summaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/iwlwifi/iwl-prph.h
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/wireless/iwlwifi/iwl-prph.h')
-rw-r--r--drivers/net/wireless/iwlwifi/iwl-prph.h333
1 files changed, 301 insertions, 32 deletions
diff --git a/drivers/net/wireless/iwlwifi/iwl-prph.h b/drivers/net/wireless/iwlwifi/iwl-prph.h
index c9cf8eef1a90..70d9c7568b98 100644
--- a/drivers/net/wireless/iwlwifi/iwl-prph.h
+++ b/drivers/net/wireless/iwlwifi/iwl-prph.h
@@ -239,40 +239,307 @@
#define ALM_SCD_SBYP_MODE_1_REG (ALM_SCD_BASE + 0x02C)
#define ALM_SCD_SBYP_MODE_2_REG (ALM_SCD_BASE + 0x030)
+/**
+ * Tx Scheduler
+ *
+ * The Tx Scheduler selects the next frame to be transmitted, chosing TFDs
+ * (Transmit Frame Descriptors) from up to 16 circular Tx queues resident in
+ * host DRAM. It steers each frame's Tx command (which contains the frame
+ * data) into one of up to 7 prioritized Tx DMA FIFO channels within the
+ * device. A queue maps to only one (selectable by driver) Tx DMA channel,
+ * but one DMA channel may take input from several queues.
+ *
+ * Tx DMA channels have dedicated purposes. For 4965, they are used as follows:
+ *
+ * 0 -- EDCA BK (background) frames, lowest priority
+ * 1 -- EDCA BE (best effort) frames, normal priority
+ * 2 -- EDCA VI (video) frames, higher priority
+ * 3 -- EDCA VO (voice) and management frames, highest priority
+ * 4 -- Commands (e.g. RXON, etc.)
+ * 5 -- HCCA short frames
+ * 6 -- HCCA long frames
+ * 7 -- not used by driver (device-internal only)
+ *
+ * Driver should normally map queues 0-6 to Tx DMA/FIFO channels 0-6.
+ * In addition, driver can map queues 7-15 to Tx DMA/FIFO channels 0-3 to
+ * support 11n aggregation via EDCA DMA channels.
+ *
+ * The driver sets up each queue to work in one of two modes:
+ *
+ * 1) Scheduler-Ack, in which the scheduler automatically supports a
+ * block-ack (BA) window of up to 64 TFDs. In this mode, each queue
+ * contains TFDs for a unique combination of Recipient Address (RA)
+ * and Traffic Identifier (TID), that is, traffic of a given
+ * Quality-Of-Service (QOS) priority, destined for a single station.
+ *
+ * In scheduler-ack mode, the scheduler keeps track of the Tx status of
+ * each frame within the BA window, including whether it's been transmitted,
+ * and whether it's been acknowledged by the receiving station. The device
+ * automatically processes block-acks received from the receiving STA,
+ * and reschedules un-acked frames to be retransmitted (successful
+ * Tx completion may end up being out-of-order).
+ *
+ * The driver must maintain the queue's Byte Count table in host DRAM
+ * (struct iwl4965_sched_queue_byte_cnt_tbl) for this mode.
+ * This mode does not support fragmentation.
+ *
+ * 2) FIFO (a.k.a. non-Scheduler-ACK), in which each TFD is processed in order.
+ * The device may automatically retry Tx, but will retry only one frame
+ * at a time, until receiving ACK from receiving station, or reaching
+ * retry limit and giving up.
+ *
+ * The command queue (#4) must use this mode!
+ * This mode does not require use of the Byte Count table in host DRAM.
+ *
+ * Driver controls scheduler operation via 3 means:
+ * 1) Scheduler registers
+ * 2) Shared scheduler data base in internal 4956 SRAM
+ * 3) Shared data in host DRAM
+ *
+ * Initialization:
+ *
+ * When loading, driver should allocate memory for:
+ * 1) 16 TFD circular buffers, each with space for (typically) 256 TFDs.
+ * 2) 16 Byte Count circular buffers in 16 KBytes contiguous memory
+ * (1024 bytes for each queue).
+ *
+ * After receiving "Alive" response from uCode, driver must initialize
+ * the scheduler (especially for queue #4, the command queue, otherwise
+ * the driver can't issue commands!):
+ */
+
+/**
+ * Max Tx window size is the max number of contiguous TFDs that the scheduler
+ * can keep track of at one time when creating block-ack chains of frames.
+ * Note that "64" matches the number of ack bits in a block-ack packet.
+ * Driver should use SCD_WIN_SIZE and SCD_FRAME_LIMIT values to initialize
+ * IWL49_SCD_CONTEXT_QUEUE_OFFSET(x) values.
+ */
+#define SCD_WIN_SIZE 64
+#define SCD_FRAME_LIMIT 64
+
+/* SCD registers are internal, must be accessed via HBUS_TARG_PRPH regs */
+#define IWL49_SCD_START_OFFSET 0xa02c00
+
+/*
+ * 4965 tells driver SRAM address for internal scheduler structs via this reg.
+ * Value is valid only after "Alive" response from uCode.
+ */
+#define IWL49_SCD_SRAM_BASE_ADDR (IWL49_SCD_START_OFFSET + 0x0)
+
+/*
+ * Driver may need to update queue-empty bits after changing queue's
+ * write and read pointers (indexes) during (re-)initialization (i.e. when
+ * scheduler is not tracking what's happening).
+ * Bit fields:
+ * 31-16: Write mask -- 1: update empty bit, 0: don't change empty bit
+ * 15-00: Empty state, one for each queue -- 1: empty, 0: non-empty
+ * NOTE: This register is not used by Linux driver.
+ */
+#define IWL49_SCD_EMPTY_BITS (IWL49_SCD_START_OFFSET + 0x4)
+
+/*
+ * Physical base address of array of byte count (BC) circular buffers (CBs).
+ * Each Tx queue has a BC CB in host DRAM to support Scheduler-ACK mode.
+ * This register points to BC CB for queue 0, must be on 1024-byte boundary.
+ * Others are spaced by 1024 bytes.
+ * Each BC CB is 2 bytes * (256 + 64) = 740 bytes, followed by 384 bytes pad.
+ * (Index into a queue's BC CB) = (index into queue's TFD CB) = (SSN & 0xff).
+ * Bit fields:
+ * 25-00: Byte Count CB physical address [35:10], must be 1024-byte aligned.
+ */
+#define IWL49_SCD_DRAM_BASE_ADDR (IWL49_SCD_START_OFFSET + 0x10)
+
+/*
+ * Enables any/all Tx DMA/FIFO channels.
+ * Scheduler generates requests for only the active channels.
+ * Set this to 0xff to enable all 8 channels (normal usage).
+ * Bit fields:
+ * 7- 0: Enable (1), disable (0), one bit for each channel 0-7
+ */
+#define IWL49_SCD_TXFACT (IWL49_SCD_START_OFFSET + 0x1c)
+/*
+ * Queue (x) Write Pointers (indexes, really!), one for each Tx queue.
+ * Initialized and updated by driver as new TFDs are added to queue.
+ * NOTE: If using Block Ack, index must correspond to frame's
+ * Start Sequence Number; index = (SSN & 0xff)
+ * NOTE: Alternative to HBUS_TARG_WRPTR, which is what Linux driver uses?
+ */
+#define IWL49_SCD_QUEUE_WRPTR(x) (IWL49_SCD_START_OFFSET + 0x24 + (x) * 4)
+
+/*
+ * Queue (x) Read Pointers (indexes, really!), one for each Tx queue.
+ * For FIFO mode, index indicates next frame to transmit.
+ * For Scheduler-ACK mode, index indicates first frame in Tx window.
+ * Initialized by driver, updated by scheduler.
+ */
+#define IWL49_SCD_QUEUE_RDPTR(x) (IWL49_SCD_START_OFFSET + 0x64 + (x) * 4)
+
+/*
+ * Select which queues work in chain mode (1) vs. not (0).
+ * Use chain mode to build chains of aggregated frames.
+ * Bit fields:
+ * 31-16: Reserved
+ * 15-00: Mode, one bit for each queue -- 1: Chain mode, 0: one-at-a-time
+ * NOTE: If driver sets up queue for chain mode, it should be also set up
+ * Scheduler-ACK mode as well, via SCD_QUEUE_STATUS_BITS(x).
+ */
+#define IWL49_SCD_QUEUECHAIN_SEL (IWL49_SCD_START_OFFSET + 0xd0)
+
+/*
+ * Select which queues interrupt driver when scheduler increments
+ * a queue's read pointer (index).
+ * Bit fields:
+ * 31-16: Reserved
+ * 15-00: Interrupt enable, one bit for each queue -- 1: enabled, 0: disabled
+ * NOTE: This functionality is apparently a no-op; driver relies on interrupts
+ * from Rx queue to read Tx command responses and update Tx queues.
+ */
+#define IWL49_SCD_INTERRUPT_MASK (IWL49_SCD_START_OFFSET + 0xe4)
+
+/*
+ * Queue search status registers. One for each queue.
+ * Sets up queue mode and assigns queue to Tx DMA channel.
+ * Bit fields:
+ * 19-10: Write mask/enable bits for bits 0-9
+ * 9: Driver should init to "0"
+ * 8: Scheduler-ACK mode (1), non-Scheduler-ACK (i.e. FIFO) mode (0).
+ * Driver should init to "1" for aggregation mode, or "0" otherwise.
+ * 7-6: Driver should init to "0"
+ * 5: Window Size Left; indicates whether scheduler can request
+ * another TFD, based on window size, etc. Driver should init
+ * this bit to "1" for aggregation mode, or "0" for non-agg.
+ * 4-1: Tx FIFO to use (range 0-7).
+ * 0: Queue is active (1), not active (0).
+ * Other bits should be written as "0"
+ *
+ * NOTE: If enabling Scheduler-ACK mode, chain mode should also be enabled
+ * via SCD_QUEUECHAIN_SEL.
+ */
+#define IWL49_SCD_QUEUE_STATUS_BITS(x)\
+ (IWL49_SCD_START_OFFSET + 0x104 + (x) * 4)
+
+/* Bit field positions */
+#define IWL49_SCD_QUEUE_STTS_REG_POS_ACTIVE (0)
+#define IWL49_SCD_QUEUE_STTS_REG_POS_TXF (1)
+#define IWL49_SCD_QUEUE_STTS_REG_POS_WSL (5)
+#define IWL49_SCD_QUEUE_STTS_REG_POS_SCD_ACK (8)
+
+/* Write masks */
+#define IWL49_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN (10)
+#define IWL49_SCD_QUEUE_STTS_REG_MSK (0x0007FC00)
+
+/**
+ * 4965 internal SRAM structures for scheduler, shared with driver ...
+ *
+ * Driver should clear and initialize the following areas after receiving
+ * "Alive" response from 4965 uCode, i.e. after initial
+ * uCode load, or after a uCode load done for error recovery:
+ *
+ * SCD_CONTEXT_DATA_OFFSET (size 128 bytes)
+ * SCD_TX_STTS_BITMAP_OFFSET (size 256 bytes)
+ * SCD_TRANSLATE_TBL_OFFSET (size 32 bytes)
+ *
+ * Driver accesses SRAM via HBUS_TARG_MEM_* registers.
+ * Driver reads base address of this scheduler area from SCD_SRAM_BASE_ADDR.
+ * All OFFSET values must be added to this base address.
+ */
+
+/*
+ * Queue context. One 8-byte entry for each of 16 queues.
+ *
+ * Driver should clear this entire area (size 0x80) to 0 after receiving
+ * "Alive" notification from uCode. Additionally, driver should init
+ * each queue's entry as follows:
+ *
+ * LS Dword bit fields:
+ * 0-06: Max Tx window size for Scheduler-ACK. Driver should init to 64.
+ *
+ * MS Dword bit fields:
+ * 16-22: Frame limit. Driver should init to 10 (0xa).
+ *
+ * Driver should init all other bits to 0.
+ *
+ * Init must be done after driver receives "Alive" response from 4965 uCode,
+ * and when setting up queue for aggregation.
+ */
+#define IWL49_SCD_CONTEXT_DATA_OFFSET 0x380
+#define IWL49_SCD_CONTEXT_QUEUE_OFFSET(x) \
+ (IWL49_SCD_CONTEXT_DATA_OFFSET + ((x) * 8))
+
+#define IWL49_SCD_QUEUE_CTX_REG1_WIN_SIZE_POS (0)
+#define IWL49_SCD_QUEUE_CTX_REG1_WIN_SIZE_MSK (0x0000007F)
+#define IWL49_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS (16)
+#define IWL49_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK (0x007F0000)
+
+/*
+ * Tx Status Bitmap
+ *
+ * Driver should clear this entire area (size 0x100) to 0 after receiving
+ * "Alive" notification from uCode. Area is used only by device itself;
+ * no other support (besides clearing) is required from driver.
+ */
+#define IWL49_SCD_TX_STTS_BITMAP_OFFSET 0x400
+
/*
- * 4965 Tx Scheduler registers.
- * Details are documented in iwl-4965-hw.h
+ * RAxTID to queue translation mapping.
+ *
+ * When queue is in Scheduler-ACK mode, frames placed in a that queue must be
+ * for only one combination of receiver address (RA) and traffic ID (TID), i.e.
+ * one QOS priority level destined for one station (for this wireless link,
+ * not final destination). The SCD_TRANSLATE_TABLE area provides 16 16-bit
+ * mappings, one for each of the 16 queues. If queue is not in Scheduler-ACK
+ * mode, the device ignores the mapping value.
+ *
+ * Bit fields, for each 16-bit map:
+ * 15-9: Reserved, set to 0
+ * 8-4: Index into device's station table for recipient station
+ * 3-0: Traffic ID (tid), range 0-15
+ *
+ * Driver should clear this entire area (size 32 bytes) to 0 after receiving
+ * "Alive" notification from uCode. To update a 16-bit map value, driver
+ * must read a dword-aligned value from device SRAM, replace the 16-bit map
+ * value of interest, and write the dword value back into device SRAM.
*/
-#define IWL49_SCD_BASE (PRPH_BASE + 0xa02c00)
-
-#define IWL49_SCD_SRAM_BASE_ADDR (IWL49_SCD_BASE + 0x0)
-#define IWL49_SCD_EMPTY_BITS (IWL49_SCD_BASE + 0x4)
-#define IWL49_SCD_DRAM_BASE_ADDR (IWL49_SCD_BASE + 0x10)
-#define IWL49_SCD_AIT (IWL49_SCD_BASE + 0x18)
-#define IWL49_SCD_TXFACT (IWL49_SCD_BASE + 0x1c)
-#define IWL49_SCD_QUEUE_WRPTR(x) (IWL49_SCD_BASE + 0x24 + (x) * 4)
-#define IWL49_SCD_QUEUE_RDPTR(x) (IWL49_SCD_BASE + 0x64 + (x) * 4)
-#define IWL49_SCD_SETQUEUENUM (IWL49_SCD_BASE + 0xa4)
-#define IWL49_SCD_SET_TXSTAT_TXED (IWL49_SCD_BASE + 0xa8)
-#define IWL49_SCD_SET_TXSTAT_DONE (IWL49_SCD_BASE + 0xac)
-#define IWL49_SCD_SET_TXSTAT_NOT_SCHD (IWL49_SCD_BASE + 0xb0)
-#define IWL49_SCD_DECREASE_CREDIT (IWL49_SCD_BASE + 0xb4)
-#define IWL49_SCD_DECREASE_SCREDIT (IWL49_SCD_BASE + 0xb8)
-#define IWL49_SCD_LOAD_CREDIT (IWL49_SCD_BASE + 0xbc)
-#define IWL49_SCD_LOAD_SCREDIT (IWL49_SCD_BASE + 0xc0)
-#define IWL49_SCD_BAR (IWL49_SCD_BASE + 0xc4)
-#define IWL49_SCD_BAR_DW0 (IWL49_SCD_BASE + 0xc8)
-#define IWL49_SCD_BAR_DW1 (IWL49_SCD_BASE + 0xcc)
-#define IWL49_SCD_QUEUECHAIN_SEL (IWL49_SCD_BASE + 0xd0)
-#define IWL49_SCD_QUERY_REQ (IWL49_SCD_BASE + 0xd8)
-#define IWL49_SCD_QUERY_RES (IWL49_SCD_BASE + 0xdc)
-#define IWL49_SCD_PENDING_FRAMES (IWL49_SCD_BASE + 0xe0)
-#define IWL49_SCD_INTERRUPT_MASK (IWL49_SCD_BASE + 0xe4)
-#define IWL49_SCD_INTERRUPT_THRESHOLD (IWL49_SCD_BASE + 0xe8)
-#define IWL49_SCD_QUERY_MIN_FRAME_SIZE (IWL49_SCD_BASE + 0x100)
-#define IWL49_SCD_QUEUE_STATUS_BITS(x) (IWL49_SCD_BASE + 0x104 + (x) * 4)
-
-/* SP SCD */
+#define IWL49_SCD_TRANSLATE_TBL_OFFSET 0x500
+
+/* Find translation table dword to read/write for given queue */
+#define IWL49_SCD_TRANSLATE_TBL_OFFSET_QUEUE(x) \
+ ((IWL49_SCD_TRANSLATE_TBL_OFFSET + ((x) * 2)) & 0xfffffffc)
+
+#define IWL_SCD_TXFIFO_POS_TID (0)
+#define IWL_SCD_TXFIFO_POS_RA (4)
+#define IWL_SCD_QUEUE_RA_TID_MAP_RATID_MSK (0x01FF)
+
+/* 5000 SCD */
+#define IWL50_SCD_QUEUE_STTS_REG_POS_TXF (0)
+#define IWL50_SCD_QUEUE_STTS_REG_POS_ACTIVE (3)
+#define IWL50_SCD_QUEUE_STTS_REG_POS_WSL (4)
+#define IWL50_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN (19)
+#define IWL50_SCD_QUEUE_STTS_REG_MSK (0x00FF0000)
+
+#define IWL50_SCD_QUEUE_CTX_REG1_CREDIT_POS (8)
+#define IWL50_SCD_QUEUE_CTX_REG1_CREDIT_MSK (0x00FFFF00)
+#define IWL50_SCD_QUEUE_CTX_REG1_SUPER_CREDIT_POS (24)
+#define IWL50_SCD_QUEUE_CTX_REG1_SUPER_CREDIT_MSK (0xFF000000)
+#define IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS (0)
+#define IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK (0x0000007F)
+#define IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS (16)
+#define IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK (0x007F0000)
+
+#define IWL50_SCD_CONTEXT_DATA_OFFSET (0x600)
+#define IWL50_SCD_TX_STTS_BITMAP_OFFSET (0x7B1)
+#define IWL50_SCD_TRANSLATE_TBL_OFFSET (0x7E0)
+
+#define IWL50_SCD_CONTEXT_QUEUE_OFFSET(x)\
+ (IWL50_SCD_CONTEXT_DATA_OFFSET + ((x) * 8))
+
+#define IWL50_SCD_TRANSLATE_TBL_OFFSET_QUEUE(x) \
+ ((IWL50_SCD_TRANSLATE_TBL_OFFSET + ((x) * 2)) & 0xfffc)
+
+#define IWL50_SCD_QUEUECHAIN_SEL_ALL(x) (((1<<(x)) - 1) &\
+ (~(1<<IWL_CMD_QUEUE_NUM)))
+
#define IWL50_SCD_BASE (PRPH_BASE + 0xa02c00)
#define IWL50_SCD_SRAM_BASE_ADDR (IWL50_SCD_BASE + 0x0)
@@ -287,4 +554,6 @@
#define IWL50_SCD_INTERRUPT_MASK (IWL50_SCD_BASE + 0x108)
#define IWL50_SCD_QUEUE_STATUS_BITS(x) (IWL50_SCD_BASE + 0x10c + (x) * 4)
+/*********************** END TX SCHEDULER *************************************/
+
#endif /* __iwl_prph_h__ */