * problem that it is not known whether the access to the source or the
+ * destination caused the #VC exception (and hence whether an MMIO read
+ * or write operation needs to be emulated).
+ *
+ * Instead of playing games with walking page-tables and trying to guess
+ * whether the source or destination is an MMIO range, split the move
+ * into two operations, a read and a write with only one memory operand.
+ * This will cause a nested #VC exception on the MMIO address which can
+ * then be handled.
+ *
+ * This implementation has the benefit that it also supports MOVS where
+ * source _and_ destination are MMIO regions.
+ *
+ * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
+ * rare operation. If it turns out to be a performance problem the split
+ * operations can be moved to memcpy_fromio() and memcpy_toio().
+ */
+static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
+ unsigned int bytes)
+{
+ unsigned long ds_base, es_base;
+ unsigned char *src, *dst;
+ unsigned char buffer[8];
+ enum es_result ret;
+ bool rep;
+ int off;
+
+ ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
+ es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
+
+ if (ds_base == -1L || es_base == -1L) {
+ ctxt->fi.vector = X86_TRAP_GP;
+ ctxt->fi.error_code = 0;
+ return ES_EXCEPTION;
+ }
+
+ src = ds_base + (unsigned char *)ctxt->regs->si;
+ dst = es_base + (unsigned char *)ctxt->regs->di;
+
+ ret = vc_read_mem(ctxt, src, buffer, bytes);
+ if (ret != ES_OK)
+ return ret;
+
+ ret = vc_write_mem(ctxt, dst, buffer, bytes);
+ if (ret != ES_OK)
+ return ret;
+
+ if (ctxt->regs->flags & X86_EFLAGS_DF)
+ off = -bytes;
+ else
+ off = bytes;
+
+ ctxt->regs->si += off;
+ ctxt->regs->di += off;
+
+ rep = insn_has_rep_prefix(&ctxt->insn);
+ if (rep)
+ ctxt->regs->cx -= 1;
+
+ if (!rep || ctxt->regs->cx == 0)
+ return ES_OK;
+ else
+ return ES_RETRY;
+}
+
+static enum es_result vc_handle_mmio(struct ghcb *ghcb,
+ struct es_em_ctxt *ctxt)
+{
+ struct insn *insn = &ctxt->insn;
+ unsigned int bytes = 0;
+ enum es_result ret;
+ long *reg_data;
+
+ switch (insn->opcode.bytes[0]) {
+ /* MMIO Write */
+ case 0x88:
+ bytes = 1;
+ fallthrough;
+ case 0x89:
+ if (!bytes)
+ bytes = insn->opnd_bytes;
+
+ reg_data = vc_insn_get_reg(ctxt);
+ if (!reg_data)
+ return ES_DECODE_FAILED;
+
+ memcpy(ghcb->shared_buffer, reg_data, bytes);
+
+ ret = vc_do_mmio(ghcb, ctxt, bytes, false);
+ break;
+
+ case 0xc6:
+ bytes = 1;
+ fallthrough;
+ case 0xc7:
+ if (!bytes)
+ bytes = insn->opnd_bytes;
+
+ memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
+
+ ret = vc_do_mmio(ghcb, ctxt, bytes, false);
+ break;
+
+ /* MMIO Read */
+ case 0x8a:
+ bytes = 1;
+ fallthrough;
+ case 0x8b:
+ if (!bytes)
+ bytes = insn->opnd_bytes;
+
+ ret = vc_do_mmio(ghcb, ctxt, bytes, true);
+ if (ret)
+ break;
+
+ reg_data = vc_insn_get_reg(ctxt);
+ if (!reg_data)
+ return ES_DECODE_FAILED;
+
+ /* Zero-extend for 32-bit operation */
+ if (bytes == 4)
+ *reg_data = 0;
+
+ memcpy(reg_data, ghcb->shared_buffer, bytes);
+ break;
+
+ /* MOVS instruction */
+ case 0xa4:
+ bytes = 1;
+ fallthrough;
+ case 0xa5:
+ if (!bytes)
+ bytes = insn->opnd_bytes;
+
+ ret = vc_handle_mmio_movs(ctxt, bytes);
+ break;
+ /* Two-Byte Opcodes */
+ case 0x0f:
+ ret = vc_handle_mmio_twobyte_ops(ghcb, ctxt);
+ break;
+ default:
+ ret = ES_UNSUPPORTED;
+ }
+
+ return ret;
+}
+
+static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
+ struct es_em_ctxt *ctxt)
+{
+ struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
+ long val, *reg = vc_insn_get_rm(ctxt);
+ enum es_result ret;
+
+ if (!reg)
+ return ES_DECODE_FAILED;
+
+ val = *reg;
+
+ /* Upper 32 bits must be written as zeroes */
+ if (val >> 32) {
+ ctxt->fi.vector = X86_TRAP_GP;
+ ctxt->fi.error_code = 0;
+ return ES_EXCEPTION;
+ }
+
+ /* Clear out other reserved bits and set bit 10 */
+ val = (val & 0xffff23ffL) | BIT(10);
+
+ /* Early non-zero writes to DR7 are not supported */
+ if (!data && (val & ~DR7_RESET_VALUE))
+ return ES_UNSUPPORTED;
+
+ /* Using a value of 0 for ExitInfo1 means RAX holds the value */
+ ghcb_set_rax(ghcb, val);
+ ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
+ if (ret != ES_OK)
+ return ret;
+
+ if (data)
+ data->dr7 = val;
+
+ return ES_OK;
+}
+
+static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
+ struct es_em_ctxt *ctxt)
+{
+ struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
+ long *reg = vc_insn_get_rm(ctxt);
+
+ if (!reg)
+ return ES_DECODE_FAILED;
+
+ if (data)
+ *reg = data->dr7;
+ else
+ *reg = DR7_RESET_VALUE;
+
+ return ES_OK;
+}
+
+static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
+ struct es_em_ctxt *ctxt)
+{
+ return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
+}
+
+static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
+{
+ enum es_result ret;
+
+ ghcb_set_rcx(ghcb, ctxt->regs->cx);
+
+ ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
+ if (ret != ES_OK)
+ return ret;
+
+ if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
+ return ES_VMM_ERROR;
+
+ ctxt->regs->ax = ghcb->save.rax;
+ ctxt->regs->dx = ghcb->save.rdx;
+
+ return ES_OK;
+}
+
+static enum es_result vc_handle_monitor(struct ghcb *ghcb,
+ struct es_em_ctxt *ctxt)
+{
+ /*
+ * Treat it as a NOP and do not leak a physical address to the
+ * hypervisor.
+ */
+ return ES_OK;
+}
+
+static enum es_result vc_handle_mwait(struct ghcb *ghcb,
+ struct es_em_ctxt *ctxt)
+{
+ /* Treat the same as MONITOR/MONITORX */
+ return ES_OK;
+}
+
+static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
+ struct es_em_ctxt *ctxt)
+{
+ enum es_result ret;
+
+ ghcb_set_rax(ghcb, ctxt->regs->ax);
+ ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
+
+ if (x86_platform.hyper.sev_es_hcall_prepare)
+ x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
+
+ ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
+ if (ret != ES_OK)
+ return ret;
+
+ if (!ghcb_rax_is_valid(ghcb))
+ return ES_VMM_ERROR;
+
+ ctxt->regs->ax = ghcb->save.rax;
+
+ /*
+ * Call sev_es_hcall_finish() after regs->ax is already set.
+ * This allows the hypervisor handler to overwrite it again if
+ * necessary.
+ */
+ if (x86_platform.hyper.sev_es_hcall_finish &&
+ !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
+ return ES_VMM_ERROR;
+
+ return ES_OK;
+}
+
+static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
+ struct es_em_ctxt *ctxt)
+{
+ /*
+ * Calling ecx_alignment_check() directly does not work, because it
+ * enables IRQs and the GHCB is active. Forward the exception and call
+ * it later from vc_forward_exception().
+ */
+ ctxt->fi.vector = X86_TRAP_AC;
+ ctxt->fi.error_code = 0;
+ return ES_EXCEPTION;
+}
+
+static __always_inline void vc_handle_trap_db(struct pt_regs *regs)
+{
+ if (user_mode(regs))
+ noist_exc_debug(regs);
+ else
+ exc_debug(regs);
+}
+
+static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
+ struct ghcb *ghcb,
+ unsigned long exit_code)
+{
+ enum es_result result;
+
+ switch (exit_code) {
+ case SVM_EXIT_READ_DR7:
+ result = vc_handle_dr7_read(ghcb, ctxt);
+ break;
+ case SVM_EXIT_WRITE_DR7:
+ result = vc_handle_dr7_write(ghcb, ctxt);
+ break;
+ case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
+ result = vc_handle_trap_ac(ghcb, ctxt);
+ break;
+ case SVM_EXIT_RDTSC:
+ case SVM_EXIT_RDTSCP:
+ result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
+ break;
+ case SVM_EXIT_RDPMC:
+ result = vc_handle_rdpmc(ghcb, ctxt);
+ break;
+ case SVM_EXIT_INVD:
+ pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
+ result = ES_UNSUPPORTED;
+ break;
+ case SVM_EXIT_CPUID:
+ result = vc_handle_cpuid(ghcb, ctxt);
+ break;
+ case SVM_EXIT_IOIO:
+ result = vc_handle_ioio(ghcb, ctxt);
+ break;
+ case SVM_EXIT_MSR:
+ result = vc_handle_msr(ghcb, ctxt);
+ break;
+ case SVM_EXIT_VMMCALL:
+ result = vc_handle_vmmcall(ghcb, ctxt);
+ break;
+ case SVM_EXIT_WBINVD:
+ result = vc_handle_wbinvd(ghcb, ctxt);
+ break;
+ case SVM_EXIT_MONITOR:
+ result = vc_handle_monitor(ghcb, ctxt);
+ break;
+ case SVM_EXIT_MWAIT:
+ result = vc_handle_mwait(ghcb, ctxt);
+ break;
+ case SVM_EXIT_NPF:
+ result = vc_handle_mmio(ghcb, ctxt);
+ break;
+ default:
+ /*
+ * Unexpected #VC exception
+ */
+ result = ES_UNSUPPORTED;
+ }
+
+ return result;
+}
+
+static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
+{
+ long error_code = ctxt->fi.error_code;
+ int trapnr = ctxt->fi.vector;
+
+ ctxt->regs->orig_ax = ctxt->fi.error_code;
+
+ switch (trapnr) {
+ case X86_TRAP_GP:
+ exc_general_protection(ctxt->regs, error_code);
+ break;
+ case X86_TRAP_UD:
+ exc_invalid_op(ctxt->regs);
+ break;
+ case X86_TRAP_PF:
+ write_cr2(ctxt->fi.cr2);
+ exc_page_fault(ctxt->regs, error_code);
+ break;
+ case X86_TRAP_AC:
+ exc_alignment_check(ctxt->regs, error_code);
+ break;
+ default:
+ pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
+ BUG();
+ }
+}
+
+static __always_inline bool on_vc_fallback_stack(struct pt_regs *regs)
+{
+ unsigned long sp = (unsigned long)regs;
+
+ return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
+}
+
+/*
+ * Main #VC exception handler. It is called when the entry code was able to
+ * switch off the IST to a safe kernel stack.
+ *
+ * With the current implementation it is always possible to switch to a safe
+ * stack because #VC exceptions only happen at known places, like intercepted
+ * instructions or accesses to MMIO areas/IO ports. They can also happen with
+ * code instrumentation when the hypervisor intercepts #DB, but the critical
+ * paths are forbidden to be instrumented, so #DB exceptions currently also
+ * only happen in safe places.
+ */
+DEFINE_IDTENTRY_VC_SAFE_STACK(exc_vmm_communication)
+{
+ irqentry_state_t irq_state;
+ struct ghcb_state state;
+ struct es_em_ctxt ctxt;
+ enum es_result result;
+ struct ghcb *ghcb;
+
+ /*
+ * Handle #DB before calling into !noinstr code to avoid recursive #DB.
+ */
+ if (error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB) {
+ vc_handle_trap_db(regs);
+ return;
+ }
+
+ irq_state = irqentry_nmi_enter(regs);
+ lockdep_assert_irqs_disabled();
+ instrumentation_begin();
+
+ /*
+ * This is invoked through an interrupt gate, so IRQs are disabled. The
+ * code below might walk page-tables for user or kernel addresses, so
+ * keep the IRQs disabled to protect us against concurrent TLB flushes.
+ */
+
+ ghcb = sev_es_get_ghcb(&state);
+
+ vc_ghcb_invalidate(ghcb);
+ result = vc_init_em_ctxt(&ctxt, regs, error_code);
+
+ if (result == ES_OK)
+ result = vc_handle_exitcode(&ctxt, ghcb, error_code);
+
+ sev_es_put_ghcb(&state);
+
+ /* Done - now check the result */
+ switch (result) {
+ case ES_OK:
+ vc_finish_insn(&ctxt);
+ break;
+ case ES_UNSUPPORTED:
+ pr_err_ratelimited("Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
+ error_code, regs->ip);
+ goto fail;
+ case ES_VMM_ERROR:
+ pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
+ error_code, regs->ip);
+ goto fail;
+ case ES_DECODE_FAILED:
+ pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
+ error_code, regs->ip);
+ goto fail;
+ case ES_EXCEPTION:
+ vc_forward_exception(&ctxt);
+ break;
+ case ES_RETRY:
+ /* Nothing to do */
+ break;
+ default:
+ pr_emerg("Unknown result in %s():%d\n", __func__, result);
+ /*
+ * Emulating the instruction which caused the #VC exception
+ * failed - can't continue so print debug information
+ */
+ BUG();
+ }
+
+out:
+ instrumentation_end();
+ irqentry_nmi_exit(regs, irq_state);
+
+ return;
+
+fail:
+ if (user_mode(regs)) {
+ /*
+ * Do not kill the machine if user-space triggered the
+ * exception. Send SIGBUS instead and let user-space deal with
+ * it.
+ */
+ force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
+ } else {
+ pr_emerg("PANIC: Unhandled #VC exception in kernel space (result=%d)\n",
+ result);
+
+ /* Show some debug info */
+ show_regs(regs);
+
+ /* Ask hypervisor to sev_es_terminate */
+ sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
+
+ /* If that fails and we get here - just panic */
+ panic("Returned from Terminate-Request to Hypervisor\n");
+ }
+
+ goto out;
+}
+
+/* This handler runs on the #VC fall-back stack. It can cause further #VC exceptions */
+DEFINE_IDTENTRY_VC_IST(exc_vmm_communication)
+{
+ instrumentation_begin();
+ panic("Can't handle #VC exception from unsupported context\n");
+ instrumentation_end();
+}
+
+DEFINE_IDTENTRY_VC(exc_vmm_communication)
+{
+ if (likely(!on_vc_fallback_stack(regs)))
+ safe_stack_exc_vmm_communication(regs, error_code);
+ else
+ ist_exc_vmm_communication(regs, error_code);
+}
+
+bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
+{
+ unsigned long exit_code = regs->orig_ax;
+ struct es_em_ctxt ctxt;
+ enum es_result result;
+
+ /* Do initial setup or terminate the guest */
+ if (unlikely(boot_ghcb == NULL && !sev_es_setup_ghcb()))
+ sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
+
+ vc_ghcb_invalidate(boot_ghcb);
+
+ result = vc_init_em_ctxt(&ctxt, regs, exit_code);
+ if (result == ES_OK)
+ result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
+
+ /* Done - now check the result */
+ switch (result) {
+ case ES_OK:
+ vc_finish_insn(&ctxt);
+ break;
+ case ES_UNSUPPORTED:
+ early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
+ exit_code, regs->ip);
+ goto fail;
+ case ES_VMM_ERROR:
+ early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
+ exit_code, regs->ip);
+ goto fail;
+ case ES_DECODE_FAILED:
+ early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
+ exit_code, regs->ip);
+ goto fail;
+ case ES_EXCEPTION:
+ vc_early_forward_exception(&ctxt);
+ break;
+ case ES_RETRY:
+ /* Nothing to do */
+ break;
+ default:
+ BUG();
+ }
+
+ return true;
+
+fail:
+ show_regs(regs);
+
+ while (true)
+ halt();
+}