summaryrefslogtreecommitdiffstats
path: root/lib/math/rational.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/math/rational.c')
-rw-r--r--lib/math/rational.c63
1 files changed, 50 insertions, 13 deletions
diff --git a/lib/math/rational.c b/lib/math/rational.c
index ba7443677c90..31fb27db2deb 100644
--- a/lib/math/rational.c
+++ b/lib/math/rational.c
@@ -3,6 +3,7 @@
* rational fractions
*
* Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
+ * Copyright (C) 2019 Trent Piepho <tpiepho@gmail.com>
*
* helper functions when coping with rational numbers
*/
@@ -10,6 +11,7 @@
#include <linux/rational.h>
#include <linux/compiler.h>
#include <linux/export.h>
+#include <linux/kernel.h>
/*
* calculate best rational approximation for a given fraction
@@ -33,30 +35,65 @@ void rational_best_approximation(
unsigned long max_numerator, unsigned long max_denominator,
unsigned long *best_numerator, unsigned long *best_denominator)
{
- unsigned long n, d, n0, d0, n1, d1;
+ /* n/d is the starting rational, which is continually
+ * decreased each iteration using the Euclidean algorithm.
+ *
+ * dp is the value of d from the prior iteration.
+ *
+ * n2/d2, n1/d1, and n0/d0 are our successively more accurate
+ * approximations of the rational. They are, respectively,
+ * the current, previous, and two prior iterations of it.
+ *
+ * a is current term of the continued fraction.
+ */
+ unsigned long n, d, n0, d0, n1, d1, n2, d2;
n = given_numerator;
d = given_denominator;
n0 = d1 = 0;
n1 = d0 = 1;
+
for (;;) {
- unsigned long t, a;
- if ((n1 > max_numerator) || (d1 > max_denominator)) {
- n1 = n0;
- d1 = d0;
- break;
- }
+ unsigned long dp, a;
+
if (d == 0)
break;
- t = d;
+ /* Find next term in continued fraction, 'a', via
+ * Euclidean algorithm.
+ */
+ dp = d;
a = n / d;
d = n % d;
- n = t;
- t = n0 + a * n1;
+ n = dp;
+
+ /* Calculate the current rational approximation (aka
+ * convergent), n2/d2, using the term just found and
+ * the two prior approximations.
+ */
+ n2 = n0 + a * n1;
+ d2 = d0 + a * d1;
+
+ /* If the current convergent exceeds the maxes, then
+ * return either the previous convergent or the
+ * largest semi-convergent, the final term of which is
+ * found below as 't'.
+ */
+ if ((n2 > max_numerator) || (d2 > max_denominator)) {
+ unsigned long t = min((max_numerator - n0) / n1,
+ (max_denominator - d0) / d1);
+
+ /* This tests if the semi-convergent is closer
+ * than the previous convergent.
+ */
+ if (2u * t > a || (2u * t == a && d0 * dp > d1 * d)) {
+ n1 = n0 + t * n1;
+ d1 = d0 + t * d1;
+ }
+ break;
+ }
n0 = n1;
- n1 = t;
- t = d0 + a * d1;
+ n1 = n2;
d0 = d1;
- d1 = t;
+ d1 = d2;
}
*best_numerator = n1;
*best_denominator = d1;