summaryrefslogtreecommitdiffstats
path: root/fs/jffs2/wbuf.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/jffs2/wbuf.c')
-rw-r--r--fs/jffs2/wbuf.c1184
1 files changed, 1184 insertions, 0 deletions
diff --git a/fs/jffs2/wbuf.c b/fs/jffs2/wbuf.c
new file mode 100644
index 000000000000..c8128069ecf0
--- /dev/null
+++ b/fs/jffs2/wbuf.c
@@ -0,0 +1,1184 @@
+/*
+ * JFFS2 -- Journalling Flash File System, Version 2.
+ *
+ * Copyright (C) 2001-2003 Red Hat, Inc.
+ * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
+ *
+ * Created by David Woodhouse <dwmw2@infradead.org>
+ * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
+ *
+ * For licensing information, see the file 'LICENCE' in this directory.
+ *
+ * $Id: wbuf.c,v 1.82 2004/11/20 22:08:31 dwmw2 Exp $
+ *
+ */
+
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/crc32.h>
+#include <linux/mtd/nand.h>
+#include "nodelist.h"
+
+/* For testing write failures */
+#undef BREAKME
+#undef BREAKMEHEADER
+
+#ifdef BREAKME
+static unsigned char *brokenbuf;
+#endif
+
+/* max. erase failures before we mark a block bad */
+#define MAX_ERASE_FAILURES 2
+
+/* two seconds timeout for timed wbuf-flushing */
+#define WBUF_FLUSH_TIMEOUT 2 * HZ
+
+struct jffs2_inodirty {
+ uint32_t ino;
+ struct jffs2_inodirty *next;
+};
+
+static struct jffs2_inodirty inodirty_nomem;
+
+static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
+{
+ struct jffs2_inodirty *this = c->wbuf_inodes;
+
+ /* If a malloc failed, consider _everything_ dirty */
+ if (this == &inodirty_nomem)
+ return 1;
+
+ /* If ino == 0, _any_ non-GC writes mean 'yes' */
+ if (this && !ino)
+ return 1;
+
+ /* Look to see if the inode in question is pending in the wbuf */
+ while (this) {
+ if (this->ino == ino)
+ return 1;
+ this = this->next;
+ }
+ return 0;
+}
+
+static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
+{
+ struct jffs2_inodirty *this;
+
+ this = c->wbuf_inodes;
+
+ if (this != &inodirty_nomem) {
+ while (this) {
+ struct jffs2_inodirty *next = this->next;
+ kfree(this);
+ this = next;
+ }
+ }
+ c->wbuf_inodes = NULL;
+}
+
+static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
+{
+ struct jffs2_inodirty *new;
+
+ /* Mark the superblock dirty so that kupdated will flush... */
+ OFNI_BS_2SFFJ(c)->s_dirt = 1;
+
+ if (jffs2_wbuf_pending_for_ino(c, ino))
+ return;
+
+ new = kmalloc(sizeof(*new), GFP_KERNEL);
+ if (!new) {
+ D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
+ jffs2_clear_wbuf_ino_list(c);
+ c->wbuf_inodes = &inodirty_nomem;
+ return;
+ }
+ new->ino = ino;
+ new->next = c->wbuf_inodes;
+ c->wbuf_inodes = new;
+ return;
+}
+
+static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
+{
+ struct list_head *this, *next;
+ static int n;
+
+ if (list_empty(&c->erasable_pending_wbuf_list))
+ return;
+
+ list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
+ struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
+
+ D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
+ list_del(this);
+ if ((jiffies + (n++)) & 127) {
+ /* Most of the time, we just erase it immediately. Otherwise we
+ spend ages scanning it on mount, etc. */
+ D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
+ list_add_tail(&jeb->list, &c->erase_pending_list);
+ c->nr_erasing_blocks++;
+ jffs2_erase_pending_trigger(c);
+ } else {
+ /* Sometimes, however, we leave it elsewhere so it doesn't get
+ immediately reused, and we spread the load a bit. */
+ D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
+ list_add_tail(&jeb->list, &c->erasable_list);
+ }
+ }
+}
+
+static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
+{
+ D1(printk("About to refile bad block at %08x\n", jeb->offset));
+
+ D2(jffs2_dump_block_lists(c));
+ /* File the existing block on the bad_used_list.... */
+ if (c->nextblock == jeb)
+ c->nextblock = NULL;
+ else /* Not sure this should ever happen... need more coffee */
+ list_del(&jeb->list);
+ if (jeb->first_node) {
+ D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
+ list_add(&jeb->list, &c->bad_used_list);
+ } else {
+ BUG();
+ /* It has to have had some nodes or we couldn't be here */
+ D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
+ list_add(&jeb->list, &c->erase_pending_list);
+ c->nr_erasing_blocks++;
+ jffs2_erase_pending_trigger(c);
+ }
+ D2(jffs2_dump_block_lists(c));
+
+ /* Adjust its size counts accordingly */
+ c->wasted_size += jeb->free_size;
+ c->free_size -= jeb->free_size;
+ jeb->wasted_size += jeb->free_size;
+ jeb->free_size = 0;
+
+ ACCT_SANITY_CHECK(c,jeb);
+ D1(ACCT_PARANOIA_CHECK(jeb));
+}
+
+/* Recover from failure to write wbuf. Recover the nodes up to the
+ * wbuf, not the one which we were starting to try to write. */
+
+static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
+{
+ struct jffs2_eraseblock *jeb, *new_jeb;
+ struct jffs2_raw_node_ref **first_raw, **raw;
+ size_t retlen;
+ int ret;
+ unsigned char *buf;
+ uint32_t start, end, ofs, len;
+
+ spin_lock(&c->erase_completion_lock);
+
+ jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
+
+ jffs2_block_refile(c, jeb);
+
+ /* Find the first node to be recovered, by skipping over every
+ node which ends before the wbuf starts, or which is obsolete. */
+ first_raw = &jeb->first_node;
+ while (*first_raw &&
+ (ref_obsolete(*first_raw) ||
+ (ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) {
+ D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
+ ref_offset(*first_raw), ref_flags(*first_raw),
+ (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)),
+ c->wbuf_ofs));
+ first_raw = &(*first_raw)->next_phys;
+ }
+
+ if (!*first_raw) {
+ /* All nodes were obsolete. Nothing to recover. */
+ D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
+ spin_unlock(&c->erase_completion_lock);
+ return;
+ }
+
+ start = ref_offset(*first_raw);
+ end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw);
+
+ /* Find the last node to be recovered */
+ raw = first_raw;
+ while ((*raw)) {
+ if (!ref_obsolete(*raw))
+ end = ref_offset(*raw) + ref_totlen(c, jeb, *raw);
+
+ raw = &(*raw)->next_phys;
+ }
+ spin_unlock(&c->erase_completion_lock);
+
+ D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end));
+
+ buf = NULL;
+ if (start < c->wbuf_ofs) {
+ /* First affected node was already partially written.
+ * Attempt to reread the old data into our buffer. */
+
+ buf = kmalloc(end - start, GFP_KERNEL);
+ if (!buf) {
+ printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
+
+ goto read_failed;
+ }
+
+ /* Do the read... */
+ if (jffs2_cleanmarker_oob(c))
+ ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo);
+ else
+ ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
+
+ if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) {
+ /* ECC recovered */
+ ret = 0;
+ }
+ if (ret || retlen != c->wbuf_ofs - start) {
+ printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
+
+ kfree(buf);
+ buf = NULL;
+ read_failed:
+ first_raw = &(*first_raw)->next_phys;
+ /* If this was the only node to be recovered, give up */
+ if (!(*first_raw))
+ return;
+
+ /* It wasn't. Go on and try to recover nodes complete in the wbuf */
+ start = ref_offset(*first_raw);
+ } else {
+ /* Read succeeded. Copy the remaining data from the wbuf */
+ memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
+ }
+ }
+ /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
+ Either 'buf' contains the data, or we find it in the wbuf */
+
+
+ /* ... and get an allocation of space from a shiny new block instead */
+ ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len);
+ if (ret) {
+ printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
+ if (buf)
+ kfree(buf);
+ return;
+ }
+ if (end-start >= c->wbuf_pagesize) {
+ /* Need to do another write immediately. This, btw,
+ means that we'll be writing from 'buf' and not from
+ the wbuf. Since if we're writing from the wbuf there
+ won't be more than a wbuf full of data, now will
+ there? :) */
+
+ uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
+
+ D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
+ towrite, ofs));
+
+#ifdef BREAKMEHEADER
+ static int breakme;
+ if (breakme++ == 20) {
+ printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
+ breakme = 0;
+ c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
+ brokenbuf, NULL, c->oobinfo);
+ ret = -EIO;
+ } else
+#endif
+ if (jffs2_cleanmarker_oob(c))
+ ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
+ buf, NULL, c->oobinfo);
+ else
+ ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, buf);
+
+ if (ret || retlen != towrite) {
+ /* Argh. We tried. Really we did. */
+ printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
+ kfree(buf);
+
+ if (retlen) {
+ struct jffs2_raw_node_ref *raw2;
+
+ raw2 = jffs2_alloc_raw_node_ref();
+ if (!raw2)
+ return;
+
+ raw2->flash_offset = ofs | REF_OBSOLETE;
+ raw2->__totlen = ref_totlen(c, jeb, *first_raw);
+ raw2->next_phys = NULL;
+ raw2->next_in_ino = NULL;
+
+ jffs2_add_physical_node_ref(c, raw2);
+ }
+ return;
+ }
+ printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
+
+ c->wbuf_len = (end - start) - towrite;
+ c->wbuf_ofs = ofs + towrite;
+ memcpy(c->wbuf, buf + towrite, c->wbuf_len);
+ /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
+
+ kfree(buf);
+ } else {
+ /* OK, now we're left with the dregs in whichever buffer we're using */
+ if (buf) {
+ memcpy(c->wbuf, buf, end-start);
+ kfree(buf);
+ } else {
+ memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
+ }
+ c->wbuf_ofs = ofs;
+ c->wbuf_len = end - start;
+ }
+
+ /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
+ new_jeb = &c->blocks[ofs / c->sector_size];
+
+ spin_lock(&c->erase_completion_lock);
+ if (new_jeb->first_node) {
+ /* Odd, but possible with ST flash later maybe */
+ new_jeb->last_node->next_phys = *first_raw;
+ } else {
+ new_jeb->first_node = *first_raw;
+ }
+
+ raw = first_raw;
+ while (*raw) {
+ uint32_t rawlen = ref_totlen(c, jeb, *raw);
+
+ D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
+ rawlen, ref_offset(*raw), ref_flags(*raw), ofs));
+
+ if (ref_obsolete(*raw)) {
+ /* Shouldn't really happen much */
+ new_jeb->dirty_size += rawlen;
+ new_jeb->free_size -= rawlen;
+ c->dirty_size += rawlen;
+ } else {
+ new_jeb->used_size += rawlen;
+ new_jeb->free_size -= rawlen;
+ jeb->dirty_size += rawlen;
+ jeb->used_size -= rawlen;
+ c->dirty_size += rawlen;
+ }
+ c->free_size -= rawlen;
+ (*raw)->flash_offset = ofs | ref_flags(*raw);
+ ofs += rawlen;
+ new_jeb->last_node = *raw;
+
+ raw = &(*raw)->next_phys;
+ }
+
+ /* Fix up the original jeb now it's on the bad_list */
+ *first_raw = NULL;
+ if (first_raw == &jeb->first_node) {
+ jeb->last_node = NULL;
+ D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
+ list_del(&jeb->list);
+ list_add(&jeb->list, &c->erase_pending_list);
+ c->nr_erasing_blocks++;
+ jffs2_erase_pending_trigger(c);
+ }
+ else
+ jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys);
+
+ ACCT_SANITY_CHECK(c,jeb);
+ D1(ACCT_PARANOIA_CHECK(jeb));
+
+ ACCT_SANITY_CHECK(c,new_jeb);
+ D1(ACCT_PARANOIA_CHECK(new_jeb));
+
+ spin_unlock(&c->erase_completion_lock);
+
+ D1(printk(KERN_DEBUG "wbuf recovery completed OK\n"));
+}
+
+/* Meaning of pad argument:
+ 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
+ 1: Pad, do not adjust nextblock free_size
+ 2: Pad, adjust nextblock free_size
+*/
+#define NOPAD 0
+#define PAD_NOACCOUNT 1
+#define PAD_ACCOUNTING 2
+
+static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
+{
+ int ret;
+ size_t retlen;
+
+ /* Nothing to do if not NAND flash. In particular, we shouldn't
+ del_timer() the timer we never initialised. */
+ if (jffs2_can_mark_obsolete(c))
+ return 0;
+
+ if (!down_trylock(&c->alloc_sem)) {
+ up(&c->alloc_sem);
+ printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
+ BUG();
+ }
+
+ if(!c->wbuf || !c->wbuf_len)
+ return 0;
+
+ /* claim remaining space on the page
+ this happens, if we have a change to a new block,
+ or if fsync forces us to flush the writebuffer.
+ if we have a switch to next page, we will not have
+ enough remaining space for this.
+ */
+ if (pad) {
+ c->wbuf_len = PAD(c->wbuf_len);
+
+ /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
+ with 8 byte page size */
+ memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
+
+ if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
+ struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
+ padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
+ padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
+ padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
+ padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
+ }
+ }
+ /* else jffs2_flash_writev has actually filled in the rest of the
+ buffer for us, and will deal with the node refs etc. later. */
+
+#ifdef BREAKME
+ static int breakme;
+ if (breakme++ == 20) {
+ printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
+ breakme = 0;
+ c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
+ &retlen, brokenbuf, NULL, c->oobinfo);
+ ret = -EIO;
+ } else
+#endif
+
+ if (jffs2_cleanmarker_oob(c))
+ ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo);
+ else
+ ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
+
+ if (ret || retlen != c->wbuf_pagesize) {
+ if (ret)
+ printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
+ else {
+ printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
+ retlen, c->wbuf_pagesize);
+ ret = -EIO;
+ }
+
+ jffs2_wbuf_recover(c);
+
+ return ret;
+ }
+
+ spin_lock(&c->erase_completion_lock);
+
+ /* Adjust free size of the block if we padded. */
+ if (pad) {
+ struct jffs2_eraseblock *jeb;
+
+ jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
+
+ D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
+ (jeb==c->nextblock)?"next":"", jeb->offset));
+
+ /* wbuf_pagesize - wbuf_len is the amount of space that's to be
+ padded. If there is less free space in the block than that,
+ something screwed up */
+ if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) {
+ printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
+ c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len);
+ printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
+ jeb->offset, jeb->free_size);
+ BUG();
+ }
+ jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len);
+ c->free_size -= (c->wbuf_pagesize - c->wbuf_len);
+ jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
+ c->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
+ }
+
+ /* Stick any now-obsoleted blocks on the erase_pending_list */
+ jffs2_refile_wbuf_blocks(c);
+ jffs2_clear_wbuf_ino_list(c);
+ spin_unlock(&c->erase_completion_lock);
+
+ memset(c->wbuf,0xff,c->wbuf_pagesize);
+ /* adjust write buffer offset, else we get a non contiguous write bug */
+ c->wbuf_ofs += c->wbuf_pagesize;
+ c->wbuf_len = 0;
+ return 0;
+}
+
+/* Trigger garbage collection to flush the write-buffer.
+ If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
+ outstanding. If ino arg non-zero, do it only if a write for the
+ given inode is outstanding. */
+int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
+{
+ uint32_t old_wbuf_ofs;
+ uint32_t old_wbuf_len;
+ int ret = 0;
+
+ D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
+
+ down(&c->alloc_sem);
+ if (!jffs2_wbuf_pending_for_ino(c, ino)) {
+ D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
+ up(&c->alloc_sem);
+ return 0;
+ }
+
+ old_wbuf_ofs = c->wbuf_ofs;
+ old_wbuf_len = c->wbuf_len;
+
+ if (c->unchecked_size) {
+ /* GC won't make any progress for a while */
+ D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
+ down_write(&c->wbuf_sem);
+ ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
+ up_write(&c->wbuf_sem);
+ } else while (old_wbuf_len &&
+ old_wbuf_ofs == c->wbuf_ofs) {
+
+ up(&c->alloc_sem);
+
+ D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
+
+ ret = jffs2_garbage_collect_pass(c);
+ if (ret) {
+ /* GC failed. Flush it with padding instead */
+ down(&c->alloc_sem);
+ down_write(&c->wbuf_sem);
+ ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
+ up_write(&c->wbuf_sem);
+ break;
+ }
+ down(&c->alloc_sem);
+ }
+
+ D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
+
+ up(&c->alloc_sem);
+ return ret;
+}
+
+/* Pad write-buffer to end and write it, wasting space. */
+int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
+{
+ int ret;
+
+ down_write(&c->wbuf_sem);
+ ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
+ up_write(&c->wbuf_sem);
+
+ return ret;
+}
+
+#define PAGE_DIV(x) ( (x) & (~(c->wbuf_pagesize - 1)) )
+#define PAGE_MOD(x) ( (x) & (c->wbuf_pagesize - 1) )
+int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino)
+{
+ struct kvec outvecs[3];
+ uint32_t totlen = 0;
+ uint32_t split_ofs = 0;
+ uint32_t old_totlen;
+ int ret, splitvec = -1;
+ int invec, outvec;
+ size_t wbuf_retlen;
+ unsigned char *wbuf_ptr;
+ size_t donelen = 0;
+ uint32_t outvec_to = to;
+
+ /* If not NAND flash, don't bother */
+ if (!c->wbuf)
+ return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
+
+ down_write(&c->wbuf_sem);
+
+ /* If wbuf_ofs is not initialized, set it to target address */
+ if (c->wbuf_ofs == 0xFFFFFFFF) {
+ c->wbuf_ofs = PAGE_DIV(to);
+ c->wbuf_len = PAGE_MOD(to);
+ memset(c->wbuf,0xff,c->wbuf_pagesize);
+ }
+
+ /* Fixup the wbuf if we are moving to a new eraseblock. The checks below
+ fail for ECC'd NOR because cleanmarker == 16, so a block starts at
+ xxx0010. */
+ if (jffs2_nor_ecc(c)) {
+ if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) {
+ c->wbuf_ofs = PAGE_DIV(to);
+ c->wbuf_len = PAGE_MOD(to);
+ memset(c->wbuf,0xff,c->wbuf_pagesize);
+ }
+ }
+
+ /* Sanity checks on target address.
+ It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs),
+ and it's permitted to write at the beginning of a new
+ erase block. Anything else, and you die.
+ New block starts at xxx000c (0-b = block header)
+ */
+ if ( (to & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) ) {
+ /* It's a write to a new block */
+ if (c->wbuf_len) {
+ D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs));
+ ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
+ if (ret) {
+ /* the underlying layer has to check wbuf_len to do the cleanup */
+ D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
+ *retlen = 0;
+ goto exit;
+ }
+ }
+ /* set pointer to new block */
+ c->wbuf_ofs = PAGE_DIV(to);
+ c->wbuf_len = PAGE_MOD(to);
+ }
+
+ if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
+ /* We're not writing immediately after the writebuffer. Bad. */
+ printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to);
+ if (c->wbuf_len)
+ printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
+ c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
+ BUG();
+ }
+
+ /* Note outvecs[3] above. We know count is never greater than 2 */
+ if (count > 2) {
+ printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count);
+ BUG();
+ }
+
+ invec = 0;
+ outvec = 0;
+
+ /* Fill writebuffer first, if already in use */
+ if (c->wbuf_len) {
+ uint32_t invec_ofs = 0;
+
+ /* adjust alignment offset */
+ if (c->wbuf_len != PAGE_MOD(to)) {
+ c->wbuf_len = PAGE_MOD(to);
+ /* take care of alignment to next page */
+ if (!c->wbuf_len)
+ c->wbuf_len = c->wbuf_pagesize;
+ }
+
+ while(c->wbuf_len < c->wbuf_pagesize) {
+ uint32_t thislen;
+
+ if (invec == count)
+ goto alldone;
+
+ thislen = c->wbuf_pagesize - c->wbuf_len;
+
+ if (thislen >= invecs[invec].iov_len)
+ thislen = invecs[invec].iov_len;
+
+ invec_ofs = thislen;
+
+ memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen);
+ c->wbuf_len += thislen;
+ donelen += thislen;
+ /* Get next invec, if actual did not fill the buffer */
+ if (c->wbuf_len < c->wbuf_pagesize)
+ invec++;
+ }
+
+ /* write buffer is full, flush buffer */
+ ret = __jffs2_flush_wbuf(c, NOPAD);
+ if (ret) {
+ /* the underlying layer has to check wbuf_len to do the cleanup */
+ D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
+ /* Retlen zero to make sure our caller doesn't mark the space dirty.
+ We've already done everything that's necessary */
+ *retlen = 0;
+ goto exit;
+ }
+ outvec_to += donelen;
+ c->wbuf_ofs = outvec_to;
+
+ /* All invecs done ? */
+ if (invec == count)
+ goto alldone;
+
+ /* Set up the first outvec, containing the remainder of the
+ invec we partially used */
+ if (invecs[invec].iov_len > invec_ofs) {
+ outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs;
+ totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs;
+ if (totlen > c->wbuf_pagesize) {
+ splitvec = outvec;
+ split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen);
+ }
+ outvec++;
+ }
+ invec++;
+ }
+
+ /* OK, now we've flushed the wbuf and the start of the bits
+ we have been asked to write, now to write the rest.... */
+
+ /* totlen holds the amount of data still to be written */
+ old_totlen = totlen;
+ for ( ; invec < count; invec++,outvec++ ) {
+ outvecs[outvec].iov_base = invecs[invec].iov_base;
+ totlen += outvecs[outvec].iov_len = invecs[invec].iov_len;
+ if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) {
+ splitvec = outvec;
+ split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen);
+ old_totlen = totlen;
+ }
+ }
+
+ /* Now the outvecs array holds all the remaining data to write */
+ /* Up to splitvec,split_ofs is to be written immediately. The rest
+ goes into the (now-empty) wbuf */
+
+ if (splitvec != -1) {
+ uint32_t remainder;
+
+ remainder = outvecs[splitvec].iov_len - split_ofs;
+ outvecs[splitvec].iov_len = split_ofs;
+
+ /* We did cross a page boundary, so we write some now */
+ if (jffs2_cleanmarker_oob(c))
+ ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo);
+ else
+ ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen);
+
+ if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) {
+ /* At this point we have no problem,
+ c->wbuf is empty.
+ */
+ *retlen = donelen;
+ goto exit;
+ }
+
+ donelen += wbuf_retlen;
+ c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen);
+
+ if (remainder) {
+ outvecs[splitvec].iov_base += split_ofs;
+ outvecs[splitvec].iov_len = remainder;
+ } else {
+ splitvec++;
+ }
+
+ } else {
+ splitvec = 0;
+ }
+
+ /* Now splitvec points to the start of the bits we have to copy
+ into the wbuf */
+ wbuf_ptr = c->wbuf;
+
+ for ( ; splitvec < outvec; splitvec++) {
+ /* Don't copy the wbuf into itself */
+ if (outvecs[splitvec].iov_base == c->wbuf)
+ continue;
+ memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len);
+ wbuf_ptr += outvecs[splitvec].iov_len;
+ donelen += outvecs[splitvec].iov_len;
+ }
+ c->wbuf_len = wbuf_ptr - c->wbuf;
+
+ /* If there's a remainder in the wbuf and it's a non-GC write,
+ remember that the wbuf affects this ino */
+alldone:
+ *retlen = donelen;
+
+ if (c->wbuf_len && ino)
+ jffs2_wbuf_dirties_inode(c, ino);
+
+ ret = 0;
+
+exit:
+ up_write(&c->wbuf_sem);
+ return ret;
+}
+
+/*
+ * This is the entry for flash write.
+ * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
+*/
+int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf)
+{
+ struct kvec vecs[1];
+
+ if (jffs2_can_mark_obsolete(c))
+ return c->mtd->write(c->mtd, ofs, len, retlen, buf);
+
+ vecs[0].iov_base = (unsigned char *) buf;
+ vecs[0].iov_len = len;
+ return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
+}
+
+/*
+ Handle readback from writebuffer and ECC failure return
+*/
+int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
+{
+ loff_t orbf = 0, owbf = 0, lwbf = 0;
+ int ret;
+
+ /* Read flash */
+ if (!jffs2_can_mark_obsolete(c)) {
+ down_read(&c->wbuf_sem);
+
+ if (jffs2_cleanmarker_oob(c))
+ ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo);
+ else
+ ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
+
+ if ( (ret == -EBADMSG) && (*retlen == len) ) {
+ printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
+ len, ofs);
+ /*
+ * We have the raw data without ECC correction in the buffer, maybe
+ * we are lucky and all data or parts are correct. We check the node.
+ * If data are corrupted node check will sort it out.
+ * We keep this block, it will fail on write or erase and the we
+ * mark it bad. Or should we do that now? But we should give him a chance.
+ * Maybe we had a system crash or power loss before the ecc write or
+ * a erase was completed.
+ * So we return success. :)
+ */
+ ret = 0;
+ }
+ } else
+ return c->mtd->read(c->mtd, ofs, len, retlen, buf);
+
+ /* if no writebuffer available or write buffer empty, return */
+ if (!c->wbuf_pagesize || !c->wbuf_len)
+ goto exit;
+
+ /* if we read in a different block, return */
+ if ( (ofs & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) )
+ goto exit;
+
+ if (ofs >= c->wbuf_ofs) {
+ owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
+ if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
+ goto exit;
+ lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
+ if (lwbf > len)
+ lwbf = len;
+ } else {
+ orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
+ if (orbf > len) /* is write beyond write buffer ? */
+ goto exit;
+ lwbf = len - orbf; /* number of bytes to copy */
+ if (lwbf > c->wbuf_len)
+ lwbf = c->wbuf_len;
+ }
+ if (lwbf > 0)
+ memcpy(buf+orbf,c->wbuf+owbf,lwbf);
+
+exit:
+ up_read(&c->wbuf_sem);
+ return ret;
+}
+
+/*
+ * Check, if the out of band area is empty
+ */
+int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode)
+{
+ unsigned char *buf;
+ int ret = 0;
+ int i,len,page;
+ size_t retlen;
+ int oob_size;
+
+ /* allocate a buffer for all oob data in this sector */
+ oob_size = c->mtd->oobsize;
+ len = 4 * oob_size;
+ buf = kmalloc(len, GFP_KERNEL);
+ if (!buf) {
+ printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n");
+ return -ENOMEM;
+ }
+ /*
+ * if mode = 0, we scan for a total empty oob area, else we have
+ * to take care of the cleanmarker in the first page of the block
+ */
+ ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf);
+ if (ret) {
+ D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
+ goto out;
+ }
+
+ if (retlen < len) {
+ D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read "
+ "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset));
+ ret = -EIO;
+ goto out;
+ }
+
+ /* Special check for first page */
+ for(i = 0; i < oob_size ; i++) {
+ /* Yeah, we know about the cleanmarker. */
+ if (mode && i >= c->fsdata_pos &&
+ i < c->fsdata_pos + c->fsdata_len)
+ continue;
+
+ if (buf[i] != 0xFF) {
+ D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n",
+ buf[page+i], page+i, jeb->offset));
+ ret = 1;
+ goto out;
+ }
+ }
+
+ /* we know, we are aligned :) */
+ for (page = oob_size; page < len; page += sizeof(long)) {
+ unsigned long dat = *(unsigned long *)(&buf[page]);
+ if(dat != -1) {
+ ret = 1;
+ goto out;
+ }
+ }
+
+out:
+ kfree(buf);
+
+ return ret;
+}
+
+/*
+* Scan for a valid cleanmarker and for bad blocks
+* For virtual blocks (concatenated physical blocks) check the cleanmarker
+* only in the first page of the first physical block, but scan for bad blocks in all
+* physical blocks
+*/
+int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
+{
+ struct jffs2_unknown_node n;
+ unsigned char buf[2 * NAND_MAX_OOBSIZE];
+ unsigned char *p;
+ int ret, i, cnt, retval = 0;
+ size_t retlen, offset;
+ int oob_size;
+
+ offset = jeb->offset;
+ oob_size = c->mtd->oobsize;
+
+ /* Loop through the physical blocks */
+ for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) {
+ /* Check first if the block is bad. */
+ if (c->mtd->block_isbad (c->mtd, offset)) {
+ D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset));
+ return 2;
+ }
+ /*
+ * We read oob data from page 0 and 1 of the block.
+ * page 0 contains cleanmarker and badblock info
+ * page 1 contains failure count of this block
+ */
+ ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf);
+
+ if (ret) {
+ D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
+ return ret;
+ }
+ if (retlen < (oob_size << 1)) {
+ D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset));
+ return -EIO;
+ }
+
+ /* Check cleanmarker only on the first physical block */
+ if (!cnt) {
+ n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
+ n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
+ n.totlen = cpu_to_je32 (8);
+ p = (unsigned char *) &n;
+
+ for (i = 0; i < c->fsdata_len; i++) {
+ if (buf[c->fsdata_pos + i] != p[i]) {
+ retval = 1;
+ }
+ }
+ D1(if (retval == 1) {
+ printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset);
+ printk(KERN_WARNING "OOB at %08x was ", offset);
+ for (i=0; i < oob_size; i++) {
+ printk("%02x ", buf[i]);
+ }
+ printk("\n");
+ })
+ }
+ offset += c->mtd->erasesize;
+ }
+ return retval;
+}
+
+int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
+{
+ struct jffs2_unknown_node n;
+ int ret;
+ size_t retlen;
+
+ n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
+ n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
+ n.totlen = cpu_to_je32(8);
+
+ ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n);
+
+ if (ret) {
+ D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
+ return ret;
+ }
+ if (retlen != c->fsdata_len) {
+ D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len));
+ return ret;
+ }
+ return 0;
+}
+
+/*
+ * On NAND we try to mark this block bad. If the block was erased more
+ * than MAX_ERASE_FAILURES we mark it finaly bad.
+ * Don't care about failures. This block remains on the erase-pending
+ * or badblock list as long as nobody manipulates the flash with
+ * a bootloader or something like that.
+ */
+
+int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
+{
+ int ret;
+
+ /* if the count is < max, we try to write the counter to the 2nd page oob area */
+ if( ++jeb->bad_count < MAX_ERASE_FAILURES)
+ return 0;
+
+ if (!c->mtd->block_markbad)
+ return 1; // What else can we do?
+
+ D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
+ ret = c->mtd->block_markbad(c->mtd, bad_offset);
+
+ if (ret) {
+ D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
+ return ret;
+ }
+ return 1;
+}
+
+#define NAND_JFFS2_OOB16_FSDALEN 8
+
+static struct nand_oobinfo jffs2_oobinfo_docecc = {
+ .useecc = MTD_NANDECC_PLACE,
+ .eccbytes = 6,
+ .eccpos = {0,1,2,3,4,5}
+};
+
+
+static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
+{
+ struct nand_oobinfo *oinfo = &c->mtd->oobinfo;
+
+ /* Do this only, if we have an oob buffer */
+ if (!c->mtd->oobsize)
+ return 0;
+
+ /* Cleanmarker is out-of-band, so inline size zero */
+ c->cleanmarker_size = 0;
+
+ /* Should we use autoplacement ? */
+ if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) {
+ D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
+ /* Get the position of the free bytes */
+ if (!oinfo->oobfree[0][1]) {
+ printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n");
+ return -ENOSPC;
+ }
+ c->fsdata_pos = oinfo->oobfree[0][0];
+ c->fsdata_len = oinfo->oobfree[0][1];
+ if (c->fsdata_len > 8)
+ c->fsdata_len = 8;
+ } else {
+ /* This is just a legacy fallback and should go away soon */
+ switch(c->mtd->ecctype) {
+ case MTD_ECC_RS_DiskOnChip:
+ printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n");
+ c->oobinfo = &jffs2_oobinfo_docecc;
+ c->fsdata_pos = 6;
+ c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN;
+ c->badblock_pos = 15;
+ break;
+
+ default:
+ D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
+ return -EINVAL;
+ }
+ }
+ return 0;
+}
+
+int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
+{
+ int res;
+
+ /* Initialise write buffer */
+ init_rwsem(&c->wbuf_sem);
+ c->wbuf_pagesize = c->mtd->oobblock;
+ c->wbuf_ofs = 0xFFFFFFFF;
+
+ c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
+ if (!c->wbuf)
+ return -ENOMEM;
+
+ res = jffs2_nand_set_oobinfo(c);
+
+#ifdef BREAKME
+ if (!brokenbuf)
+ brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
+ if (!brokenbuf) {
+ kfree(c->wbuf);
+ return -ENOMEM;
+ }
+ memset(brokenbuf, 0xdb, c->wbuf_pagesize);
+#endif
+ return res;
+}
+
+void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
+{
+ kfree(c->wbuf);
+}
+
+#ifdef CONFIG_JFFS2_FS_NOR_ECC
+int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) {
+ /* Cleanmarker is actually larger on the flashes */
+ c->cleanmarker_size = 16;
+
+ /* Initialize write buffer */
+ init_rwsem(&c->wbuf_sem);
+ c->wbuf_pagesize = c->mtd->eccsize;
+ c->wbuf_ofs = 0xFFFFFFFF;
+
+ c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
+ if (!c->wbuf)
+ return -ENOMEM;
+
+ return 0;
+}
+
+void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) {
+ kfree(c->wbuf);
+}
+#endif