summaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/Kconfig26
-rw-r--r--mm/Makefile9
-rw-r--r--mm/backing-dev.c69
-rw-r--r--mm/bootmem.c218
-rw-r--r--mm/bounce.c1
-rw-r--r--mm/compaction.c605
-rw-r--r--mm/fadvise.c10
-rw-r--r--mm/failslab.c19
-rw-r--r--mm/filemap.c66
-rw-r--r--mm/filemap_xip.c3
-rw-r--r--mm/fremap.c2
-rw-r--r--mm/highmem.c4
-rw-r--r--mm/hugetlb.c32
-rw-r--r--mm/kmemleak.c1
-rw-r--r--mm/ksm.c30
-rw-r--r--mm/memblock.c541
-rw-r--r--mm/memcontrol.c1813
-rw-r--r--mm/memory-failure.c6
-rw-r--r--mm/memory.c210
-rw-r--r--mm/memory_hotplug.c46
-rw-r--r--mm/mempolicy.c387
-rw-r--r--mm/migrate.c120
-rw-r--r--mm/mincore.c265
-rw-r--r--mm/mlock.c49
-rw-r--r--mm/mmap.c262
-rw-r--r--mm/mmu_context.c4
-rw-r--r--mm/mmu_notifier.c1
-rw-r--r--mm/mprotect.c1
-rw-r--r--mm/mremap.c10
-rw-r--r--mm/msync.c2
-rw-r--r--mm/nommu.c67
-rw-r--r--mm/oom_kill.c22
-rw-r--r--mm/page-writeback.c78
-rw-r--r--mm/page_alloc.c684
-rw-r--r--mm/page_cgroup.c49
-rw-r--r--mm/page_io.c1
-rw-r--r--mm/pagewalk.c47
-rw-r--r--mm/percpu-km.c104
-rw-r--r--mm/percpu-vm.c451
-rw-r--r--mm/percpu.c661
-rw-r--r--mm/percpu_up.c30
-rw-r--r--mm/quicklist.c1
-rw-r--r--mm/readahead.c9
-rw-r--r--mm/rmap.c260
-rw-r--r--mm/shmem.c143
-rw-r--r--mm/slab.c275
-rw-r--r--mm/slob.c8
-rw-r--r--mm/slub.c427
-rw-r--r--mm/sparse-vmemmap.c77
-rw-r--r--mm/sparse.c204
-rw-r--r--mm/swap.c4
-rw-r--r--mm/swap_state.c1
-rw-r--r--mm/swapfile.c85
-rw-r--r--mm/truncate.c11
-rw-r--r--mm/util.c21
-rw-r--r--mm/vmalloc.c110
-rw-r--r--mm/vmscan.c394
-rw-r--r--mm/vmstat.c271
58 files changed, 6993 insertions, 2314 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index 17b8947aa7da..f4e516e9c37c 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -115,6 +115,10 @@ config SPARSEMEM_EXTREME
config SPARSEMEM_VMEMMAP_ENABLE
bool
+config SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
+ def_bool y
+ depends on SPARSEMEM && X86_64
+
config SPARSEMEM_VMEMMAP
bool "Sparse Memory virtual memmap"
depends on SPARSEMEM && SPARSEMEM_VMEMMAP_ENABLE
@@ -124,6 +128,9 @@ config SPARSEMEM_VMEMMAP
pfn_to_page and page_to_pfn operations. This is the most
efficient option when sufficient kernel resources are available.
+config HAVE_MEMBLOCK
+ boolean
+
# eventually, we can have this option just 'select SPARSEMEM'
config MEMORY_HOTPLUG
bool "Allow for memory hot-add"
@@ -168,6 +175,15 @@ config SPLIT_PTLOCK_CPUS
default "4"
#
+# support for memory compaction
+config COMPACTION
+ bool "Allow for memory compaction"
+ select MIGRATION
+ depends on EXPERIMENTAL && HUGETLB_PAGE && MMU
+ help
+ Allows the compaction of memory for the allocation of huge pages.
+
+#
# support for page migration
#
config MIGRATION
@@ -176,9 +192,11 @@ config MIGRATION
depends on NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE
help
Allows the migration of the physical location of pages of processes
- while the virtual addresses are not changed. This is useful for
- example on NUMA systems to put pages nearer to the processors accessing
- the page.
+ while the virtual addresses are not changed. This is useful in
+ two situations. The first is on NUMA systems to put pages nearer
+ to the processors accessing. The second is when allocating huge
+ pages as migration can relocate pages to satisfy a huge page
+ allocation instead of reclaiming.
config PHYS_ADDR_T_64BIT
def_bool 64BIT || ARCH_PHYS_ADDR_T_64BIT
@@ -195,7 +213,7 @@ config BOUNCE
config NR_QUICK
int
depends on QUICKLIST
- default "2" if SUPERH || AVR32
+ default "2" if AVR32
default "1"
config VIRT_TO_BUS
diff --git a/mm/Makefile b/mm/Makefile
index 7a68d2ab5560..34b2546a9e37 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -15,6 +15,8 @@ obj-y := bootmem.o filemap.o mempool.o oom_kill.o fadvise.o \
$(mmu-y)
obj-y += init-mm.o
+obj-$(CONFIG_HAVE_MEMBLOCK) += memblock.o
+
obj-$(CONFIG_BOUNCE) += bounce.o
obj-$(CONFIG_SWAP) += page_io.o swap_state.o swapfile.o thrash.o
obj-$(CONFIG_HAS_DMA) += dmapool.o
@@ -23,6 +25,7 @@ obj-$(CONFIG_NUMA) += mempolicy.o
obj-$(CONFIG_SPARSEMEM) += sparse.o
obj-$(CONFIG_SPARSEMEM_VMEMMAP) += sparse-vmemmap.o
obj-$(CONFIG_SLOB) += slob.o
+obj-$(CONFIG_COMPACTION) += compaction.o
obj-$(CONFIG_MMU_NOTIFIER) += mmu_notifier.o
obj-$(CONFIG_KSM) += ksm.o
obj-$(CONFIG_PAGE_POISONING) += debug-pagealloc.o
@@ -33,7 +36,11 @@ obj-$(CONFIG_FAILSLAB) += failslab.o
obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o
obj-$(CONFIG_FS_XIP) += filemap_xip.o
obj-$(CONFIG_MIGRATION) += migrate.o
-obj-$(CONFIG_SMP) += percpu.o
+ifdef CONFIG_SMP
+obj-y += percpu.o
+else
+obj-y += percpu_up.o
+endif
obj-$(CONFIG_QUICKLIST) += quicklist.o
obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o
obj-$(CONFIG_MEMORY_FAILURE) += memory-failure.o
diff --git a/mm/backing-dev.c b/mm/backing-dev.c
index 0e8ca0347707..123bcef13e51 100644
--- a/mm/backing-dev.c
+++ b/mm/backing-dev.c
@@ -11,6 +11,8 @@
#include <linux/writeback.h>
#include <linux/device.h>
+static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
+
void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
{
}
@@ -25,6 +27,11 @@ struct backing_dev_info default_backing_dev_info = {
};
EXPORT_SYMBOL_GPL(default_backing_dev_info);
+struct backing_dev_info noop_backing_dev_info = {
+ .name = "noop",
+};
+EXPORT_SYMBOL_GPL(noop_backing_dev_info);
+
static struct class *bdi_class;
/*
@@ -41,7 +48,6 @@ static struct timer_list sync_supers_timer;
static int bdi_sync_supers(void *);
static void sync_supers_timer_fn(unsigned long);
-static void arm_supers_timer(void);
static void bdi_add_default_flusher_task(struct backing_dev_info *bdi);
@@ -98,15 +104,13 @@ static int bdi_debug_stats_show(struct seq_file *m, void *v)
"b_more_io: %8lu\n"
"bdi_list: %8u\n"
"state: %8lx\n"
- "wb_mask: %8lx\n"
- "wb_list: %8u\n"
- "wb_cnt: %8u\n",
+ "wb_list: %8u\n",
(unsigned long) K(bdi_stat(bdi, BDI_WRITEBACK)),
(unsigned long) K(bdi_stat(bdi, BDI_RECLAIMABLE)),
K(bdi_thresh), K(dirty_thresh),
K(background_thresh), nr_wb, nr_dirty, nr_io, nr_more_io,
- !list_empty(&bdi->bdi_list), bdi->state, bdi->wb_mask,
- !list_empty(&bdi->wb_list), bdi->wb_cnt);
+ !list_empty(&bdi->bdi_list), bdi->state,
+ !list_empty(&bdi->wb_list));
#undef K
return 0;
@@ -227,6 +231,9 @@ static struct device_attribute bdi_dev_attrs[] = {
static __init int bdi_class_init(void)
{
bdi_class = class_create(THIS_MODULE, "bdi");
+ if (IS_ERR(bdi_class))
+ return PTR_ERR(bdi_class);
+
bdi_class->dev_attrs = bdi_dev_attrs;
bdi_debug_init();
return 0;
@@ -242,7 +249,7 @@ static int __init default_bdi_init(void)
init_timer(&sync_supers_timer);
setup_timer(&sync_supers_timer, sync_supers_timer_fn, 0);
- arm_supers_timer();
+ bdi_arm_supers_timer();
err = bdi_init(&default_backing_dev_info);
if (!err)
@@ -331,14 +338,13 @@ int bdi_has_dirty_io(struct backing_dev_info *bdi)
static void bdi_flush_io(struct backing_dev_info *bdi)
{
struct writeback_control wbc = {
- .bdi = bdi,
.sync_mode = WB_SYNC_NONE,
.older_than_this = NULL,
.range_cyclic = 1,
.nr_to_write = 1024,
};
- writeback_inodes_wbc(&wbc);
+ writeback_inodes_wb(&bdi->wb, &wbc);
}
/*
@@ -364,10 +370,13 @@ static int bdi_sync_supers(void *unused)
return 0;
}
-static void arm_supers_timer(void)
+void bdi_arm_supers_timer(void)
{
unsigned long next;
+ if (!dirty_writeback_interval)
+ return;
+
next = msecs_to_jiffies(dirty_writeback_interval * 10) + jiffies;
mod_timer(&sync_supers_timer, round_jiffies_up(next));
}
@@ -375,7 +384,7 @@ static void arm_supers_timer(void)
static void sync_supers_timer_fn(unsigned long unused)
{
wake_up_process(sync_supers_tsk);
- arm_supers_timer();
+ bdi_arm_supers_timer();
}
static int bdi_forker_task(void *ptr)
@@ -418,7 +427,10 @@ static int bdi_forker_task(void *ptr)
spin_unlock_bh(&bdi_lock);
wait = msecs_to_jiffies(dirty_writeback_interval * 10);
- schedule_timeout(wait);
+ if (wait)
+ schedule_timeout(wait);
+ else
+ schedule();
try_to_freeze();
continue;
}
@@ -660,12 +672,6 @@ int bdi_init(struct backing_dev_info *bdi)
bdi_wb_init(&bdi->wb, bdi);
- /*
- * Just one thread support for now, hard code mask and count
- */
- bdi->wb_mask = 1;
- bdi->wb_cnt = 1;
-
for (i = 0; i < NR_BDI_STAT_ITEMS; i++) {
err = percpu_counter_init(&bdi->bdi_stat[i], 0);
if (err)
@@ -712,6 +718,33 @@ void bdi_destroy(struct backing_dev_info *bdi)
}
EXPORT_SYMBOL(bdi_destroy);
+/*
+ * For use from filesystems to quickly init and register a bdi associated
+ * with dirty writeback
+ */
+int bdi_setup_and_register(struct backing_dev_info *bdi, char *name,
+ unsigned int cap)
+{
+ char tmp[32];
+ int err;
+
+ bdi->name = name;
+ bdi->capabilities = cap;
+ err = bdi_init(bdi);
+ if (err)
+ return err;
+
+ sprintf(tmp, "%.28s%s", name, "-%d");
+ err = bdi_register(bdi, NULL, tmp, atomic_long_inc_return(&bdi_seq));
+ if (err) {
+ bdi_destroy(bdi);
+ return err;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL(bdi_setup_and_register);
+
static wait_queue_head_t congestion_wqh[2] = {
__WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
__WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
diff --git a/mm/bootmem.c b/mm/bootmem.c
index 7d1486875e1c..142c84a54993 100644
--- a/mm/bootmem.c
+++ b/mm/bootmem.c
@@ -10,9 +10,11 @@
*/
#include <linux/init.h>
#include <linux/pfn.h>
+#include <linux/slab.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <linux/kmemleak.h>
+#include <linux/range.h>
#include <asm/bug.h>
#include <asm/io.h>
@@ -32,6 +34,7 @@ unsigned long max_pfn;
unsigned long saved_max_pfn;
#endif
+#ifndef CONFIG_NO_BOOTMEM
bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
@@ -142,7 +145,7 @@ unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
min_low_pfn = start;
return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
}
-
+#endif
/*
* free_bootmem_late - free bootmem pages directly to page allocator
* @addr: starting address of the range
@@ -167,6 +170,53 @@ void __init free_bootmem_late(unsigned long addr, unsigned long size)
}
}
+#ifdef CONFIG_NO_BOOTMEM
+static void __init __free_pages_memory(unsigned long start, unsigned long end)
+{
+ int i;
+ unsigned long start_aligned, end_aligned;
+ int order = ilog2(BITS_PER_LONG);
+
+ start_aligned = (start + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1);
+ end_aligned = end & ~(BITS_PER_LONG - 1);
+
+ if (end_aligned <= start_aligned) {
+ for (i = start; i < end; i++)
+ __free_pages_bootmem(pfn_to_page(i), 0);
+
+ return;
+ }
+
+ for (i = start; i < start_aligned; i++)
+ __free_pages_bootmem(pfn_to_page(i), 0);
+
+ for (i = start_aligned; i < end_aligned; i += BITS_PER_LONG)
+ __free_pages_bootmem(pfn_to_page(i), order);
+
+ for (i = end_aligned; i < end; i++)
+ __free_pages_bootmem(pfn_to_page(i), 0);
+}
+
+unsigned long __init free_all_memory_core_early(int nodeid)
+{
+ int i;
+ u64 start, end;
+ unsigned long count = 0;
+ struct range *range = NULL;
+ int nr_range;
+
+ nr_range = get_free_all_memory_range(&range, nodeid);
+
+ for (i = 0; i < nr_range; i++) {
+ start = range[i].start;
+ end = range[i].end;
+ count += end - start;
+ __free_pages_memory(start, end);
+ }
+
+ return count;
+}
+#else
static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
{
int aligned;
@@ -227,6 +277,7 @@ static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
return count;
}
+#endif
/**
* free_all_bootmem_node - release a node's free pages to the buddy allocator
@@ -237,7 +288,12 @@ static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
{
register_page_bootmem_info_node(pgdat);
+#ifdef CONFIG_NO_BOOTMEM
+ /* free_all_memory_core_early(MAX_NUMNODES) will be called later */
+ return 0;
+#else
return free_all_bootmem_core(pgdat->bdata);
+#endif
}
/**
@@ -247,9 +303,27 @@ unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
*/
unsigned long __init free_all_bootmem(void)
{
- return free_all_bootmem_core(NODE_DATA(0)->bdata);
+#ifdef CONFIG_NO_BOOTMEM
+ /*
+ * We need to use MAX_NUMNODES instead of NODE_DATA(0)->node_id
+ * because in some case like Node0 doesnt have RAM installed
+ * low ram will be on Node1
+ * Use MAX_NUMNODES will make sure all ranges in early_node_map[]
+ * will be used instead of only Node0 related
+ */
+ return free_all_memory_core_early(MAX_NUMNODES);
+#else
+ unsigned long total_pages = 0;
+ bootmem_data_t *bdata;
+
+ list_for_each_entry(bdata, &bdata_list, list)
+ total_pages += free_all_bootmem_core(bdata);
+
+ return total_pages;
+#endif
}
+#ifndef CONFIG_NO_BOOTMEM
static void __init __free(bootmem_data_t *bdata,
unsigned long sidx, unsigned long eidx)
{
@@ -344,6 +418,7 @@ static int __init mark_bootmem(unsigned long start, unsigned long end,
}
BUG();
}
+#endif
/**
* free_bootmem_node - mark a page range as usable
@@ -358,6 +433,9 @@ static int __init mark_bootmem(unsigned long start, unsigned long end,
void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
unsigned long size)
{
+#ifdef CONFIG_NO_BOOTMEM
+ free_early(physaddr, physaddr + size);
+#else
unsigned long start, end;
kmemleak_free_part(__va(physaddr), size);
@@ -366,6 +444,7 @@ void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
end = PFN_DOWN(physaddr + size);
mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
+#endif
}
/**
@@ -379,6 +458,9 @@ void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
*/
void __init free_bootmem(unsigned long addr, unsigned long size)
{
+#ifdef CONFIG_NO_BOOTMEM
+ free_early(addr, addr + size);
+#else
unsigned long start, end;
kmemleak_free_part(__va(addr), size);
@@ -387,6 +469,7 @@ void __init free_bootmem(unsigned long addr, unsigned long size)
end = PFN_DOWN(addr + size);
mark_bootmem(start, end, 0, 0);
+#endif
}
/**
@@ -403,12 +486,17 @@ void __init free_bootmem(unsigned long addr, unsigned long size)
int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
unsigned long size, int flags)
{
+#ifdef CONFIG_NO_BOOTMEM
+ panic("no bootmem");
+ return 0;
+#else
unsigned long start, end;
start = PFN_DOWN(physaddr);
end = PFN_UP(physaddr + size);
return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
+#endif
}
/**
@@ -424,14 +512,20 @@ int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
int __init reserve_bootmem(unsigned long addr, unsigned long size,
int flags)
{
+#ifdef CONFIG_NO_BOOTMEM
+ panic("no bootmem");
+ return 0;
+#else
unsigned long start, end;
start = PFN_DOWN(addr);
end = PFN_UP(addr + size);
return mark_bootmem(start, end, 1, flags);
+#endif
}
+#ifndef CONFIG_NO_BOOTMEM
static unsigned long __init align_idx(struct bootmem_data *bdata,
unsigned long idx, unsigned long step)
{
@@ -582,12 +676,33 @@ static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
#endif
return NULL;
}
+#endif
static void * __init ___alloc_bootmem_nopanic(unsigned long size,
unsigned long align,
unsigned long goal,
unsigned long limit)
{
+#ifdef CONFIG_NO_BOOTMEM
+ void *ptr;
+
+ if (WARN_ON_ONCE(slab_is_available()))
+ return kzalloc(size, GFP_NOWAIT);
+
+restart:
+
+ ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align, goal, limit);
+
+ if (ptr)
+ return ptr;
+
+ if (goal != 0) {
+ goal = 0;
+ goto restart;
+ }
+
+ return NULL;
+#else
bootmem_data_t *bdata;
void *region;
@@ -613,6 +728,7 @@ restart:
}
return NULL;
+#endif
}
/**
@@ -631,7 +747,13 @@ restart:
void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
unsigned long goal)
{
- return ___alloc_bootmem_nopanic(size, align, goal, 0);
+ unsigned long limit = 0;
+
+#ifdef CONFIG_NO_BOOTMEM
+ limit = -1UL;
+#endif
+
+ return ___alloc_bootmem_nopanic(size, align, goal, limit);
}
static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
@@ -665,9 +787,16 @@ static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
void * __init __alloc_bootmem(unsigned long size, unsigned long align,
unsigned long goal)
{
- return ___alloc_bootmem(size, align, goal, 0);
+ unsigned long limit = 0;
+
+#ifdef CONFIG_NO_BOOTMEM
+ limit = -1UL;
+#endif
+
+ return ___alloc_bootmem(size, align, goal, limit);
}
+#ifndef CONFIG_NO_BOOTMEM
static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
unsigned long size, unsigned long align,
unsigned long goal, unsigned long limit)
@@ -684,6 +813,7 @@ static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
return ___alloc_bootmem(size, align, goal, limit);
}
+#endif
/**
* __alloc_bootmem_node - allocate boot memory from a specific node
@@ -703,10 +833,58 @@ static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
+ void *ptr;
+
+ if (WARN_ON_ONCE(slab_is_available()))
+ return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
+
+#ifdef CONFIG_NO_BOOTMEM
+ ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
+ goal, -1ULL);
+ if (ptr)
+ return ptr;
+
+ ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align,
+ goal, -1ULL);
+#else
+ ptr = ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
+#endif
+
+ return ptr;
+}
+
+void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
+ unsigned long align, unsigned long goal)
+{
+#ifdef MAX_DMA32_PFN
+ unsigned long end_pfn;
+
if (WARN_ON_ONCE(slab_is_available()))
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
- return ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
+ /* update goal according ...MAX_DMA32_PFN */
+ end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
+
+ if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
+ (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
+ void *ptr;
+ unsigned long new_goal;
+
+ new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
+#ifdef CONFIG_NO_BOOTMEM
+ ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
+ new_goal, -1ULL);
+#else
+ ptr = alloc_bootmem_core(pgdat->bdata, size, align,
+ new_goal, 0);
+#endif
+ if (ptr)
+ return ptr;
+ }
+#endif
+
+ return __alloc_bootmem_node(pgdat, size, align, goal);
+
}
#ifdef CONFIG_SPARSEMEM
@@ -720,6 +898,16 @@ void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
void * __init alloc_bootmem_section(unsigned long size,
unsigned long section_nr)
{
+#ifdef CONFIG_NO_BOOTMEM
+ unsigned long pfn, goal, limit;
+
+ pfn = section_nr_to_pfn(section_nr);
+ goal = pfn << PAGE_SHIFT;
+ limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
+
+ return __alloc_memory_core_early(early_pfn_to_nid(pfn), size,
+ SMP_CACHE_BYTES, goal, limit);
+#else
bootmem_data_t *bdata;
unsigned long pfn, goal, limit;
@@ -729,6 +917,7 @@ void * __init alloc_bootmem_section(unsigned long size,
bdata = &bootmem_node_data[early_pfn_to_nid(pfn)];
return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit);
+#endif
}
#endif
@@ -740,11 +929,16 @@ void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
if (WARN_ON_ONCE(slab_is_available()))
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
+#ifdef CONFIG_NO_BOOTMEM
+ ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
+ goal, -1ULL);
+#else
ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
if (ptr)
return ptr;
ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
+#endif
if (ptr)
return ptr;
@@ -792,9 +986,21 @@ void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
+ void *ptr;
+
if (WARN_ON_ONCE(slab_is_available()))
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
- return ___alloc_bootmem_node(pgdat->bdata, size, align,
+#ifdef CONFIG_NO_BOOTMEM
+ ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
+ goal, ARCH_LOW_ADDRESS_LIMIT);
+ if (ptr)
+ return ptr;
+ ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align,
+ goal, ARCH_LOW_ADDRESS_LIMIT);
+#else
+ ptr = ___alloc_bootmem_node(pgdat->bdata, size, align,
goal, ARCH_LOW_ADDRESS_LIMIT);
+#endif
+ return ptr;
}
diff --git a/mm/bounce.c b/mm/bounce.c
index a2b76a588e34..13b6dad1eed2 100644
--- a/mm/bounce.c
+++ b/mm/bounce.c
@@ -6,6 +6,7 @@
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/swap.h>
+#include <linux/gfp.h>
#include <linux/bio.h>
#include <linux/pagemap.h>
#include <linux/mempool.h>
diff --git a/mm/compaction.c b/mm/compaction.c
new file mode 100644
index 000000000000..94cce51b0b35
--- /dev/null
+++ b/mm/compaction.c
@@ -0,0 +1,605 @@
+/*
+ * linux/mm/compaction.c
+ *
+ * Memory compaction for the reduction of external fragmentation. Note that
+ * this heavily depends upon page migration to do all the real heavy
+ * lifting
+ *
+ * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
+ */
+#include <linux/swap.h>
+#include <linux/migrate.h>
+#include <linux/compaction.h>
+#include <linux/mm_inline.h>
+#include <linux/backing-dev.h>
+#include <linux/sysctl.h>
+#include <linux/sysfs.h>
+#include "internal.h"
+
+/*
+ * compact_control is used to track pages being migrated and the free pages
+ * they are being migrated to during memory compaction. The free_pfn starts
+ * at the end of a zone and migrate_pfn begins at the start. Movable pages
+ * are moved to the end of a zone during a compaction run and the run
+ * completes when free_pfn <= migrate_pfn
+ */
+struct compact_control {
+ struct list_head freepages; /* List of free pages to migrate to */
+ struct list_head migratepages; /* List of pages being migrated */
+ unsigned long nr_freepages; /* Number of isolated free pages */
+ unsigned long nr_migratepages; /* Number of pages to migrate */
+ unsigned long free_pfn; /* isolate_freepages search base */
+ unsigned long migrate_pfn; /* isolate_migratepages search base */
+
+ /* Account for isolated anon and file pages */
+ unsigned long nr_anon;
+ unsigned long nr_file;
+
+ unsigned int order; /* order a direct compactor needs */
+ int migratetype; /* MOVABLE, RECLAIMABLE etc */
+ struct zone *zone;
+};
+
+static unsigned long release_freepages(struct list_head *freelist)
+{
+ struct page *page, *next;
+ unsigned long count = 0;
+
+ list_for_each_entry_safe(page, next, freelist, lru) {
+ list_del(&page->lru);
+ __free_page(page);
+ count++;
+ }
+
+ return count;
+}
+
+/* Isolate free pages onto a private freelist. Must hold zone->lock */
+static unsigned long isolate_freepages_block(struct zone *zone,
+ unsigned long blockpfn,
+ struct list_head *freelist)
+{
+ unsigned long zone_end_pfn, end_pfn;
+ int total_isolated = 0;
+ struct page *cursor;
+
+ /* Get the last PFN we should scan for free pages at */
+ zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
+ end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
+
+ /* Find the first usable PFN in the block to initialse page cursor */
+ for (; blockpfn < end_pfn; blockpfn++) {
+ if (pfn_valid_within(blockpfn))
+ break;
+ }
+ cursor = pfn_to_page(blockpfn);
+
+ /* Isolate free pages. This assumes the block is valid */
+ for (; blockpfn < end_pfn; blockpfn++, cursor++) {
+ int isolated, i;
+ struct page *page = cursor;
+
+ if (!pfn_valid_within(blockpfn))
+ continue;
+
+ if (!PageBuddy(page))
+ continue;
+
+ /* Found a free page, break it into order-0 pages */
+ isolated = split_free_page(page);
+ total_isolated += isolated;
+ for (i = 0; i < isolated; i++) {
+ list_add(&page->lru, freelist);
+ page++;
+ }
+
+ /* If a page was split, advance to the end of it */
+ if (isolated) {
+ blockpfn += isolated - 1;
+ cursor += isolated - 1;
+ }
+ }
+
+ return total_isolated;
+}
+
+/* Returns true if the page is within a block suitable for migration to */
+static bool suitable_migration_target(struct page *page)
+{
+
+ int migratetype = get_pageblock_migratetype(page);
+
+ /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
+ if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
+ return false;
+
+ /* If the page is a large free page, then allow migration */
+ if (PageBuddy(page) && page_order(page) >= pageblock_order)
+ return true;
+
+ /* If the block is MIGRATE_MOVABLE, allow migration */
+ if (migratetype == MIGRATE_MOVABLE)
+ return true;
+
+ /* Otherwise skip the block */
+ return false;
+}
+
+/*
+ * Based on information in the current compact_control, find blocks
+ * suitable for isolating free pages from and then isolate them.
+ */
+static void isolate_freepages(struct zone *zone,
+ struct compact_control *cc)
+{
+ struct page *page;
+ unsigned long high_pfn, low_pfn, pfn;
+ unsigned long flags;
+ int nr_freepages = cc->nr_freepages;
+ struct list_head *freelist = &cc->freepages;
+
+ pfn = cc->free_pfn;
+ low_pfn = cc->migrate_pfn + pageblock_nr_pages;
+ high_pfn = low_pfn;
+
+ /*
+ * Isolate free pages until enough are available to migrate the
+ * pages on cc->migratepages. We stop searching if the migrate
+ * and free page scanners meet or enough free pages are isolated.
+ */
+ spin_lock_irqsave(&zone->lock, flags);
+ for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
+ pfn -= pageblock_nr_pages) {
+ unsigned long isolated;
+
+ if (!pfn_valid(pfn))
+ continue;
+
+ /*
+ * Check for overlapping nodes/zones. It's possible on some
+ * configurations to have a setup like
+ * node0 node1 node0
+ * i.e. it's possible that all pages within a zones range of
+ * pages do not belong to a single zone.
+ */
+ page = pfn_to_page(pfn);
+ if (page_zone(page) != zone)
+ continue;
+
+ /* Check the block is suitable for migration */
+ if (!suitable_migration_target(page))
+ continue;
+
+ /* Found a block suitable for isolating free pages from */
+ isolated = isolate_freepages_block(zone, pfn, freelist);
+ nr_freepages += isolated;
+
+ /*
+ * Record the highest PFN we isolated pages from. When next
+ * looking for free pages, the search will restart here as
+ * page migration may have returned some pages to the allocator
+ */
+ if (isolated)
+ high_pfn = max(high_pfn, pfn);
+ }
+ spin_unlock_irqrestore(&zone->lock, flags);
+
+ /* split_free_page does not map the pages */
+ list_for_each_entry(page, freelist, lru) {
+ arch_alloc_page(page, 0);
+ kernel_map_pages(page, 1, 1);
+ }
+
+ cc->free_pfn = high_pfn;
+ cc->nr_freepages = nr_freepages;
+}
+
+/* Update the number of anon and file isolated pages in the zone */
+static void acct_isolated(struct zone *zone, struct compact_control *cc)
+{
+ struct page *page;
+ unsigned int count[NR_LRU_LISTS] = { 0, };
+
+ list_for_each_entry(page, &cc->migratepages, lru) {
+ int lru = page_lru_base_type(page);
+ count[lru]++;
+ }
+
+ cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
+ cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
+ __mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
+ __mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
+}
+
+/* Similar to reclaim, but different enough that they don't share logic */
+static bool too_many_isolated(struct zone *zone)
+{
+
+ unsigned long inactive, isolated;
+
+ inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
+ zone_page_state(zone, NR_INACTIVE_ANON);
+ isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
+ zone_page_state(zone, NR_ISOLATED_ANON);
+
+ return isolated > inactive;
+}
+
+/*
+ * Isolate all pages that can be migrated from the block pointed to by
+ * the migrate scanner within compact_control.
+ */
+static unsigned long isolate_migratepages(struct zone *zone,
+ struct compact_control *cc)
+{
+ unsigned long low_pfn, end_pfn;
+ struct list_head *migratelist = &cc->migratepages;
+
+ /* Do not scan outside zone boundaries */
+ low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
+
+ /* Only scan within a pageblock boundary */
+ end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
+
+ /* Do not cross the free scanner or scan within a memory hole */
+ if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
+ cc->migrate_pfn = end_pfn;
+ return 0;
+ }
+
+ /*
+ * Ensure that there are not too many pages isolated from the LRU
+ * list by either parallel reclaimers or compaction. If there are,
+ * delay for some time until fewer pages are isolated
+ */
+ while (unlikely(too_many_isolated(zone))) {
+ congestion_wait(BLK_RW_ASYNC, HZ/10);
+
+ if (fatal_signal_pending(current))
+ return 0;
+ }
+
+ /* Time to isolate some pages for migration */
+ spin_lock_irq(&zone->lru_lock);
+ for (; low_pfn < end_pfn; low_pfn++) {
+ struct page *page;
+ if (!pfn_valid_within(low_pfn))
+ continue;
+
+ /* Get the page and skip if free */
+ page = pfn_to_page(low_pfn);
+ if (PageBuddy(page))
+ continue;
+
+ /* Try isolate the page */
+ if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
+ continue;
+
+ /* Successfully isolated */
+ del_page_from_lru_list(zone, page, page_lru(page));
+ list_add(&page->lru, migratelist);
+ mem_cgroup_del_lru(page);
+ cc->nr_migratepages++;
+
+ /* Avoid isolating too much */
+ if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
+ break;
+ }
+
+ acct_isolated(zone, cc);
+
+ spin_unlock_irq(&zone->lru_lock);
+ cc->migrate_pfn = low_pfn;
+
+ return cc->nr_migratepages;
+}
+
+/*
+ * This is a migrate-callback that "allocates" freepages by taking pages
+ * from the isolated freelists in the block we are migrating to.
+ */
+static struct page *compaction_alloc(struct page *migratepage,
+ unsigned long data,
+ int **result)
+{
+ struct compact_control *cc = (struct compact_control *)data;
+ struct page *freepage;
+
+ /* Isolate free pages if necessary */
+ if (list_empty(&cc->freepages)) {
+ isolate_freepages(cc->zone, cc);
+
+ if (list_empty(&cc->freepages))
+ return NULL;
+ }
+
+ freepage = list_entry(cc->freepages.next, struct page, lru);
+ list_del(&freepage->lru);
+ cc->nr_freepages--;
+
+ return freepage;
+}
+
+/*
+ * We cannot control nr_migratepages and nr_freepages fully when migration is
+ * running as migrate_pages() has no knowledge of compact_control. When
+ * migration is complete, we count the number of pages on the lists by hand.
+ */
+static void update_nr_listpages(struct compact_control *cc)
+{
+ int nr_migratepages = 0;
+ int nr_freepages = 0;
+ struct page *page;
+
+ list_for_each_entry(page, &cc->migratepages, lru)
+ nr_migratepages++;
+ list_for_each_entry(page, &cc->freepages, lru)
+ nr_freepages++;
+
+ cc->nr_migratepages = nr_migratepages;
+ cc->nr_freepages = nr_freepages;
+}
+
+static int compact_finished(struct zone *zone,
+ struct compact_control *cc)
+{
+ unsigned int order;
+ unsigned long watermark = low_wmark_pages(zone) + (1 << cc->order);
+
+ if (fatal_signal_pending(current))
+ return COMPACT_PARTIAL;
+
+ /* Compaction run completes if the migrate and free scanner meet */
+ if (cc->free_pfn <= cc->migrate_pfn)
+ return COMPACT_COMPLETE;
+
+ /* Compaction run is not finished if the watermark is not met */
+ if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
+ return COMPACT_CONTINUE;
+
+ if (cc->order == -1)
+ return COMPACT_CONTINUE;
+
+ /* Direct compactor: Is a suitable page free? */
+ for (order = cc->order; order < MAX_ORDER; order++) {
+ /* Job done if page is free of the right migratetype */
+ if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
+ return COMPACT_PARTIAL;
+
+ /* Job done if allocation would set block type */
+ if (order >= pageblock_order && zone->free_area[order].nr_free)
+ return COMPACT_PARTIAL;
+ }
+
+ return COMPACT_CONTINUE;
+}
+
+static int compact_zone(struct zone *zone, struct compact_control *cc)
+{
+ int ret;
+
+ /* Setup to move all movable pages to the end of the zone */
+ cc->migrate_pfn = zone->zone_start_pfn;
+ cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
+ cc->free_pfn &= ~(pageblock_nr_pages-1);
+
+ migrate_prep_local();
+
+ while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
+ unsigned long nr_migrate, nr_remaining;
+
+ if (!isolate_migratepages(zone, cc))
+ continue;
+
+ nr_migrate = cc->nr_migratepages;
+ migrate_pages(&cc->migratepages, compaction_alloc,
+ (unsigned long)cc, 0);
+ update_nr_listpages(cc);
+ nr_remaining = cc->nr_migratepages;
+
+ count_vm_event(COMPACTBLOCKS);
+ count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
+ if (nr_remaining)
+ count_vm_events(COMPACTPAGEFAILED, nr_remaining);
+
+ /* Release LRU pages not migrated */
+ if (!list_empty(&cc->migratepages)) {
+ putback_lru_pages(&cc->migratepages);
+ cc->nr_migratepages = 0;
+ }
+
+ }
+
+ /* Release free pages and check accounting */
+ cc->nr_freepages -= release_freepages(&cc->freepages);
+ VM_BUG_ON(cc->nr_freepages != 0);
+
+ return ret;
+}
+
+static unsigned long compact_zone_order(struct zone *zone,
+ int order, gfp_t gfp_mask)
+{
+ struct compact_control cc = {
+ .nr_freepages = 0,
+ .nr_migratepages = 0,
+ .order = order,
+ .migratetype = allocflags_to_migratetype(gfp_mask),
+ .zone = zone,
+ };
+ INIT_LIST_HEAD(&cc.freepages);
+ INIT_LIST_HEAD(&cc.migratepages);
+
+ return compact_zone(zone, &cc);
+}
+
+int sysctl_extfrag_threshold = 500;
+
+/**
+ * try_to_compact_pages - Direct compact to satisfy a high-order allocation
+ * @zonelist: The zonelist used for the current allocation
+ * @order: The order of the current allocation
+ * @gfp_mask: The GFP mask of the current allocation
+ * @nodemask: The allowed nodes to allocate from
+ *
+ * This is the main entry point for direct page compaction.
+ */
+unsigned long try_to_compact_pages(struct zonelist *zonelist,
+ int order, gfp_t gfp_mask, nodemask_t *nodemask)
+{
+ enum zone_type high_zoneidx = gfp_zone(gfp_mask);
+ int may_enter_fs = gfp_mask & __GFP_FS;
+ int may_perform_io = gfp_mask & __GFP_IO;
+ unsigned long watermark;
+ struct zoneref *z;
+ struct zone *zone;
+ int rc = COMPACT_SKIPPED;
+
+ /*
+ * Check whether it is worth even starting compaction. The order check is
+ * made because an assumption is made that the page allocator can satisfy
+ * the "cheaper" orders without taking special steps
+ */
+ if (order <= PAGE_ALLOC_COSTLY_ORDER || !may_enter_fs || !may_perform_io)
+ return rc;
+
+ count_vm_event(COMPACTSTALL);
+
+ /* Compact each zone in the list */
+ for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
+ nodemask) {
+ int fragindex;
+ int status;
+
+ /*
+ * Watermarks for order-0 must be met for compaction. Note
+ * the 2UL. This is because during migration, copies of
+ * pages need to be allocated and for a short time, the
+ * footprint is higher
+ */
+ watermark = low_wmark_pages(zone) + (2UL << order);
+ if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
+ continue;
+
+ /*
+ * fragmentation index determines if allocation failures are
+ * due to low memory or external fragmentation
+ *
+ * index of -1 implies allocations might succeed depending
+ * on watermarks
+ * index towards 0 implies failure is due to lack of memory
+ * index towards 1000 implies failure is due to fragmentation
+ *
+ * Only compact if a failure would be due to fragmentation.
+ */
+ fragindex = fragmentation_index(zone, order);
+ if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
+ continue;
+
+ if (fragindex == -1 && zone_watermark_ok(zone, order, watermark, 0, 0)) {
+ rc = COMPACT_PARTIAL;
+ break;
+ }
+
+ status = compact_zone_order(zone, order, gfp_mask);
+ rc = max(status, rc);
+
+ if (zone_watermark_ok(zone, order, watermark, 0, 0))
+ break;
+ }
+
+ return rc;
+}
+
+
+/* Compact all zones within a node */
+static int compact_node(int nid)
+{
+ int zoneid;
+ pg_data_t *pgdat;
+ struct zone *zone;
+
+ if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
+ return -EINVAL;
+ pgdat = NODE_DATA(nid);
+
+ /* Flush pending updates to the LRU lists */
+ lru_add_drain_all();
+
+ for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
+ struct compact_control cc = {
+ .nr_freepages = 0,
+ .nr_migratepages = 0,
+ .order = -1,
+ };
+
+ zone = &pgdat->node_zones[zoneid];
+ if (!populated_zone(zone))
+ continue;
+
+ cc.zone = zone;
+ INIT_LIST_HEAD(&cc.freepages);
+ INIT_LIST_HEAD(&cc.migratepages);
+
+ compact_zone(zone, &cc);
+
+ VM_BUG_ON(!list_empty(&cc.freepages));
+ VM_BUG_ON(!list_empty(&cc.migratepages));
+ }
+
+ return 0;
+}
+
+/* Compact all nodes in the system */
+static int compact_nodes(void)
+{
+ int nid;
+
+ for_each_online_node(nid)
+ compact_node(nid);
+
+ return COMPACT_COMPLETE;
+}
+
+/* The written value is actually unused, all memory is compacted */
+int sysctl_compact_memory;
+
+/* This is the entry point for compacting all nodes via /proc/sys/vm */
+int sysctl_compaction_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *length, loff_t *ppos)
+{
+ if (write)
+ return compact_nodes();
+
+ return 0;
+}
+
+int sysctl_extfrag_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *length, loff_t *ppos)
+{
+ proc_dointvec_minmax(table, write, buffer, length, ppos);
+
+ return 0;
+}
+
+#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
+ssize_t sysfs_compact_node(struct sys_device *dev,
+ struct sysdev_attribute *attr,
+ const char *buf, size_t count)
+{
+ compact_node(dev->id);
+
+ return count;
+}
+static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
+
+int compaction_register_node(struct node *node)
+{
+ return sysdev_create_file(&node->sysdev, &attr_compact);
+}
+
+void compaction_unregister_node(struct node *node)
+{
+ return sysdev_remove_file(&node->sysdev, &attr_compact);
+}
+#endif /* CONFIG_SYSFS && CONFIG_NUMA */
diff --git a/mm/fadvise.c b/mm/fadvise.c
index e43359214f6f..8d723c9e8b75 100644
--- a/mm/fadvise.c
+++ b/mm/fadvise.c
@@ -77,12 +77,20 @@ SYSCALL_DEFINE(fadvise64_64)(int fd, loff_t offset, loff_t len, int advice)
switch (advice) {
case POSIX_FADV_NORMAL:
file->f_ra.ra_pages = bdi->ra_pages;
+ spin_lock(&file->f_lock);
+ file->f_mode &= ~FMODE_RANDOM;
+ spin_unlock(&file->f_lock);
break;
case POSIX_FADV_RANDOM:
- file->f_ra.ra_pages = 0;
+ spin_lock(&file->f_lock);
+ file->f_mode |= FMODE_RANDOM;
+ spin_unlock(&file->f_lock);
break;
case POSIX_FADV_SEQUENTIAL:
file->f_ra.ra_pages = bdi->ra_pages * 2;
+ spin_lock(&file->f_lock);
+ file->f_mode &= ~FMODE_RANDOM;
+ spin_unlock(&file->f_lock);
break;
case POSIX_FADV_WILLNEED:
if (!mapping->a_ops->readpage) {
diff --git a/mm/failslab.c b/mm/failslab.c
index 9339de5f0a91..c5f88f240ddc 100644
--- a/mm/failslab.c
+++ b/mm/failslab.c
@@ -1,18 +1,21 @@
#include <linux/fault-inject.h>
-#include <linux/gfp.h>
+#include <linux/slab.h>
static struct {
struct fault_attr attr;
u32 ignore_gfp_wait;
+ int cache_filter;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
struct dentry *ignore_gfp_wait_file;
+ struct dentry *cache_filter_file;
#endif
} failslab = {
.attr = FAULT_ATTR_INITIALIZER,
.ignore_gfp_wait = 1,
+ .cache_filter = 0,
};
-bool should_failslab(size_t size, gfp_t gfpflags)
+bool should_failslab(size_t size, gfp_t gfpflags, unsigned long cache_flags)
{
if (gfpflags & __GFP_NOFAIL)
return false;
@@ -20,6 +23,9 @@ bool should_failslab(size_t size, gfp_t gfpflags)
if (failslab.ignore_gfp_wait && (gfpflags & __GFP_WAIT))
return false;
+ if (failslab.cache_filter && !(cache_flags & SLAB_FAILSLAB))
+ return false;
+
return should_fail(&failslab.attr, size);
}
@@ -30,7 +36,6 @@ static int __init setup_failslab(char *str)
__setup("failslab=", setup_failslab);
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
-
static int __init failslab_debugfs_init(void)
{
mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
@@ -46,8 +51,14 @@ static int __init failslab_debugfs_init(void)
debugfs_create_bool("ignore-gfp-wait", mode, dir,
&failslab.ignore_gfp_wait);
- if (!failslab.ignore_gfp_wait_file) {
+ failslab.cache_filter_file =
+ debugfs_create_bool("cache-filter", mode, dir,
+ &failslab.cache_filter);
+
+ if (!failslab.ignore_gfp_wait_file ||
+ !failslab.cache_filter_file) {
err = -ENOMEM;
+ debugfs_remove(failslab.cache_filter_file);
debugfs_remove(failslab.ignore_gfp_wait_file);
cleanup_fault_attr_dentries(&failslab.attr);
}
diff --git a/mm/filemap.c b/mm/filemap.c
index e3736923220e..20e5642e9f9f 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -10,13 +10,13 @@
* the NFS filesystem used to do this differently, for example)
*/
#include <linux/module.h>
-#include <linux/slab.h>
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/aio.h>
#include <linux/capability.h>
#include <linux/kernel_stat.h>
+#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
@@ -151,6 +151,7 @@ void remove_from_page_cache(struct page *page)
spin_unlock_irq(&mapping->tree_lock);
mem_cgroup_uncharge_cache_page(page);
}
+EXPORT_SYMBOL(remove_from_page_cache);
static int sync_page(void *word)
{
@@ -441,7 +442,7 @@ int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
/*
* Splice_read and readahead add shmem/tmpfs pages into the page cache
* before shmem_readpage has a chance to mark them as SwapBacked: they
- * need to go on the active_anon lru below, and mem_cgroup_cache_charge
+ * need to go on the anon lru below, and mem_cgroup_cache_charge
* (called in add_to_page_cache) needs to know where they're going too.
*/
if (mapping_cap_swap_backed(mapping))
@@ -452,7 +453,7 @@ int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
if (page_is_file_cache(page))
lru_cache_add_file(page);
else
- lru_cache_add_active_anon(page);
+ lru_cache_add_anon(page);
}
return ret;
}
@@ -461,9 +462,15 @@ EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
#ifdef CONFIG_NUMA
struct page *__page_cache_alloc(gfp_t gfp)
{
+ int n;
+ struct page *page;
+
if (cpuset_do_page_mem_spread()) {
- int n = cpuset_mem_spread_node();
- return alloc_pages_exact_node(n, gfp, 0);
+ get_mems_allowed();
+ n = cpuset_mem_spread_node();
+ page = alloc_pages_exact_node(n, gfp, 0);
+ put_mems_allowed();
+ return page;
}
return alloc_pages(gfp, 0);
}
@@ -1099,6 +1106,12 @@ page_not_up_to_date_locked:
}
readpage:
+ /*
+ * A previous I/O error may have been due to temporary
+ * failures, eg. multipath errors.
+ * PG_error will be set again if readpage fails.
+ */
+ ClearPageError(page);
/* Start the actual read. The read will unlock the page. */
error = mapping->a_ops->readpage(filp, page);
@@ -1117,7 +1130,7 @@ readpage:
if (!PageUptodate(page)) {
if (page->mapping == NULL) {
/*
- * invalidate_inode_pages got it
+ * invalidate_mapping_pages got it
*/
unlock_page(page);
page_cache_release(page);
@@ -1263,7 +1276,7 @@ generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
{
struct file *filp = iocb->ki_filp;
ssize_t retval;
- unsigned long seg;
+ unsigned long seg = 0;
size_t count;
loff_t *ppos = &iocb->ki_pos;
@@ -1290,21 +1303,47 @@ generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
retval = mapping->a_ops->direct_IO(READ, iocb,
iov, pos, nr_segs);
}
- if (retval > 0)
+ if (retval > 0) {
*ppos = pos + retval;
- if (retval) {
+ count -= retval;
+ }
+
+ /*
+ * Btrfs can have a short DIO read if we encounter
+ * compressed extents, so if there was an error, or if
+ * we've already read everything we wanted to, or if
+ * there was a short read because we hit EOF, go ahead
+ * and return. Otherwise fallthrough to buffered io for
+ * the rest of the read.
+ */
+ if (retval < 0 || !count || *ppos >= size) {
file_accessed(filp);
goto out;
}
}
}
+ count = retval;
for (seg = 0; seg < nr_segs; seg++) {
read_descriptor_t desc;
+ loff_t offset = 0;
+
+ /*
+ * If we did a short DIO read we need to skip the section of the
+ * iov that we've already read data into.
+ */
+ if (count) {
+ if (count > iov[seg].iov_len) {
+ count -= iov[seg].iov_len;
+ continue;
+ }
+ offset = count;
+ count = 0;
+ }
desc.written = 0;
- desc.arg.buf = iov[seg].iov_base;
- desc.count = iov[seg].iov_len;
+ desc.arg.buf = iov[seg].iov_base + offset;
+ desc.count = iov[seg].iov_len - offset;
if (desc.count == 0)
continue;
desc.error = 0;
@@ -1986,7 +2025,7 @@ EXPORT_SYMBOL(iov_iter_single_seg_count);
inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
{
struct inode *inode = file->f_mapping->host;
- unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
+ unsigned long limit = rlimit(RLIMIT_FSIZE);
if (unlikely(*pos < 0))
return -EINVAL;
@@ -2232,6 +2271,9 @@ again:
if (unlikely(status))
break;
+ if (mapping_writably_mapped(mapping))
+ flush_dcache_page(page);
+
pagefault_disable();
copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
pagefault_enable();
diff --git a/mm/filemap_xip.c b/mm/filemap_xip.c
index 1888b2d71bb8..83364df74a33 100644
--- a/mm/filemap_xip.c
+++ b/mm/filemap_xip.c
@@ -17,6 +17,7 @@
#include <linux/sched.h>
#include <linux/seqlock.h>
#include <linux/mutex.h>
+#include <linux/gfp.h>
#include <asm/tlbflush.h>
#include <asm/io.h>
@@ -194,7 +195,7 @@ retry:
flush_cache_page(vma, address, pte_pfn(*pte));
pteval = ptep_clear_flush_notify(vma, address, pte);
page_remove_rmap(page);
- dec_mm_counter(mm, file_rss);
+ dec_mm_counter(mm, MM_FILEPAGES);
BUG_ON(pte_dirty(pteval));
pte_unmap_unlock(pte, ptl);
page_cache_release(page);
diff --git a/mm/fremap.c b/mm/fremap.c
index b6ec85abbb39..46f5dacf90a2 100644
--- a/mm/fremap.c
+++ b/mm/fremap.c
@@ -40,7 +40,7 @@ static void zap_pte(struct mm_struct *mm, struct vm_area_struct *vma,
page_remove_rmap(page);
page_cache_release(page);
update_hiwater_rss(mm);
- dec_mm_counter(mm, file_rss);
+ dec_mm_counter(mm, MM_FILEPAGES);
}
} else {
if (!pte_file(pte))
diff --git a/mm/highmem.c b/mm/highmem.c
index 9c1e627f282e..66baa20f78f5 100644
--- a/mm/highmem.c
+++ b/mm/highmem.c
@@ -220,7 +220,7 @@ EXPORT_SYMBOL(kmap_high);
* @page: &struct page to pin
*
* Returns the page's current virtual memory address, or NULL if no mapping
- * exists. When and only when a non null address is returned then a
+ * exists. If and only if a non null address is returned then a
* matching call to kunmap_high() is necessary.
*
* This can be called from any context.
@@ -422,7 +422,7 @@ void __init page_address_init(void)
#endif /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */
-#if defined(CONFIG_DEBUG_HIGHMEM) && defined(CONFIG_TRACE_IRQFLAGS_SUPPORT)
+#ifdef CONFIG_DEBUG_HIGHMEM
void debug_kmap_atomic(enum km_type type)
{
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index e91b81b63670..54d42b009dbe 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -2,7 +2,6 @@
* Generic hugetlb support.
* (C) William Irwin, April 2004
*/
-#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
@@ -18,6 +17,7 @@
#include <linux/mutex.h>
#include <linux/bootmem.h>
#include <linux/sysfs.h>
+#include <linux/slab.h>
#include <asm/page.h>
#include <asm/pgtable.h>
@@ -465,11 +465,13 @@ static struct page *dequeue_huge_page_vma(struct hstate *h,
struct page *page = NULL;
struct mempolicy *mpol;
nodemask_t *nodemask;
- struct zonelist *zonelist = huge_zonelist(vma, address,
- htlb_alloc_mask, &mpol, &nodemask);
+ struct zonelist *zonelist;
struct zone *zone;
struct zoneref *z;
+ get_mems_allowed();
+ zonelist = huge_zonelist(vma, address,
+ htlb_alloc_mask, &mpol, &nodemask);
/*
* A child process with MAP_PRIVATE mappings created by their parent
* have no page reserves. This check ensures that reservations are
@@ -477,11 +479,11 @@ static struct page *dequeue_huge_page_vma(struct hstate *h,
*/
if (!vma_has_reserves(vma) &&
h->free_huge_pages - h->resv_huge_pages == 0)
- return NULL;
+ goto err;
/* If reserves cannot be used, ensure enough pages are in the pool */
if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
- return NULL;
+ goto err;;
for_each_zone_zonelist_nodemask(zone, z, zonelist,
MAX_NR_ZONES - 1, nodemask) {
@@ -500,7 +502,9 @@ static struct page *dequeue_huge_page_vma(struct hstate *h,
break;
}
}
+err:
mpol_cond_put(mpol);
+ put_mems_allowed();
return page;
}
@@ -546,6 +550,7 @@ static void free_huge_page(struct page *page)
mapping = (struct address_space *) page_private(page);
set_page_private(page, 0);
+ page->mapping = NULL;
BUG_ON(page_count(page));
INIT_LIST_HEAD(&page->lru);
@@ -1038,7 +1043,7 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma,
page = alloc_buddy_huge_page(h, vma, addr);
if (!page) {
hugetlb_put_quota(inode->i_mapping, chg);
- return ERR_PTR(-VM_FAULT_OOM);
+ return ERR_PTR(-VM_FAULT_SIGBUS);
}
}
@@ -1515,10 +1520,9 @@ static struct attribute_group hstate_attr_group = {
.attrs = hstate_attrs,
};
-static int __init hugetlb_sysfs_add_hstate(struct hstate *h,
- struct kobject *parent,
- struct kobject **hstate_kobjs,
- struct attribute_group *hstate_attr_group)
+static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
+ struct kobject **hstate_kobjs,
+ struct attribute_group *hstate_attr_group)
{
int retval;
int hi = h - hstates;
@@ -2088,7 +2092,7 @@ static void set_huge_ptep_writable(struct vm_area_struct *vma,
entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
- update_mmu_cache(vma, address, entry);
+ update_mmu_cache(vma, address, ptep);
}
}
@@ -2448,8 +2452,10 @@ retry:
spin_lock(&inode->i_lock);
inode->i_blocks += blocks_per_huge_page(h);
spin_unlock(&inode->i_lock);
- } else
+ } else {
lock_page(page);
+ page->mapping = HUGETLB_POISON;
+ }
}
/*
@@ -2559,7 +2565,7 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
entry = pte_mkyoung(entry);
if (huge_ptep_set_access_flags(vma, address, ptep, entry,
flags & FAULT_FLAG_WRITE))
- update_mmu_cache(vma, address, entry);
+ update_mmu_cache(vma, address, ptep);
out_page_table_lock:
spin_unlock(&mm->page_table_lock);
diff --git a/mm/kmemleak.c b/mm/kmemleak.c
index 5b069e4f5e48..2c0d032ac898 100644
--- a/mm/kmemleak.c
+++ b/mm/kmemleak.c
@@ -72,7 +72,6 @@
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/prio_tree.h>
-#include <linux/gfp.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
diff --git a/mm/ksm.c b/mm/ksm.c
index 56a0da1f9979..6c3e99b4ae7c 100644
--- a/mm/ksm.c
+++ b/mm/ksm.c
@@ -318,14 +318,14 @@ static void hold_anon_vma(struct rmap_item *rmap_item,
struct anon_vma *anon_vma)
{
rmap_item->anon_vma = anon_vma;
- atomic_inc(&anon_vma->ksm_refcount);
+ atomic_inc(&anon_vma->external_refcount);
}
static void drop_anon_vma(struct rmap_item *rmap_item)
{
struct anon_vma *anon_vma = rmap_item->anon_vma;
- if (atomic_dec_and_lock(&anon_vma->ksm_refcount, &anon_vma->lock)) {
+ if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->lock)) {
int empty = list_empty(&anon_vma->head);
spin_unlock(&anon_vma->lock);
if (empty)
@@ -365,7 +365,7 @@ static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
do {
cond_resched();
page = follow_page(vma, addr, FOLL_GET);
- if (!page)
+ if (IS_ERR_OR_NULL(page))
break;
if (PageKsm(page))
ret = handle_mm_fault(vma->vm_mm, vma, addr,
@@ -447,7 +447,7 @@ static struct page *get_mergeable_page(struct rmap_item *rmap_item)
goto out;
page = follow_page(vma, addr, FOLL_GET);
- if (!page)
+ if (IS_ERR_OR_NULL(page))
goto out;
if (PageAnon(page)) {
flush_anon_page(vma, page, addr);
@@ -751,7 +751,7 @@ static int write_protect_page(struct vm_area_struct *vma, struct page *page,
* page
*/
if (page_mapcount(page) + 1 + swapped != page_count(page)) {
- set_pte_at_notify(mm, addr, ptep, entry);
+ set_pte_at(mm, addr, ptep, entry);
goto out_unlock;
}
entry = pte_wrprotect(entry);
@@ -1086,7 +1086,7 @@ struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
cond_resched();
tree_rmap_item = rb_entry(*new, struct rmap_item, node);
tree_page = get_mergeable_page(tree_rmap_item);
- if (!tree_page)
+ if (IS_ERR_OR_NULL(tree_page))
return NULL;
/*
@@ -1294,7 +1294,7 @@ next_mm:
if (ksm_test_exit(mm))
break;
*page = follow_page(vma, ksm_scan.address, FOLL_GET);
- if (*page && PageAnon(*page)) {
+ if (!IS_ERR_OR_NULL(*page) && PageAnon(*page)) {
flush_anon_page(vma, *page, ksm_scan.address);
flush_dcache_page(*page);
rmap_item = get_next_rmap_item(slot,
@@ -1308,7 +1308,7 @@ next_mm:
up_read(&mm->mmap_sem);
return rmap_item;
}
- if (*page)
+ if (!IS_ERR_OR_NULL(*page))
put_page(*page);
ksm_scan.address += PAGE_SIZE;
cond_resched();
@@ -1367,7 +1367,7 @@ next_mm:
static void ksm_do_scan(unsigned int scan_npages)
{
struct rmap_item *rmap_item;
- struct page *page;
+ struct page *uninitialized_var(page);
while (scan_npages--) {
cond_resched();
@@ -1563,10 +1563,12 @@ int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
again:
hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
struct anon_vma *anon_vma = rmap_item->anon_vma;
+ struct anon_vma_chain *vmac;
struct vm_area_struct *vma;
spin_lock(&anon_vma->lock);
- list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
+ list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
+ vma = vmac->vma;
if (rmap_item->address < vma->vm_start ||
rmap_item->address >= vma->vm_end)
continue;
@@ -1614,10 +1616,12 @@ int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
again:
hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
struct anon_vma *anon_vma = rmap_item->anon_vma;
+ struct anon_vma_chain *vmac;
struct vm_area_struct *vma;
spin_lock(&anon_vma->lock);
- list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
+ list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
+ vma = vmac->vma;
if (rmap_item->address < vma->vm_start ||
rmap_item->address >= vma->vm_end)
continue;
@@ -1664,10 +1668,12 @@ int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
again:
hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
struct anon_vma *anon_vma = rmap_item->anon_vma;
+ struct anon_vma_chain *vmac;
struct vm_area_struct *vma;
spin_lock(&anon_vma->lock);
- list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
+ list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
+ vma = vmac->vma;
if (rmap_item->address < vma->vm_start ||
rmap_item->address >= vma->vm_end)
continue;
diff --git a/mm/memblock.c b/mm/memblock.c
new file mode 100644
index 000000000000..3024eb30fc27
--- /dev/null
+++ b/mm/memblock.c
@@ -0,0 +1,541 @@
+/*
+ * Procedures for maintaining information about logical memory blocks.
+ *
+ * Peter Bergner, IBM Corp. June 2001.
+ * Copyright (C) 2001 Peter Bergner.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/bitops.h>
+#include <linux/memblock.h>
+
+#define MEMBLOCK_ALLOC_ANYWHERE 0
+
+struct memblock memblock;
+
+static int memblock_debug;
+
+static int __init early_memblock(char *p)
+{
+ if (p && strstr(p, "debug"))
+ memblock_debug = 1;
+ return 0;
+}
+early_param("memblock", early_memblock);
+
+static void memblock_dump(struct memblock_region *region, char *name)
+{
+ unsigned long long base, size;
+ int i;
+
+ pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
+
+ for (i = 0; i < region->cnt; i++) {
+ base = region->region[i].base;
+ size = region->region[i].size;
+
+ pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
+ name, i, base, base + size - 1, size);
+ }
+}
+
+void memblock_dump_all(void)
+{
+ if (!memblock_debug)
+ return;
+
+ pr_info("MEMBLOCK configuration:\n");
+ pr_info(" rmo_size = 0x%llx\n", (unsigned long long)memblock.rmo_size);
+ pr_info(" memory.size = 0x%llx\n", (unsigned long long)memblock.memory.size);
+
+ memblock_dump(&memblock.memory, "memory");
+ memblock_dump(&memblock.reserved, "reserved");
+}
+
+static unsigned long memblock_addrs_overlap(u64 base1, u64 size1, u64 base2,
+ u64 size2)
+{
+ return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
+}
+
+static long memblock_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2)
+{
+ if (base2 == base1 + size1)
+ return 1;
+ else if (base1 == base2 + size2)
+ return -1;
+
+ return 0;
+}
+
+static long memblock_regions_adjacent(struct memblock_region *rgn,
+ unsigned long r1, unsigned long r2)
+{
+ u64 base1 = rgn->region[r1].base;
+ u64 size1 = rgn->region[r1].size;
+ u64 base2 = rgn->region[r2].base;
+ u64 size2 = rgn->region[r2].size;
+
+ return memblock_addrs_adjacent(base1, size1, base2, size2);
+}
+
+static void memblock_remove_region(struct memblock_region *rgn, unsigned long r)
+{
+ unsigned long i;
+
+ for (i = r; i < rgn->cnt - 1; i++) {
+ rgn->region[i].base = rgn->region[i + 1].base;
+ rgn->region[i].size = rgn->region[i + 1].size;
+ }
+ rgn->cnt--;
+}
+
+/* Assumption: base addr of region 1 < base addr of region 2 */
+static void memblock_coalesce_regions(struct memblock_region *rgn,
+ unsigned long r1, unsigned long r2)
+{
+ rgn->region[r1].size += rgn->region[r2].size;
+ memblock_remove_region(rgn, r2);
+}
+
+void __init memblock_init(void)
+{
+ /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
+ * This simplifies the memblock_add() code below...
+ */
+ memblock.memory.region[0].base = 0;
+ memblock.memory.region[0].size = 0;
+ memblock.memory.cnt = 1;
+
+ /* Ditto. */
+ memblock.reserved.region[0].base = 0;
+ memblock.reserved.region[0].size = 0;
+ memblock.reserved.cnt = 1;
+}
+
+void __init memblock_analyze(void)
+{
+ int i;
+
+ memblock.memory.size = 0;
+
+ for (i = 0; i < memblock.memory.cnt; i++)
+ memblock.memory.size += memblock.memory.region[i].size;
+}
+
+static long memblock_add_region(struct memblock_region *rgn, u64 base, u64 size)
+{
+ unsigned long coalesced = 0;
+ long adjacent, i;
+
+ if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
+ rgn->region[0].base = base;
+ rgn->region[0].size = size;
+ return 0;
+ }
+
+ /* First try and coalesce this MEMBLOCK with another. */
+ for (i = 0; i < rgn->cnt; i++) {
+ u64 rgnbase = rgn->region[i].base;
+ u64 rgnsize = rgn->region[i].size;
+
+ if ((rgnbase == base) && (rgnsize == size))
+ /* Already have this region, so we're done */
+ return 0;
+
+ adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
+ if (adjacent > 0) {
+ rgn->region[i].base -= size;
+ rgn->region[i].size += size;
+ coalesced++;
+ break;
+ } else if (adjacent < 0) {
+ rgn->region[i].size += size;
+ coalesced++;
+ break;
+ }
+ }
+
+ if ((i < rgn->cnt - 1) && memblock_regions_adjacent(rgn, i, i+1)) {
+ memblock_coalesce_regions(rgn, i, i+1);
+ coalesced++;
+ }
+
+ if (coalesced)
+ return coalesced;
+ if (rgn->cnt >= MAX_MEMBLOCK_REGIONS)
+ return -1;
+
+ /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
+ for (i = rgn->cnt - 1; i >= 0; i--) {
+ if (base < rgn->region[i].base) {
+ rgn->region[i+1].base = rgn->region[i].base;
+ rgn->region[i+1].size = rgn->region[i].size;
+ } else {
+ rgn->region[i+1].base = base;
+ rgn->region[i+1].size = size;
+ break;
+ }
+ }
+
+ if (base < rgn->region[0].base) {
+ rgn->region[0].base = base;
+ rgn->region[0].size = size;
+ }
+ rgn->cnt++;
+
+ return 0;
+}
+
+long memblock_add(u64 base, u64 size)
+{
+ struct memblock_region *_rgn = &memblock.memory;
+
+ /* On pSeries LPAR systems, the first MEMBLOCK is our RMO region. */
+ if (base == 0)
+ memblock.rmo_size = size;
+
+ return memblock_add_region(_rgn, base, size);
+
+}
+
+static long __memblock_remove(struct memblock_region *rgn, u64 base, u64 size)
+{
+ u64 rgnbegin, rgnend;
+ u64 end = base + size;
+ int i;
+
+ rgnbegin = rgnend = 0; /* supress gcc warnings */
+
+ /* Find the region where (base, size) belongs to */
+ for (i=0; i < rgn->cnt; i++) {
+ rgnbegin = rgn->region[i].base;
+ rgnend = rgnbegin + rgn->region[i].size;
+
+ if ((rgnbegin <= base) && (end <= rgnend))
+ break;
+ }
+
+ /* Didn't find the region */
+ if (i == rgn->cnt)
+ return -1;
+
+ /* Check to see if we are removing entire region */
+ if ((rgnbegin == base) && (rgnend == end)) {
+ memblock_remove_region(rgn, i);
+ return 0;
+ }
+
+ /* Check to see if region is matching at the front */
+ if (rgnbegin == base) {
+ rgn->region[i].base = end;
+ rgn->region[i].size -= size;
+ return 0;
+ }
+
+ /* Check to see if the region is matching at the end */
+ if (rgnend == end) {
+ rgn->region[i].size -= size;
+ return 0;
+ }
+
+ /*
+ * We need to split the entry - adjust the current one to the
+ * beginging of the hole and add the region after hole.
+ */
+ rgn->region[i].size = base - rgn->region[i].base;
+ return memblock_add_region(rgn, end, rgnend - end);
+}
+
+long memblock_remove(u64 base, u64 size)
+{
+ return __memblock_remove(&memblock.memory, base, size);
+}
+
+long __init memblock_free(u64 base, u64 size)
+{
+ return __memblock_remove(&memblock.reserved, base, size);
+}
+
+long __init memblock_reserve(u64 base, u64 size)
+{
+ struct memblock_region *_rgn = &memblock.reserved;
+
+ BUG_ON(0 == size);
+
+ return memblock_add_region(_rgn, base, size);
+}
+
+long memblock_overlaps_region(struct memblock_region *rgn, u64 base, u64 size)
+{
+ unsigned long i;
+
+ for (i = 0; i < rgn->cnt; i++) {
+ u64 rgnbase = rgn->region[i].base;
+ u64 rgnsize = rgn->region[i].size;
+ if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
+ break;
+ }
+
+ return (i < rgn->cnt) ? i : -1;
+}
+
+static u64 memblock_align_down(u64 addr, u64 size)
+{
+ return addr & ~(size - 1);
+}
+
+static u64 memblock_align_up(u64 addr, u64 size)
+{
+ return (addr + (size - 1)) & ~(size - 1);
+}
+
+static u64 __init memblock_alloc_nid_unreserved(u64 start, u64 end,
+ u64 size, u64 align)
+{
+ u64 base, res_base;
+ long j;
+
+ base = memblock_align_down((end - size), align);
+ while (start <= base) {
+ j = memblock_overlaps_region(&memblock.reserved, base, size);
+ if (j < 0) {
+ /* this area isn't reserved, take it */
+ if (memblock_add_region(&memblock.reserved, base, size) < 0)
+ base = ~(u64)0;
+ return base;
+ }
+ res_base = memblock.reserved.region[j].base;
+ if (res_base < size)
+ break;
+ base = memblock_align_down(res_base - size, align);
+ }
+
+ return ~(u64)0;
+}
+
+static u64 __init memblock_alloc_nid_region(struct memblock_property *mp,
+ u64 (*nid_range)(u64, u64, int *),
+ u64 size, u64 align, int nid)
+{
+ u64 start, end;
+
+ start = mp->base;
+ end = start + mp->size;
+
+ start = memblock_align_up(start, align);
+ while (start < end) {
+ u64 this_end;
+ int this_nid;
+
+ this_end = nid_range(start, end, &this_nid);
+ if (this_nid == nid) {
+ u64 ret = memblock_alloc_nid_unreserved(start, this_end,
+ size, align);
+ if (ret != ~(u64)0)
+ return ret;
+ }
+ start = this_end;
+ }
+
+ return ~(u64)0;
+}
+
+u64 __init memblock_alloc_nid(u64 size, u64 align, int nid,
+ u64 (*nid_range)(u64 start, u64 end, int *nid))
+{
+ struct memblock_region *mem = &memblock.memory;
+ int i;
+
+ BUG_ON(0 == size);
+
+ size = memblock_align_up(size, align);
+
+ for (i = 0; i < mem->cnt; i++) {
+ u64 ret = memblock_alloc_nid_region(&mem->region[i],
+ nid_range,
+ size, align, nid);
+ if (ret != ~(u64)0)
+ return ret;
+ }
+
+ return memblock_alloc(size, align);
+}
+
+u64 __init memblock_alloc(u64 size, u64 align)
+{
+ return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
+}
+
+u64 __init memblock_alloc_base(u64 size, u64 align, u64 max_addr)
+{
+ u64 alloc;
+
+ alloc = __memblock_alloc_base(size, align, max_addr);
+
+ if (alloc == 0)
+ panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
+ (unsigned long long) size, (unsigned long long) max_addr);
+
+ return alloc;
+}
+
+u64 __init __memblock_alloc_base(u64 size, u64 align, u64 max_addr)
+{
+ long i, j;
+ u64 base = 0;
+ u64 res_base;
+
+ BUG_ON(0 == size);
+
+ size = memblock_align_up(size, align);
+
+ /* On some platforms, make sure we allocate lowmem */
+ /* Note that MEMBLOCK_REAL_LIMIT may be MEMBLOCK_ALLOC_ANYWHERE */
+ if (max_addr == MEMBLOCK_ALLOC_ANYWHERE)
+ max_addr = MEMBLOCK_REAL_LIMIT;
+
+ for (i = memblock.memory.cnt - 1; i >= 0; i--) {
+ u64 memblockbase = memblock.memory.region[i].base;
+ u64 memblocksize = memblock.memory.region[i].size;
+
+ if (memblocksize < size)
+ continue;
+ if (max_addr == MEMBLOCK_ALLOC_ANYWHERE)
+ base = memblock_align_down(memblockbase + memblocksize - size, align);
+ else if (memblockbase < max_addr) {
+ base = min(memblockbase + memblocksize, max_addr);
+ base = memblock_align_down(base - size, align);
+ } else
+ continue;
+
+ while (base && memblockbase <= base) {
+ j = memblock_overlaps_region(&memblock.reserved, base, size);
+ if (j < 0) {
+ /* this area isn't reserved, take it */
+ if (memblock_add_region(&memblock.reserved, base, size) < 0)
+ return 0;
+ return base;
+ }
+ res_base = memblock.reserved.region[j].base;
+ if (res_base < size)
+ break;
+ base = memblock_align_down(res_base - size, align);
+ }
+ }
+ return 0;
+}
+
+/* You must call memblock_analyze() before this. */
+u64 __init memblock_phys_mem_size(void)
+{
+ return memblock.memory.size;
+}
+
+u64 memblock_end_of_DRAM(void)
+{
+ int idx = memblock.memory.cnt - 1;
+
+ return (memblock.memory.region[idx].base + memblock.memory.region[idx].size);
+}
+
+/* You must call memblock_analyze() after this. */
+void __init memblock_enforce_memory_limit(u64 memory_limit)
+{
+ unsigned long i;
+ u64 limit;
+ struct memblock_property *p;
+
+ if (!memory_limit)
+ return;
+
+ /* Truncate the memblock regions to satisfy the memory limit. */
+ limit = memory_limit;
+ for (i = 0; i < memblock.memory.cnt; i++) {
+ if (limit > memblock.memory.region[i].size) {
+ limit -= memblock.memory.region[i].size;
+ continue;
+ }
+
+ memblock.memory.region[i].size = limit;
+ memblock.memory.cnt = i + 1;
+ break;
+ }
+
+ if (memblock.memory.region[0].size < memblock.rmo_size)
+ memblock.rmo_size = memblock.memory.region[0].size;
+
+ memory_limit = memblock_end_of_DRAM();
+
+ /* And truncate any reserves above the limit also. */
+ for (i = 0; i < memblock.reserved.cnt; i++) {
+ p = &memblock.reserved.region[i];
+
+ if (p->base > memory_limit)
+ p->size = 0;
+ else if ((p->base + p->size) > memory_limit)
+ p->size = memory_limit - p->base;
+
+ if (p->size == 0) {
+ memblock_remove_region(&memblock.reserved, i);
+ i--;
+ }
+ }
+}
+
+int __init memblock_is_reserved(u64 addr)
+{
+ int i;
+
+ for (i = 0; i < memblock.reserved.cnt; i++) {
+ u64 upper = memblock.reserved.region[i].base +
+ memblock.reserved.region[i].size - 1;
+ if ((addr >= memblock.reserved.region[i].base) && (addr <= upper))
+ return 1;
+ }
+ return 0;
+}
+
+int memblock_is_region_reserved(u64 base, u64 size)
+{
+ return memblock_overlaps_region(&memblock.reserved, base, size);
+}
+
+/*
+ * Given a <base, len>, find which memory regions belong to this range.
+ * Adjust the request and return a contiguous chunk.
+ */
+int memblock_find(struct memblock_property *res)
+{
+ int i;
+ u64 rstart, rend;
+
+ rstart = res->base;
+ rend = rstart + res->size - 1;
+
+ for (i = 0; i < memblock.memory.cnt; i++) {
+ u64 start = memblock.memory.region[i].base;
+ u64 end = start + memblock.memory.region[i].size - 1;
+
+ if (start > rend)
+ return -1;
+
+ if ((end >= rstart) && (start < rend)) {
+ /* adjust the request */
+ if (rstart < start)
+ rstart = start;
+ if (rend > end)
+ rend = end;
+ res->base = rstart;
+ res->size = rend - rstart + 1;
+ return 0;
+ }
+ }
+ return -1;
+}
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 954032b80bed..20a8193a7af8 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -6,6 +6,10 @@
* Copyright 2007 OpenVZ SWsoft Inc
* Author: Pavel Emelianov <xemul@openvz.org>
*
+ * Memory thresholds
+ * Copyright (C) 2009 Nokia Corporation
+ * Author: Kirill A. Shutemov
+ *
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
@@ -21,6 +25,7 @@
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
#include <linux/mm.h>
+#include <linux/hugetlb.h>
#include <linux/pagemap.h>
#include <linux/smp.h>
#include <linux/page-flags.h>
@@ -32,7 +37,10 @@
#include <linux/rbtree.h>
#include <linux/slab.h>
#include <linux/swap.h>
+#include <linux/swapops.h>
#include <linux/spinlock.h>
+#include <linux/eventfd.h>
+#include <linux/sort.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/vmalloc.h>
@@ -55,7 +63,15 @@ static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#define do_swap_account (0)
#endif
-#define SOFTLIMIT_EVENTS_THRESH (1000)
+/*
+ * Per memcg event counter is incremented at every pagein/pageout. This counter
+ * is used for trigger some periodic events. This is straightforward and better
+ * than using jiffies etc. to handle periodic memcg event.
+ *
+ * These values will be used as !((event) & ((1 <<(thresh)) - 1))
+ */
+#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
+#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
/*
* Statistics for memory cgroup.
@@ -69,62 +85,16 @@ enum mem_cgroup_stat_index {
MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
- MEM_CGROUP_STAT_EVENTS, /* sum of pagein + pageout for internal use */
MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
+ MEM_CGROUP_EVENTS, /* incremented at every pagein/pageout */
MEM_CGROUP_STAT_NSTATS,
};
struct mem_cgroup_stat_cpu {
s64 count[MEM_CGROUP_STAT_NSTATS];
-} ____cacheline_aligned_in_smp;
-
-struct mem_cgroup_stat {
- struct mem_cgroup_stat_cpu cpustat[0];
};
-static inline void
-__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
- enum mem_cgroup_stat_index idx)
-{
- stat->count[idx] = 0;
-}
-
-static inline s64
-__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
- enum mem_cgroup_stat_index idx)
-{
- return stat->count[idx];
-}
-
-/*
- * For accounting under irq disable, no need for increment preempt count.
- */
-static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
- enum mem_cgroup_stat_index idx, int val)
-{
- stat->count[idx] += val;
-}
-
-static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
- enum mem_cgroup_stat_index idx)
-{
- int cpu;
- s64 ret = 0;
- for_each_possible_cpu(cpu)
- ret += stat->cpustat[cpu].count[idx];
- return ret;
-}
-
-static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
-{
- s64 ret;
-
- ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
- ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
- return ret;
-}
-
/*
* per-zone information in memory controller.
*/
@@ -174,6 +144,41 @@ struct mem_cgroup_tree {
static struct mem_cgroup_tree soft_limit_tree __read_mostly;
+struct mem_cgroup_threshold {
+ struct eventfd_ctx *eventfd;
+ u64 threshold;
+};
+
+/* For threshold */
+struct mem_cgroup_threshold_ary {
+ /* An array index points to threshold just below usage. */
+ int current_threshold;
+ /* Size of entries[] */
+ unsigned int size;
+ /* Array of thresholds */
+ struct mem_cgroup_threshold entries[0];
+};
+
+struct mem_cgroup_thresholds {
+ /* Primary thresholds array */
+ struct mem_cgroup_threshold_ary *primary;
+ /*
+ * Spare threshold array.
+ * This is needed to make mem_cgroup_unregister_event() "never fail".
+ * It must be able to store at least primary->size - 1 entries.
+ */
+ struct mem_cgroup_threshold_ary *spare;
+};
+
+/* for OOM */
+struct mem_cgroup_eventfd_list {
+ struct list_head list;
+ struct eventfd_ctx *eventfd;
+};
+
+static void mem_cgroup_threshold(struct mem_cgroup *mem);
+static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
+
/*
* The memory controller data structure. The memory controller controls both
* page cache and RSS per cgroup. We would eventually like to provide
@@ -217,20 +222,75 @@ struct mem_cgroup {
* Should the accounting and control be hierarchical, per subtree?
*/
bool use_hierarchy;
- unsigned long last_oom_jiffies;
+ atomic_t oom_lock;
atomic_t refcnt;
unsigned int swappiness;
+ /* OOM-Killer disable */
+ int oom_kill_disable;
/* set when res.limit == memsw.limit */
bool memsw_is_minimum;
+ /* protect arrays of thresholds */
+ struct mutex thresholds_lock;
+
+ /* thresholds for memory usage. RCU-protected */
+ struct mem_cgroup_thresholds thresholds;
+
+ /* thresholds for mem+swap usage. RCU-protected */
+ struct mem_cgroup_thresholds memsw_thresholds;
+
+ /* For oom notifier event fd */
+ struct list_head oom_notify;
+
+ /*
+ * Should we move charges of a task when a task is moved into this
+ * mem_cgroup ? And what type of charges should we move ?
+ */
+ unsigned long move_charge_at_immigrate;
/*
- * statistics. This must be placed at the end of memcg.
+ * percpu counter.
*/
- struct mem_cgroup_stat stat;
+ struct mem_cgroup_stat_cpu *stat;
+};
+
+/* Stuffs for move charges at task migration. */
+/*
+ * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
+ * left-shifted bitmap of these types.
+ */
+enum move_type {
+ MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
+ MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
+ NR_MOVE_TYPE,
};
+/* "mc" and its members are protected by cgroup_mutex */
+static struct move_charge_struct {
+ struct mem_cgroup *from;
+ struct mem_cgroup *to;
+ unsigned long precharge;
+ unsigned long moved_charge;
+ unsigned long moved_swap;
+ struct task_struct *moving_task; /* a task moving charges */
+ wait_queue_head_t waitq; /* a waitq for other context */
+} mc = {
+ .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
+};
+
+static bool move_anon(void)
+{
+ return test_bit(MOVE_CHARGE_TYPE_ANON,
+ &mc.to->move_charge_at_immigrate);
+}
+
+static bool move_file(void)
+{
+ return test_bit(MOVE_CHARGE_TYPE_FILE,
+ &mc.to->move_charge_at_immigrate);
+}
+
/*
* Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
* limit reclaim to prevent infinite loops, if they ever occur.
@@ -258,9 +318,12 @@ enum charge_type {
/* for encoding cft->private value on file */
#define _MEM (0)
#define _MEMSWAP (1)
+#define _OOM_TYPE (2)
#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val) ((val) & 0xffff)
+/* Used for OOM nofiier */
+#define OOM_CONTROL (0)
/*
* Reclaim flags for mem_cgroup_hierarchical_reclaim
@@ -371,23 +434,6 @@ mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
spin_unlock(&mctz->lock);
}
-static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
-{
- bool ret = false;
- int cpu;
- s64 val;
- struct mem_cgroup_stat_cpu *cpustat;
-
- cpu = get_cpu();
- cpustat = &mem->stat.cpustat[cpu];
- val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
- if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
- __mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
- ret = true;
- }
- put_cpu();
- return ret;
-}
static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
@@ -481,17 +527,31 @@ mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
return mz;
}
+static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
+ enum mem_cgroup_stat_index idx)
+{
+ int cpu;
+ s64 val = 0;
+
+ for_each_possible_cpu(cpu)
+ val += per_cpu(mem->stat->count[idx], cpu);
+ return val;
+}
+
+static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
+{
+ s64 ret;
+
+ ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
+ ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
+ return ret;
+}
+
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
bool charge)
{
int val = (charge) ? 1 : -1;
- struct mem_cgroup_stat *stat = &mem->stat;
- struct mem_cgroup_stat_cpu *cpustat;
- int cpu = get_cpu();
-
- cpustat = &stat->cpustat[cpu];
- __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
- put_cpu();
+ this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
}
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
@@ -499,24 +559,21 @@ static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
bool charge)
{
int val = (charge) ? 1 : -1;
- struct mem_cgroup_stat *stat = &mem->stat;
- struct mem_cgroup_stat_cpu *cpustat;
- int cpu = get_cpu();
- cpustat = &stat->cpustat[cpu];
+ preempt_disable();
+
if (PageCgroupCache(pc))
- __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
+ __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
else
- __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
+ __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
if (charge)
- __mem_cgroup_stat_add_safe(cpustat,
- MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
+ __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
else
- __mem_cgroup_stat_add_safe(cpustat,
- MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
- __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
- put_cpu();
+ __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
+ __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
+
+ preempt_enable();
}
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
@@ -534,6 +591,29 @@ static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
return total;
}
+static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
+{
+ s64 val;
+
+ val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
+
+ return !(val & ((1 << event_mask_shift) - 1));
+}
+
+/*
+ * Check events in order.
+ *
+ */
+static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
+{
+ /* threshold event is triggered in finer grain than soft limit */
+ if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
+ mem_cgroup_threshold(mem);
+ if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
+ mem_cgroup_update_tree(mem, page);
+ }
+}
+
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
{
return container_of(cgroup_subsys_state(cont,
@@ -1000,7 +1080,7 @@ static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
}
/**
- * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
+ * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
* @memcg: The memory cgroup that went over limit
* @p: Task that is going to be killed
*
@@ -1174,7 +1254,7 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
}
}
}
- if (!mem_cgroup_local_usage(&victim->stat)) {
+ if (!mem_cgroup_local_usage(victim)) {
/* this cgroup's local usage == 0 */
css_put(&victim->css);
continue;
@@ -1205,32 +1285,141 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
return total;
}
-bool mem_cgroup_oom_called(struct task_struct *task)
+static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
{
- bool ret = false;
- struct mem_cgroup *mem;
- struct mm_struct *mm;
+ int *val = (int *)data;
+ int x;
+ /*
+ * Logically, we can stop scanning immediately when we find
+ * a memcg is already locked. But condidering unlock ops and
+ * creation/removal of memcg, scan-all is simple operation.
+ */
+ x = atomic_inc_return(&mem->oom_lock);
+ *val = max(x, *val);
+ return 0;
+}
+/*
+ * Check OOM-Killer is already running under our hierarchy.
+ * If someone is running, return false.
+ */
+static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
+{
+ int lock_count = 0;
- rcu_read_lock();
- mm = task->mm;
- if (!mm)
- mm = &init_mm;
- mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
- if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
- ret = true;
- rcu_read_unlock();
- return ret;
+ mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
+
+ if (lock_count == 1)
+ return true;
+ return false;
}
-static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
+static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
{
- mem->last_oom_jiffies = jiffies;
+ /*
+ * When a new child is created while the hierarchy is under oom,
+ * mem_cgroup_oom_lock() may not be called. We have to use
+ * atomic_add_unless() here.
+ */
+ atomic_add_unless(&mem->oom_lock, -1, 0);
return 0;
}
-static void record_last_oom(struct mem_cgroup *mem)
+static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
+{
+ mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_unlock_cb);
+}
+
+static DEFINE_MUTEX(memcg_oom_mutex);
+static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
+
+struct oom_wait_info {
+ struct mem_cgroup *mem;
+ wait_queue_t wait;
+};
+
+static int memcg_oom_wake_function(wait_queue_t *wait,
+ unsigned mode, int sync, void *arg)
+{
+ struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
+ struct oom_wait_info *oom_wait_info;
+
+ oom_wait_info = container_of(wait, struct oom_wait_info, wait);
+
+ if (oom_wait_info->mem == wake_mem)
+ goto wakeup;
+ /* if no hierarchy, no match */
+ if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
+ return 0;
+ /*
+ * Both of oom_wait_info->mem and wake_mem are stable under us.
+ * Then we can use css_is_ancestor without taking care of RCU.
+ */
+ if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
+ !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
+ return 0;
+
+wakeup:
+ return autoremove_wake_function(wait, mode, sync, arg);
+}
+
+static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
- mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
+ /* for filtering, pass "mem" as argument. */
+ __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
+}
+
+static void memcg_oom_recover(struct mem_cgroup *mem)
+{
+ if (atomic_read(&mem->oom_lock))
+ memcg_wakeup_oom(mem);
+}
+
+/*
+ * try to call OOM killer. returns false if we should exit memory-reclaim loop.
+ */
+bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
+{
+ struct oom_wait_info owait;
+ bool locked, need_to_kill;
+
+ owait.mem = mem;
+ owait.wait.flags = 0;
+ owait.wait.func = memcg_oom_wake_function;
+ owait.wait.private = current;
+ INIT_LIST_HEAD(&owait.wait.task_list);
+ need_to_kill = true;
+ /* At first, try to OOM lock hierarchy under mem.*/
+ mutex_lock(&memcg_oom_mutex);
+ locked = mem_cgroup_oom_lock(mem);
+ /*
+ * Even if signal_pending(), we can't quit charge() loop without
+ * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
+ * under OOM is always welcomed, use TASK_KILLABLE here.
+ */
+ prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
+ if (!locked || mem->oom_kill_disable)
+ need_to_kill = false;
+ if (locked)
+ mem_cgroup_oom_notify(mem);
+ mutex_unlock(&memcg_oom_mutex);
+
+ if (need_to_kill) {
+ finish_wait(&memcg_oom_waitq, &owait.wait);
+ mem_cgroup_out_of_memory(mem, mask);
+ } else {
+ schedule();
+ finish_wait(&memcg_oom_waitq, &owait.wait);
+ }
+ mutex_lock(&memcg_oom_mutex);
+ mem_cgroup_oom_unlock(mem);
+ memcg_wakeup_oom(mem);
+ mutex_unlock(&memcg_oom_mutex);
+
+ if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
+ return false;
+ /* Give chance to dying process */
+ schedule_timeout(1);
+ return true;
}
/*
@@ -1240,9 +1429,6 @@ static void record_last_oom(struct mem_cgroup *mem)
void mem_cgroup_update_file_mapped(struct page *page, int val)
{
struct mem_cgroup *mem;
- struct mem_cgroup_stat *stat;
- struct mem_cgroup_stat_cpu *cpustat;
- int cpu;
struct page_cgroup *pc;
pc = lookup_page_cgroup(page);
@@ -1251,20 +1437,20 @@ void mem_cgroup_update_file_mapped(struct page *page, int val)
lock_page_cgroup(pc);
mem = pc->mem_cgroup;
- if (!mem)
- goto done;
-
- if (!PageCgroupUsed(pc))
+ if (!mem || !PageCgroupUsed(pc))
goto done;
/*
- * Preemption is already disabled, we don't need get_cpu()
+ * Preemption is already disabled. We can use __this_cpu_xxx
*/
- cpu = smp_processor_id();
- stat = &mem->stat;
- cpustat = &stat->cpustat[cpu];
+ if (val > 0) {
+ __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
+ SetPageCgroupFileMapped(pc);
+ } else {
+ __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
+ ClearPageCgroupFileMapped(pc);
+ }
- __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, val);
done:
unlock_page_cgroup(pc);
}
@@ -1330,7 +1516,7 @@ static void drain_local_stock(struct work_struct *dummy)
/*
* Cache charges(val) which is from res_counter, to local per_cpu area.
- * This will be consumed by consumt_stock() function, later.
+ * This will be consumed by consume_stock() function, later.
*/
static void refill_stock(struct mem_cgroup *mem, int val)
{
@@ -1401,19 +1587,21 @@ static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
* oom-killer can be invoked.
*/
static int __mem_cgroup_try_charge(struct mm_struct *mm,
- gfp_t gfp_mask, struct mem_cgroup **memcg,
- bool oom, struct page *page)
+ gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
{
struct mem_cgroup *mem, *mem_over_limit;
int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
struct res_counter *fail_res;
int csize = CHARGE_SIZE;
- if (unlikely(test_thread_flag(TIF_MEMDIE))) {
- /* Don't account this! */
- *memcg = NULL;
- return 0;
- }
+ /*
+ * Unlike gloval-vm's OOM-kill, we're not in memory shortage
+ * in system level. So, allow to go ahead dying process in addition to
+ * MEMDIE process.
+ */
+ if (unlikely(test_thread_flag(TIF_MEMDIE)
+ || fatal_signal_pending(current)))
+ goto bypass;
/*
* We always charge the cgroup the mm_struct belongs to.
@@ -1440,7 +1628,7 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
unsigned long flags = 0;
if (consume_stock(mem))
- goto charged;
+ goto done;
ret = res_counter_charge(&mem->res, csize, &fail_res);
if (likely(!ret)) {
@@ -1483,28 +1671,68 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
if (mem_cgroup_check_under_limit(mem_over_limit))
continue;
+ /* try to avoid oom while someone is moving charge */
+ if (mc.moving_task && current != mc.moving_task) {
+ struct mem_cgroup *from, *to;
+ bool do_continue = false;
+ /*
+ * There is a small race that "from" or "to" can be
+ * freed by rmdir, so we use css_tryget().
+ */
+ from = mc.from;
+ to = mc.to;
+ if (from && css_tryget(&from->css)) {
+ if (mem_over_limit->use_hierarchy)
+ do_continue = css_is_ancestor(
+ &from->css,
+ &mem_over_limit->css);
+ else
+ do_continue = (from == mem_over_limit);
+ css_put(&from->css);
+ }
+ if (!do_continue && to && css_tryget(&to->css)) {
+ if (mem_over_limit->use_hierarchy)
+ do_continue = css_is_ancestor(
+ &to->css,
+ &mem_over_limit->css);
+ else
+ do_continue = (to == mem_over_limit);
+ css_put(&to->css);
+ }
+ if (do_continue) {
+ DEFINE_WAIT(wait);
+ prepare_to_wait(&mc.waitq, &wait,
+ TASK_INTERRUPTIBLE);
+ /* moving charge context might have finished. */
+ if (mc.moving_task)
+ schedule();
+ finish_wait(&mc.waitq, &wait);
+ continue;
+ }
+ }
+
if (!nr_retries--) {
- if (oom) {
- mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
- record_last_oom(mem_over_limit);
+ if (!oom)
+ goto nomem;
+ if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
+ nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
+ continue;
}
- goto nomem;
+ /* When we reach here, current task is dying .*/
+ css_put(&mem->css);
+ goto bypass;
}
}
if (csize > PAGE_SIZE)
refill_stock(mem, csize - PAGE_SIZE);
-charged:
- /*
- * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
- * if they exceeds softlimit.
- */
- if (mem_cgroup_soft_limit_check(mem))
- mem_cgroup_update_tree(mem, page);
done:
return 0;
nomem:
css_put(&mem->css);
return -ENOMEM;
+bypass:
+ *memcg = NULL;
+ return 0;
}
/*
@@ -1512,14 +1740,23 @@ nomem:
* This function is for that and do uncharge, put css's refcnt.
* gotten by try_charge().
*/
-static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
+static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
+ unsigned long count)
{
if (!mem_cgroup_is_root(mem)) {
- res_counter_uncharge(&mem->res, PAGE_SIZE);
+ res_counter_uncharge(&mem->res, PAGE_SIZE * count);
if (do_swap_account)
- res_counter_uncharge(&mem->memsw, PAGE_SIZE);
+ res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
+ VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
+ WARN_ON_ONCE(count > INT_MAX);
+ __css_put(&mem->css, (int)count);
}
- css_put(&mem->css);
+ /* we don't need css_put for root */
+}
+
+static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
+{
+ __mem_cgroup_cancel_charge(mem, 1);
}
/*
@@ -1615,6 +1852,12 @@ static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
mem_cgroup_charge_statistics(mem, pc, true);
unlock_page_cgroup(pc);
+ /*
+ * "charge_statistics" updated event counter. Then, check it.
+ * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
+ * if they exceeds softlimit.
+ */
+ memcg_check_events(mem, pc->page);
}
/**
@@ -1622,61 +1865,48 @@ static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
* @pc: page_cgroup of the page.
* @from: mem_cgroup which the page is moved from.
* @to: mem_cgroup which the page is moved to. @from != @to.
+ * @uncharge: whether we should call uncharge and css_put against @from.
*
* The caller must confirm following.
* - page is not on LRU (isolate_page() is useful.)
* - the pc is locked, used, and ->mem_cgroup points to @from.
*
- * This function does "uncharge" from old cgroup but doesn't do "charge" to
- * new cgroup. It should be done by a caller.
+ * This function doesn't do "charge" nor css_get to new cgroup. It should be
+ * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
+ * true, this function does "uncharge" from old cgroup, but it doesn't if
+ * @uncharge is false, so a caller should do "uncharge".
*/
static void __mem_cgroup_move_account(struct page_cgroup *pc,
- struct mem_cgroup *from, struct mem_cgroup *to)
+ struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
{
- struct page *page;
- int cpu;
- struct mem_cgroup_stat *stat;
- struct mem_cgroup_stat_cpu *cpustat;
-
VM_BUG_ON(from == to);
VM_BUG_ON(PageLRU(pc->page));
VM_BUG_ON(!PageCgroupLocked(pc));
VM_BUG_ON(!PageCgroupUsed(pc));
VM_BUG_ON(pc->mem_cgroup != from);
- if (!mem_cgroup_is_root(from))
- res_counter_uncharge(&from->res, PAGE_SIZE);
- mem_cgroup_charge_statistics(from, pc, false);
-
- page = pc->page;
- if (page_mapped(page) && !PageAnon(page)) {
- cpu = smp_processor_id();
- /* Update mapped_file data for mem_cgroup "from" */
- stat = &from->stat;
- cpustat = &stat->cpustat[cpu];
- __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
- -1);
-
- /* Update mapped_file data for mem_cgroup "to" */
- stat = &to->stat;
- cpustat = &stat->cpustat[cpu];
- __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
- 1);
+ if (PageCgroupFileMapped(pc)) {
+ /* Update mapped_file data for mem_cgroup */
+ preempt_disable();
+ __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
+ __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
+ preempt_enable();
}
+ mem_cgroup_charge_statistics(from, pc, false);
+ if (uncharge)
+ /* This is not "cancel", but cancel_charge does all we need. */
+ mem_cgroup_cancel_charge(from);
- if (do_swap_account && !mem_cgroup_is_root(from))
- res_counter_uncharge(&from->memsw, PAGE_SIZE);
- css_put(&from->css);
-
- css_get(&to->css);
+ /* caller should have done css_get */
pc->mem_cgroup = to;
mem_cgroup_charge_statistics(to, pc, true);
/*
* We charges against "to" which may not have any tasks. Then, "to"
* can be under rmdir(). But in current implementation, caller of
- * this function is just force_empty() and it's garanteed that
- * "to" is never removed. So, we don't check rmdir status here.
+ * this function is just force_empty() and move charge, so it's
+ * garanteed that "to" is never removed. So, we don't check rmdir
+ * status here.
*/
}
@@ -1685,15 +1915,20 @@ static void __mem_cgroup_move_account(struct page_cgroup *pc,
* __mem_cgroup_move_account()
*/
static int mem_cgroup_move_account(struct page_cgroup *pc,
- struct mem_cgroup *from, struct mem_cgroup *to)
+ struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
{
int ret = -EINVAL;
lock_page_cgroup(pc);
if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
- __mem_cgroup_move_account(pc, from, to);
+ __mem_cgroup_move_account(pc, from, to, uncharge);
ret = 0;
}
unlock_page_cgroup(pc);
+ /*
+ * check events
+ */
+ memcg_check_events(to, pc->page);
+ memcg_check_events(from, pc->page);
return ret;
}
@@ -1722,15 +1957,13 @@ static int mem_cgroup_move_parent(struct page_cgroup *pc,
goto put;
parent = mem_cgroup_from_cont(pcg);
- ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
+ ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
if (ret || !parent)
goto put_back;
- ret = mem_cgroup_move_account(pc, child, parent);
- if (!ret)
- css_put(&parent->css); /* drop extra refcnt by try_charge() */
- else
- mem_cgroup_cancel_charge(parent); /* does css_put */
+ ret = mem_cgroup_move_account(pc, child, parent, true);
+ if (ret)
+ mem_cgroup_cancel_charge(parent);
put_back:
putback_lru_page(page);
put:
@@ -1760,7 +1993,7 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
prefetchw(pc);
mem = memcg;
- ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
+ ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
if (ret || !mem)
return ret;
@@ -1880,14 +2113,14 @@ int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
if (!mem)
goto charge_cur_mm;
*ptr = mem;
- ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
+ ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
/* drop extra refcnt from tryget */
css_put(&mem->css);
return ret;
charge_cur_mm:
if (unlikely(!mm))
mm = &init_mm;
- return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
+ return __mem_cgroup_try_charge(mm, mask, ptr, true);
}
static void
@@ -1963,15 +2196,6 @@ __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
/* If swapout, usage of swap doesn't decrease */
if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
uncharge_memsw = false;
- /*
- * do_batch > 0 when unmapping pages or inode invalidate/truncate.
- * In those cases, all pages freed continously can be expected to be in
- * the same cgroup and we have chance to coalesce uncharges.
- * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
- * because we want to do uncharge as soon as possible.
- */
- if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
- goto direct_uncharge;
batch = &current->memcg_batch;
/*
@@ -1982,6 +2206,17 @@ __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
if (!batch->memcg)
batch->memcg = mem;
/*
+ * do_batch > 0 when unmapping pages or inode invalidate/truncate.
+ * In those cases, all pages freed continously can be expected to be in
+ * the same cgroup and we have chance to coalesce uncharges.
+ * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
+ * because we want to do uncharge as soon as possible.
+ */
+
+ if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
+ goto direct_uncharge;
+
+ /*
* In typical case, batch->memcg == mem. This means we can
* merge a series of uncharges to an uncharge of res_counter.
* If not, we uncharge res_counter ony by one.
@@ -1997,6 +2232,8 @@ direct_uncharge:
res_counter_uncharge(&mem->res, PAGE_SIZE);
if (uncharge_memsw)
res_counter_uncharge(&mem->memsw, PAGE_SIZE);
+ if (unlikely(batch->memcg != mem))
+ memcg_oom_recover(mem);
return;
}
@@ -2033,7 +2270,8 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
switch (ctype) {
case MEM_CGROUP_CHARGE_TYPE_MAPPED:
case MEM_CGROUP_CHARGE_TYPE_DROP:
- if (page_mapped(page))
+ /* See mem_cgroup_prepare_migration() */
+ if (page_mapped(page) || PageCgroupMigration(pc))
goto unlock_out;
break;
case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
@@ -2064,8 +2302,7 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
mz = page_cgroup_zoneinfo(pc);
unlock_page_cgroup(pc);
- if (mem_cgroup_soft_limit_check(mem))
- mem_cgroup_update_tree(mem, page);
+ memcg_check_events(mem, page);
/* at swapout, this memcg will be accessed to record to swap */
if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
css_put(&mem->css);
@@ -2134,6 +2371,7 @@ void mem_cgroup_uncharge_end(void)
res_counter_uncharge(&batch->memcg->res, batch->bytes);
if (batch->memsw_bytes)
res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
+ memcg_oom_recover(batch->memcg);
/* forget this pointer (for sanity check) */
batch->memcg = NULL;
}
@@ -2192,16 +2430,76 @@ void mem_cgroup_uncharge_swap(swp_entry_t ent)
}
rcu_read_unlock();
}
+
+/**
+ * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
+ * @entry: swap entry to be moved
+ * @from: mem_cgroup which the entry is moved from
+ * @to: mem_cgroup which the entry is moved to
+ * @need_fixup: whether we should fixup res_counters and refcounts.
+ *
+ * It succeeds only when the swap_cgroup's record for this entry is the same
+ * as the mem_cgroup's id of @from.
+ *
+ * Returns 0 on success, -EINVAL on failure.
+ *
+ * The caller must have charged to @to, IOW, called res_counter_charge() about
+ * both res and memsw, and called css_get().
+ */
+static int mem_cgroup_move_swap_account(swp_entry_t entry,
+ struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
+{
+ unsigned short old_id, new_id;
+
+ old_id = css_id(&from->css);
+ new_id = css_id(&to->css);
+
+ if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
+ mem_cgroup_swap_statistics(from, false);
+ mem_cgroup_swap_statistics(to, true);
+ /*
+ * This function is only called from task migration context now.
+ * It postpones res_counter and refcount handling till the end
+ * of task migration(mem_cgroup_clear_mc()) for performance
+ * improvement. But we cannot postpone mem_cgroup_get(to)
+ * because if the process that has been moved to @to does
+ * swap-in, the refcount of @to might be decreased to 0.
+ */
+ mem_cgroup_get(to);
+ if (need_fixup) {
+ if (!mem_cgroup_is_root(from))
+ res_counter_uncharge(&from->memsw, PAGE_SIZE);
+ mem_cgroup_put(from);
+ /*
+ * we charged both to->res and to->memsw, so we should
+ * uncharge to->res.
+ */
+ if (!mem_cgroup_is_root(to))
+ res_counter_uncharge(&to->res, PAGE_SIZE);
+ css_put(&to->css);
+ }
+ return 0;
+ }
+ return -EINVAL;
+}
+#else
+static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
+ struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
+{
+ return -EINVAL;
+}
#endif
/*
* Before starting migration, account PAGE_SIZE to mem_cgroup that the old
* page belongs to.
*/
-int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
+int mem_cgroup_prepare_migration(struct page *page,
+ struct page *newpage, struct mem_cgroup **ptr)
{
struct page_cgroup *pc;
struct mem_cgroup *mem = NULL;
+ enum charge_type ctype;
int ret = 0;
if (mem_cgroup_disabled())
@@ -2212,70 +2510,125 @@ int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
if (PageCgroupUsed(pc)) {
mem = pc->mem_cgroup;
css_get(&mem->css);
+ /*
+ * At migrating an anonymous page, its mapcount goes down
+ * to 0 and uncharge() will be called. But, even if it's fully
+ * unmapped, migration may fail and this page has to be
+ * charged again. We set MIGRATION flag here and delay uncharge
+ * until end_migration() is called
+ *
+ * Corner Case Thinking
+ * A)
+ * When the old page was mapped as Anon and it's unmap-and-freed
+ * while migration was ongoing.
+ * If unmap finds the old page, uncharge() of it will be delayed
+ * until end_migration(). If unmap finds a new page, it's
+ * uncharged when it make mapcount to be 1->0. If unmap code
+ * finds swap_migration_entry, the new page will not be mapped
+ * and end_migration() will find it(mapcount==0).
+ *
+ * B)
+ * When the old page was mapped but migraion fails, the kernel
+ * remaps it. A charge for it is kept by MIGRATION flag even
+ * if mapcount goes down to 0. We can do remap successfully
+ * without charging it again.
+ *
+ * C)
+ * The "old" page is under lock_page() until the end of
+ * migration, so, the old page itself will not be swapped-out.
+ * If the new page is swapped out before end_migraton, our
+ * hook to usual swap-out path will catch the event.
+ */
+ if (PageAnon(page))
+ SetPageCgroupMigration(pc);
}
unlock_page_cgroup(pc);
+ /*
+ * If the page is not charged at this point,
+ * we return here.
+ */
+ if (!mem)
+ return 0;
- if (mem) {
- ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
- page);
- css_put(&mem->css);
- }
*ptr = mem;
+ ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
+ css_put(&mem->css);/* drop extra refcnt */
+ if (ret || *ptr == NULL) {
+ if (PageAnon(page)) {
+ lock_page_cgroup(pc);
+ ClearPageCgroupMigration(pc);
+ unlock_page_cgroup(pc);
+ /*
+ * The old page may be fully unmapped while we kept it.
+ */
+ mem_cgroup_uncharge_page(page);
+ }
+ return -ENOMEM;
+ }
+ /*
+ * We charge new page before it's used/mapped. So, even if unlock_page()
+ * is called before end_migration, we can catch all events on this new
+ * page. In the case new page is migrated but not remapped, new page's
+ * mapcount will be finally 0 and we call uncharge in end_migration().
+ */
+ pc = lookup_page_cgroup(newpage);
+ if (PageAnon(page))
+ ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
+ else if (page_is_file_cache(page))
+ ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
+ else
+ ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
+ __mem_cgroup_commit_charge(mem, pc, ctype);
return ret;
}
/* remove redundant charge if migration failed*/
void mem_cgroup_end_migration(struct mem_cgroup *mem,
- struct page *oldpage, struct page *newpage)
+ struct page *oldpage, struct page *newpage)
{
- struct page *target, *unused;
+ struct page *used, *unused;
struct page_cgroup *pc;
- enum charge_type ctype;
if (!mem)
return;
+ /* blocks rmdir() */
cgroup_exclude_rmdir(&mem->css);
/* at migration success, oldpage->mapping is NULL. */
if (oldpage->mapping) {
- target = oldpage;
- unused = NULL;
+ used = oldpage;
+ unused = newpage;
} else {
- target = newpage;
+ used = newpage;
unused = oldpage;
}
-
- if (PageAnon(target))
- ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
- else if (page_is_file_cache(target))
- ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
- else
- ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
-
- /* unused page is not on radix-tree now. */
- if (unused)
- __mem_cgroup_uncharge_common(unused, ctype);
-
- pc = lookup_page_cgroup(target);
/*
- * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
- * So, double-counting is effectively avoided.
+ * We disallowed uncharge of pages under migration because mapcount
+ * of the page goes down to zero, temporarly.
+ * Clear the flag and check the page should be charged.
*/
- __mem_cgroup_commit_charge(mem, pc, ctype);
+ pc = lookup_page_cgroup(oldpage);
+ lock_page_cgroup(pc);
+ ClearPageCgroupMigration(pc);
+ unlock_page_cgroup(pc);
+
+ if (unused != oldpage)
+ pc = lookup_page_cgroup(unused);
+ __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
+ pc = lookup_page_cgroup(used);
/*
- * Both of oldpage and newpage are still under lock_page().
- * Then, we don't have to care about race in radix-tree.
- * But we have to be careful that this page is unmapped or not.
- *
- * There is a case for !page_mapped(). At the start of
- * migration, oldpage was mapped. But now, it's zapped.
- * But we know *target* page is not freed/reused under us.
- * mem_cgroup_uncharge_page() does all necessary checks.
+ * If a page is a file cache, radix-tree replacement is very atomic
+ * and we can skip this check. When it was an Anon page, its mapcount
+ * goes down to 0. But because we added MIGRATION flage, it's not
+ * uncharged yet. There are several case but page->mapcount check
+ * and USED bit check in mem_cgroup_uncharge_page() will do enough
+ * check. (see prepare_charge() also)
*/
- if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
- mem_cgroup_uncharge_page(target);
+ if (PageAnon(used))
+ mem_cgroup_uncharge_page(used);
/*
- * At migration, we may charge account against cgroup which has no tasks
+ * At migration, we may charge account against cgroup which has no
+ * tasks.
* So, rmdir()->pre_destroy() can be called while we do this charge.
* In that case, we need to call pre_destroy() again. check it here.
*/
@@ -2313,10 +2666,11 @@ static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
unsigned long long val)
{
int retry_count;
- u64 memswlimit;
+ u64 memswlimit, memlimit;
int ret = 0;
int children = mem_cgroup_count_children(memcg);
u64 curusage, oldusage;
+ int enlarge;
/*
* For keeping hierarchical_reclaim simple, how long we should retry
@@ -2327,6 +2681,7 @@ static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
+ enlarge = 0;
while (retry_count) {
if (signal_pending(current)) {
ret = -EINTR;
@@ -2344,6 +2699,11 @@ static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
mutex_unlock(&set_limit_mutex);
break;
}
+
+ memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
+ if (memlimit < val)
+ enlarge = 1;
+
ret = res_counter_set_limit(&memcg->res, val);
if (!ret) {
if (memswlimit == val)
@@ -2365,6 +2725,8 @@ static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
else
oldusage = curusage;
}
+ if (!ret && enlarge)
+ memcg_oom_recover(memcg);
return ret;
}
@@ -2373,9 +2735,10 @@ static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
unsigned long long val)
{
int retry_count;
- u64 memlimit, oldusage, curusage;
+ u64 memlimit, memswlimit, oldusage, curusage;
int children = mem_cgroup_count_children(memcg);
int ret = -EBUSY;
+ int enlarge = 0;
/* see mem_cgroup_resize_res_limit */
retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
@@ -2397,6 +2760,9 @@ static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
mutex_unlock(&set_limit_mutex);
break;
}
+ memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
+ if (memswlimit < val)
+ enlarge = 1;
ret = res_counter_set_limit(&memcg->memsw, val);
if (!ret) {
if (memlimit == val)
@@ -2419,6 +2785,8 @@ static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
else
oldusage = curusage;
}
+ if (!ret && enlarge)
+ memcg_oom_recover(memcg);
return ret;
}
@@ -2545,7 +2913,7 @@ static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
pc = list_entry(list->prev, struct page_cgroup, lru);
if (busy == pc) {
list_move(&pc->lru, list);
- busy = 0;
+ busy = NULL;
spin_unlock_irqrestore(&zone->lru_lock, flags);
continue;
}
@@ -2610,6 +2978,7 @@ move_account:
if (ret)
break;
}
+ memcg_oom_recover(mem);
/* it seems parent cgroup doesn't have enough mem */
if (ret == -ENOMEM)
goto try_to_free;
@@ -2704,7 +3073,7 @@ static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
struct mem_cgroup_idx_data *d = data;
- d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
+ d->val += mem_cgroup_read_stat(mem, d->idx);
return 0;
}
@@ -2719,40 +3088,50 @@ mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
*val = d.val;
}
+static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
+{
+ u64 idx_val, val;
+
+ if (!mem_cgroup_is_root(mem)) {
+ if (!swap)
+ return res_counter_read_u64(&mem->res, RES_USAGE);
+ else
+ return res_counter_read_u64(&mem->memsw, RES_USAGE);
+ }
+
+ mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
+ val = idx_val;
+ mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
+ val += idx_val;
+
+ if (swap) {
+ mem_cgroup_get_recursive_idx_stat(mem,
+ MEM_CGROUP_STAT_SWAPOUT, &idx_val);
+ val += idx_val;
+ }
+
+ return val << PAGE_SHIFT;
+}
+
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
- u64 idx_val, val;
+ u64 val;
int type, name;
type = MEMFILE_TYPE(cft->private);
name = MEMFILE_ATTR(cft->private);
switch (type) {
case _MEM:
- if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
- mem_cgroup_get_recursive_idx_stat(mem,
- MEM_CGROUP_STAT_CACHE, &idx_val);
- val = idx_val;
- mem_cgroup_get_recursive_idx_stat(mem,
- MEM_CGROUP_STAT_RSS, &idx_val);
- val += idx_val;
- val <<= PAGE_SHIFT;
- } else
+ if (name == RES_USAGE)
+ val = mem_cgroup_usage(mem, false);
+ else
val = res_counter_read_u64(&mem->res, name);
break;
case _MEMSWAP:
- if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
- mem_cgroup_get_recursive_idx_stat(mem,
- MEM_CGROUP_STAT_CACHE, &idx_val);
- val = idx_val;
- mem_cgroup_get_recursive_idx_stat(mem,
- MEM_CGROUP_STAT_RSS, &idx_val);
- val += idx_val;
- mem_cgroup_get_recursive_idx_stat(mem,
- MEM_CGROUP_STAT_SWAPOUT, &idx_val);
- val += idx_val;
- val <<= PAGE_SHIFT;
- } else
+ if (name == RES_USAGE)
+ val = mem_cgroup_usage(mem, true);
+ else
val = res_counter_read_u64(&mem->memsw, name);
break;
default:
@@ -2865,6 +3244,39 @@ static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
return 0;
}
+static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
+ struct cftype *cft)
+{
+ return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
+}
+
+#ifdef CONFIG_MMU
+static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
+ struct cftype *cft, u64 val)
+{
+ struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
+
+ if (val >= (1 << NR_MOVE_TYPE))
+ return -EINVAL;
+ /*
+ * We check this value several times in both in can_attach() and
+ * attach(), so we need cgroup lock to prevent this value from being
+ * inconsistent.
+ */
+ cgroup_lock();
+ mem->move_charge_at_immigrate = val;
+ cgroup_unlock();
+
+ return 0;
+}
+#else
+static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
+ struct cftype *cft, u64 val)
+{
+ return -ENOSYS;
+}
+#endif
+
/* For read statistics */
enum {
@@ -2910,18 +3322,18 @@ static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
s64 val;
/* per cpu stat */
- val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
+ val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
s->stat[MCS_CACHE] += val * PAGE_SIZE;
- val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
+ val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
s->stat[MCS_RSS] += val * PAGE_SIZE;
- val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_FILE_MAPPED);
+ val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
- val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
+ val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
s->stat[MCS_PGPGIN] += val;
- val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
+ val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
s->stat[MCS_PGPGOUT] += val;
if (do_swap_account) {
- val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
+ val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
s->stat[MCS_SWAP] += val * PAGE_SIZE;
}
@@ -3049,12 +3461,339 @@ static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
return 0;
}
+static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
+{
+ struct mem_cgroup_threshold_ary *t;
+ u64 usage;
+ int i;
+
+ rcu_read_lock();
+ if (!swap)
+ t = rcu_dereference(memcg->thresholds.primary);
+ else
+ t = rcu_dereference(memcg->memsw_thresholds.primary);
+
+ if (!t)
+ goto unlock;
+
+ usage = mem_cgroup_usage(memcg, swap);
+
+ /*
+ * current_threshold points to threshold just below usage.
+ * If it's not true, a threshold was crossed after last
+ * call of __mem_cgroup_threshold().
+ */
+ i = t->current_threshold;
+
+ /*
+ * Iterate backward over array of thresholds starting from
+ * current_threshold and check if a threshold is crossed.
+ * If none of thresholds below usage is crossed, we read
+ * only one element of the array here.
+ */
+ for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
+ eventfd_signal(t->entries[i].eventfd, 1);
+
+ /* i = current_threshold + 1 */
+ i++;
+
+ /*
+ * Iterate forward over array of thresholds starting from
+ * current_threshold+1 and check if a threshold is crossed.
+ * If none of thresholds above usage is crossed, we read
+ * only one element of the array here.
+ */
+ for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
+ eventfd_signal(t->entries[i].eventfd, 1);
+
+ /* Update current_threshold */
+ t->current_threshold = i - 1;
+unlock:
+ rcu_read_unlock();
+}
+
+static void mem_cgroup_threshold(struct mem_cgroup *memcg)
+{
+ __mem_cgroup_threshold(memcg, false);
+ if (do_swap_account)
+ __mem_cgroup_threshold(memcg, true);
+}
+
+static int compare_thresholds(const void *a, const void *b)
+{
+ const struct mem_cgroup_threshold *_a = a;
+ const struct mem_cgroup_threshold *_b = b;
+
+ return _a->threshold - _b->threshold;
+}
+
+static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
+{
+ struct mem_cgroup_eventfd_list *ev;
+
+ list_for_each_entry(ev, &mem->oom_notify, list)
+ eventfd_signal(ev->eventfd, 1);
+ return 0;
+}
+
+static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
+{
+ mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
+}
+
+static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
+ struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
+ struct mem_cgroup_thresholds *thresholds;
+ struct mem_cgroup_threshold_ary *new;
+ int type = MEMFILE_TYPE(cft->private);
+ u64 threshold, usage;
+ int i, size, ret;
+
+ ret = res_counter_memparse_write_strategy(args, &threshold);
+ if (ret)
+ return ret;
+
+ mutex_lock(&memcg->thresholds_lock);
+
+ if (type == _MEM)
+ thresholds = &memcg->thresholds;
+ else if (type == _MEMSWAP)
+ thresholds = &memcg->memsw_thresholds;
+ else
+ BUG();
+
+ usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
+
+ /* Check if a threshold crossed before adding a new one */
+ if (thresholds->primary)
+ __mem_cgroup_threshold(memcg, type == _MEMSWAP);
+
+ size = thresholds->primary ? thresholds->primary->size + 1 : 1;
+
+ /* Allocate memory for new array of thresholds */
+ new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
+ GFP_KERNEL);
+ if (!new) {
+ ret = -ENOMEM;
+ goto unlock;
+ }
+ new->size = size;
+
+ /* Copy thresholds (if any) to new array */
+ if (thresholds->primary) {
+ memcpy(new->entries, thresholds->primary->entries, (size - 1) *
+ sizeof(struct mem_cgroup_threshold));
+ }
+
+ /* Add new threshold */
+ new->entries[size - 1].eventfd = eventfd;
+ new->entries[size - 1].threshold = threshold;
+
+ /* Sort thresholds. Registering of new threshold isn't time-critical */
+ sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
+ compare_thresholds, NULL);
+
+ /* Find current threshold */
+ new->current_threshold = -1;
+ for (i = 0; i < size; i++) {
+ if (new->entries[i].threshold < usage) {
+ /*
+ * new->current_threshold will not be used until
+ * rcu_assign_pointer(), so it's safe to increment
+ * it here.
+ */
+ ++new->current_threshold;
+ }
+ }
+
+ /* Free old spare buffer and save old primary buffer as spare */
+ kfree(thresholds->spare);
+ thresholds->spare = thresholds->primary;
+
+ rcu_assign_pointer(thresholds->primary, new);
+
+ /* To be sure that nobody uses thresholds */
+ synchronize_rcu();
+
+unlock:
+ mutex_unlock(&memcg->thresholds_lock);
+
+ return ret;
+}
+
+static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
+ struct cftype *cft, struct eventfd_ctx *eventfd)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
+ struct mem_cgroup_thresholds *thresholds;
+ struct mem_cgroup_threshold_ary *new;
+ int type = MEMFILE_TYPE(cft->private);
+ u64 usage;
+ int i, j, size;
+
+ mutex_lock(&memcg->thresholds_lock);
+ if (type == _MEM)
+ thresholds = &memcg->thresholds;
+ else if (type == _MEMSWAP)
+ thresholds = &memcg->memsw_thresholds;
+ else
+ BUG();
+
+ /*
+ * Something went wrong if we trying to unregister a threshold
+ * if we don't have thresholds
+ */
+ BUG_ON(!thresholds);
+
+ usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
+
+ /* Check if a threshold crossed before removing */
+ __mem_cgroup_threshold(memcg, type == _MEMSWAP);
+
+ /* Calculate new number of threshold */
+ size = 0;
+ for (i = 0; i < thresholds->primary->size; i++) {
+ if (thresholds->primary->entries[i].eventfd != eventfd)
+ size++;
+ }
+
+ new = thresholds->spare;
+
+ /* Set thresholds array to NULL if we don't have thresholds */
+ if (!size) {
+ kfree(new);
+ new = NULL;
+ goto swap_buffers;
+ }
+
+ new->size = size;
+
+ /* Copy thresholds and find current threshold */
+ new->current_threshold = -1;
+ for (i = 0, j = 0; i < thresholds->primary->size; i++) {
+ if (thresholds->primary->entries[i].eventfd == eventfd)
+ continue;
+
+ new->entries[j] = thresholds->primary->entries[i];
+ if (new->entries[j].threshold < usage) {
+ /*
+ * new->current_threshold will not be used
+ * until rcu_assign_pointer(), so it's safe to increment
+ * it here.
+ */
+ ++new->current_threshold;
+ }
+ j++;
+ }
+
+swap_buffers:
+ /* Swap primary and spare array */
+ thresholds->spare = thresholds->primary;
+ rcu_assign_pointer(thresholds->primary, new);
+
+ /* To be sure that nobody uses thresholds */
+ synchronize_rcu();
+
+ mutex_unlock(&memcg->thresholds_lock);
+}
+
+static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
+ struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
+ struct mem_cgroup_eventfd_list *event;
+ int type = MEMFILE_TYPE(cft->private);
+
+ BUG_ON(type != _OOM_TYPE);
+ event = kmalloc(sizeof(*event), GFP_KERNEL);
+ if (!event)
+ return -ENOMEM;
+
+ mutex_lock(&memcg_oom_mutex);
+
+ event->eventfd = eventfd;
+ list_add(&event->list, &memcg->oom_notify);
+
+ /* already in OOM ? */
+ if (atomic_read(&memcg->oom_lock))
+ eventfd_signal(eventfd, 1);
+ mutex_unlock(&memcg_oom_mutex);
+
+ return 0;
+}
+
+static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
+ struct cftype *cft, struct eventfd_ctx *eventfd)
+{
+ struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
+ struct mem_cgroup_eventfd_list *ev, *tmp;
+ int type = MEMFILE_TYPE(cft->private);
+
+ BUG_ON(type != _OOM_TYPE);
+
+ mutex_lock(&memcg_oom_mutex);
+
+ list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
+ if (ev->eventfd == eventfd) {
+ list_del(&ev->list);
+ kfree(ev);
+ }
+ }
+
+ mutex_unlock(&memcg_oom_mutex);
+}
+
+static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
+ struct cftype *cft, struct cgroup_map_cb *cb)
+{
+ struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
+
+ cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
+
+ if (atomic_read(&mem->oom_lock))
+ cb->fill(cb, "under_oom", 1);
+ else
+ cb->fill(cb, "under_oom", 0);
+ return 0;
+}
+
+/*
+ */
+static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
+ struct cftype *cft, u64 val)
+{
+ struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
+ struct mem_cgroup *parent;
+
+ /* cannot set to root cgroup and only 0 and 1 are allowed */
+ if (!cgrp->parent || !((val == 0) || (val == 1)))
+ return -EINVAL;
+
+ parent = mem_cgroup_from_cont(cgrp->parent);
+
+ cgroup_lock();
+ /* oom-kill-disable is a flag for subhierarchy. */
+ if ((parent->use_hierarchy) ||
+ (mem->use_hierarchy && !list_empty(&cgrp->children))) {
+ cgroup_unlock();
+ return -EINVAL;
+ }
+ mem->oom_kill_disable = val;
+ if (!val)
+ memcg_oom_recover(mem);
+ cgroup_unlock();
+ return 0;
+}
static struct cftype mem_cgroup_files[] = {
{
.name = "usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
.read_u64 = mem_cgroup_read,
+ .register_event = mem_cgroup_usage_register_event,
+ .unregister_event = mem_cgroup_usage_unregister_event,
},
{
.name = "max_usage_in_bytes",
@@ -3098,6 +3837,19 @@ static struct cftype mem_cgroup_files[] = {
.read_u64 = mem_cgroup_swappiness_read,
.write_u64 = mem_cgroup_swappiness_write,
},
+ {
+ .name = "move_charge_at_immigrate",
+ .read_u64 = mem_cgroup_move_charge_read,
+ .write_u64 = mem_cgroup_move_charge_write,
+ },
+ {
+ .name = "oom_control",
+ .read_map = mem_cgroup_oom_control_read,
+ .write_u64 = mem_cgroup_oom_control_write,
+ .register_event = mem_cgroup_oom_register_event,
+ .unregister_event = mem_cgroup_oom_unregister_event,
+ .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
+ },
};
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
@@ -3106,6 +3858,8 @@ static struct cftype memsw_cgroup_files[] = {
.name = "memsw.usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
.read_u64 = mem_cgroup_read,
+ .register_event = mem_cgroup_usage_register_event,
+ .unregister_event = mem_cgroup_usage_unregister_event,
},
{
.name = "memsw.max_usage_in_bytes",
@@ -3180,24 +3934,29 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
kfree(mem->info.nodeinfo[node]);
}
-static int mem_cgroup_size(void)
-{
- int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
- return sizeof(struct mem_cgroup) + cpustat_size;
-}
-
static struct mem_cgroup *mem_cgroup_alloc(void)
{
struct mem_cgroup *mem;
- int size = mem_cgroup_size();
+ int size = sizeof(struct mem_cgroup);
+ /* Can be very big if MAX_NUMNODES is very big */
if (size < PAGE_SIZE)
mem = kmalloc(size, GFP_KERNEL);
else
mem = vmalloc(size);
- if (mem)
- memset(mem, 0, size);
+ if (!mem)
+ return NULL;
+
+ memset(mem, 0, size);
+ mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
+ if (!mem->stat) {
+ if (size < PAGE_SIZE)
+ kfree(mem);
+ else
+ vfree(mem);
+ mem = NULL;
+ }
return mem;
}
@@ -3222,7 +3981,8 @@ static void __mem_cgroup_free(struct mem_cgroup *mem)
for_each_node_state(node, N_POSSIBLE)
free_mem_cgroup_per_zone_info(mem, node);
- if (mem_cgroup_size() < PAGE_SIZE)
+ free_percpu(mem->stat);
+ if (sizeof(struct mem_cgroup) < PAGE_SIZE)
kfree(mem);
else
vfree(mem);
@@ -3233,9 +3993,9 @@ static void mem_cgroup_get(struct mem_cgroup *mem)
atomic_inc(&mem->refcnt);
}
-static void mem_cgroup_put(struct mem_cgroup *mem)
+static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
{
- if (atomic_dec_and_test(&mem->refcnt)) {
+ if (atomic_sub_and_test(count, &mem->refcnt)) {
struct mem_cgroup *parent = parent_mem_cgroup(mem);
__mem_cgroup_free(mem);
if (parent)
@@ -3243,6 +4003,11 @@ static void mem_cgroup_put(struct mem_cgroup *mem)
}
}
+static void mem_cgroup_put(struct mem_cgroup *mem)
+{
+ __mem_cgroup_put(mem, 1);
+}
+
/*
* Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
*/
@@ -3319,10 +4084,10 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
INIT_WORK(&stock->work, drain_local_stock);
}
hotcpu_notifier(memcg_stock_cpu_callback, 0);
-
} else {
parent = mem_cgroup_from_cont(cont->parent);
mem->use_hierarchy = parent->use_hierarchy;
+ mem->oom_kill_disable = parent->oom_kill_disable;
}
if (parent && parent->use_hierarchy) {
@@ -3341,10 +4106,13 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
}
mem->last_scanned_child = 0;
spin_lock_init(&mem->reclaim_param_lock);
+ INIT_LIST_HEAD(&mem->oom_notify);
if (parent)
mem->swappiness = get_swappiness(parent);
atomic_set(&mem->refcnt, 1);
+ mem->move_charge_at_immigrate = 0;
+ mutex_init(&mem->thresholds_lock);
return &mem->css;
free_out:
__mem_cgroup_free(mem);
@@ -3381,17 +4149,488 @@ static int mem_cgroup_populate(struct cgroup_subsys *ss,
return ret;
}
+#ifdef CONFIG_MMU
+/* Handlers for move charge at task migration. */
+#define PRECHARGE_COUNT_AT_ONCE 256
+static int mem_cgroup_do_precharge(unsigned long count)
+{
+ int ret = 0;
+ int batch_count = PRECHARGE_COUNT_AT_ONCE;
+ struct mem_cgroup *mem = mc.to;
+
+ if (mem_cgroup_is_root(mem)) {
+ mc.precharge += count;
+ /* we don't need css_get for root */
+ return ret;
+ }
+ /* try to charge at once */
+ if (count > 1) {
+ struct res_counter *dummy;
+ /*
+ * "mem" cannot be under rmdir() because we've already checked
+ * by cgroup_lock_live_cgroup() that it is not removed and we
+ * are still under the same cgroup_mutex. So we can postpone
+ * css_get().
+ */
+ if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
+ goto one_by_one;
+ if (do_swap_account && res_counter_charge(&mem->memsw,
+ PAGE_SIZE * count, &dummy)) {
+ res_counter_uncharge(&mem->res, PAGE_SIZE * count);
+ goto one_by_one;
+ }
+ mc.precharge += count;
+ VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
+ WARN_ON_ONCE(count > INT_MAX);
+ __css_get(&mem->css, (int)count);
+ return ret;
+ }
+one_by_one:
+ /* fall back to one by one charge */
+ while (count--) {
+ if (signal_pending(current)) {
+ ret = -EINTR;
+ break;
+ }
+ if (!batch_count--) {
+ batch_count = PRECHARGE_COUNT_AT_ONCE;
+ cond_resched();
+ }
+ ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
+ if (ret || !mem)
+ /* mem_cgroup_clear_mc() will do uncharge later */
+ return -ENOMEM;
+ mc.precharge++;
+ }
+ return ret;
+}
+
+/**
+ * is_target_pte_for_mc - check a pte whether it is valid for move charge
+ * @vma: the vma the pte to be checked belongs
+ * @addr: the address corresponding to the pte to be checked
+ * @ptent: the pte to be checked
+ * @target: the pointer the target page or swap ent will be stored(can be NULL)
+ *
+ * Returns
+ * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
+ * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
+ * move charge. if @target is not NULL, the page is stored in target->page
+ * with extra refcnt got(Callers should handle it).
+ * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
+ * target for charge migration. if @target is not NULL, the entry is stored
+ * in target->ent.
+ *
+ * Called with pte lock held.
+ */
+union mc_target {
+ struct page *page;
+ swp_entry_t ent;
+};
+
+enum mc_target_type {
+ MC_TARGET_NONE, /* not used */
+ MC_TARGET_PAGE,
+ MC_TARGET_SWAP,
+};
+
+static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
+ unsigned long addr, pte_t ptent)
+{
+ struct page *page = vm_normal_page(vma, addr, ptent);
+
+ if (!page || !page_mapped(page))
+ return NULL;
+ if (PageAnon(page)) {
+ /* we don't move shared anon */
+ if (!move_anon() || page_mapcount(page) > 2)
+ return NULL;
+ } else if (!move_file())
+ /* we ignore mapcount for file pages */
+ return NULL;
+ if (!get_page_unless_zero(page))
+ return NULL;
+
+ return page;
+}
+
+static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
+ unsigned long addr, pte_t ptent, swp_entry_t *entry)
+{
+ int usage_count;
+ struct page *page = NULL;
+ swp_entry_t ent = pte_to_swp_entry(ptent);
+
+ if (!move_anon() || non_swap_entry(ent))
+ return NULL;
+ usage_count = mem_cgroup_count_swap_user(ent, &page);
+ if (usage_count > 1) { /* we don't move shared anon */
+ if (page)
+ put_page(page);
+ return NULL;
+ }
+ if (do_swap_account)
+ entry->val = ent.val;
+
+ return page;
+}
+
+static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
+ unsigned long addr, pte_t ptent, swp_entry_t *entry)
+{
+ struct page *page = NULL;
+ struct inode *inode;
+ struct address_space *mapping;
+ pgoff_t pgoff;
+
+ if (!vma->vm_file) /* anonymous vma */
+ return NULL;
+ if (!move_file())
+ return NULL;
+
+ inode = vma->vm_file->f_path.dentry->d_inode;
+ mapping = vma->vm_file->f_mapping;
+ if (pte_none(ptent))
+ pgoff = linear_page_index(vma, addr);
+ else /* pte_file(ptent) is true */
+ pgoff = pte_to_pgoff(ptent);
+
+ /* page is moved even if it's not RSS of this task(page-faulted). */
+ if (!mapping_cap_swap_backed(mapping)) { /* normal file */
+ page = find_get_page(mapping, pgoff);
+ } else { /* shmem/tmpfs file. we should take account of swap too. */
+ swp_entry_t ent;
+ mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
+ if (do_swap_account)
+ entry->val = ent.val;
+ }
+
+ return page;
+}
+
+static int is_target_pte_for_mc(struct vm_area_struct *vma,
+ unsigned long addr, pte_t ptent, union mc_target *target)
+{
+ struct page *page = NULL;
+ struct page_cgroup *pc;
+ int ret = 0;
+ swp_entry_t ent = { .val = 0 };
+
+ if (pte_present(ptent))
+ page = mc_handle_present_pte(vma, addr, ptent);
+ else if (is_swap_pte(ptent))
+ page = mc_handle_swap_pte(vma, addr, ptent, &ent);
+ else if (pte_none(ptent) || pte_file(ptent))
+ page = mc_handle_file_pte(vma, addr, ptent, &ent);
+
+ if (!page && !ent.val)
+ return 0;
+ if (page) {
+ pc = lookup_page_cgroup(page);
+ /*
+ * Do only loose check w/o page_cgroup lock.
+ * mem_cgroup_move_account() checks the pc is valid or not under
+ * the lock.
+ */
+ if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
+ ret = MC_TARGET_PAGE;
+ if (target)
+ target->page = page;
+ }
+ if (!ret || !target)
+ put_page(page);
+ }
+ /* There is a swap entry and a page doesn't exist or isn't charged */
+ if (ent.val && !ret &&
+ css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
+ ret = MC_TARGET_SWAP;
+ if (target)
+ target->ent = ent;
+ }
+ return ret;
+}
+
+static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
+ unsigned long addr, unsigned long end,
+ struct mm_walk *walk)
+{
+ struct vm_area_struct *vma = walk->private;
+ pte_t *pte;
+ spinlock_t *ptl;
+
+ pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
+ for (; addr != end; pte++, addr += PAGE_SIZE)
+ if (is_target_pte_for_mc(vma, addr, *pte, NULL))
+ mc.precharge++; /* increment precharge temporarily */
+ pte_unmap_unlock(pte - 1, ptl);
+ cond_resched();
+
+ return 0;
+}
+
+static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
+{
+ unsigned long precharge;
+ struct vm_area_struct *vma;
+
+ down_read(&mm->mmap_sem);
+ for (vma = mm->mmap; vma; vma = vma->vm_next) {
+ struct mm_walk mem_cgroup_count_precharge_walk = {
+ .pmd_entry = mem_cgroup_count_precharge_pte_range,
+ .mm = mm,
+ .private = vma,
+ };
+ if (is_vm_hugetlb_page(vma))
+ continue;
+ walk_page_range(vma->vm_start, vma->vm_end,
+ &mem_cgroup_count_precharge_walk);
+ }
+ up_read(&mm->mmap_sem);
+
+ precharge = mc.precharge;
+ mc.precharge = 0;
+
+ return precharge;
+}
+
+static int mem_cgroup_precharge_mc(struct mm_struct *mm)
+{
+ return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
+}
+
+static void mem_cgroup_clear_mc(void)
+{
+ /* we must uncharge all the leftover precharges from mc.to */
+ if (mc.precharge) {
+ __mem_cgroup_cancel_charge(mc.to, mc.precharge);
+ mc.precharge = 0;
+ memcg_oom_recover(mc.to);
+ }
+ /*
+ * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
+ * we must uncharge here.
+ */
+ if (mc.moved_charge) {
+ __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
+ mc.moved_charge = 0;
+ memcg_oom_recover(mc.from);
+ }
+ /* we must fixup refcnts and charges */
+ if (mc.moved_swap) {
+ WARN_ON_ONCE(mc.moved_swap > INT_MAX);
+ /* uncharge swap account from the old cgroup */
+ if (!mem_cgroup_is_root(mc.from))
+ res_counter_uncharge(&mc.from->memsw,
+ PAGE_SIZE * mc.moved_swap);
+ __mem_cgroup_put(mc.from, mc.moved_swap);
+
+ if (!mem_cgroup_is_root(mc.to)) {
+ /*
+ * we charged both to->res and to->memsw, so we should
+ * uncharge to->res.
+ */
+ res_counter_uncharge(&mc.to->res,
+ PAGE_SIZE * mc.moved_swap);
+ VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
+ __css_put(&mc.to->css, mc.moved_swap);
+ }
+ /* we've already done mem_cgroup_get(mc.to) */
+
+ mc.moved_swap = 0;
+ }
+ mc.from = NULL;
+ mc.to = NULL;
+ mc.moving_task = NULL;
+ wake_up_all(&mc.waitq);
+}
+
+static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
+ struct cgroup *cgroup,
+ struct task_struct *p,
+ bool threadgroup)
+{
+ int ret = 0;
+ struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
+
+ if (mem->move_charge_at_immigrate) {
+ struct mm_struct *mm;
+ struct mem_cgroup *from = mem_cgroup_from_task(p);
+
+ VM_BUG_ON(from == mem);
+
+ mm = get_task_mm(p);
+ if (!mm)
+ return 0;
+ /* We move charges only when we move a owner of the mm */
+ if (mm->owner == p) {
+ VM_BUG_ON(mc.from);
+ VM_BUG_ON(mc.to);
+ VM_BUG_ON(mc.precharge);
+ VM_BUG_ON(mc.moved_charge);
+ VM_BUG_ON(mc.moved_swap);
+ VM_BUG_ON(mc.moving_task);
+ mc.from = from;
+ mc.to = mem;
+ mc.precharge = 0;
+ mc.moved_charge = 0;
+ mc.moved_swap = 0;
+ mc.moving_task = current;
+
+ ret = mem_cgroup_precharge_mc(mm);
+ if (ret)
+ mem_cgroup_clear_mc();
+ }
+ mmput(mm);
+ }
+ return ret;
+}
+
+static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
+ struct cgroup *cgroup,
+ struct task_struct *p,
+ bool threadgroup)
+{
+ mem_cgroup_clear_mc();
+}
+
+static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
+ unsigned long addr, unsigned long end,
+ struct mm_walk *walk)
+{
+ int ret = 0;
+ struct vm_area_struct *vma = walk->private;
+ pte_t *pte;
+ spinlock_t *ptl;
+
+retry:
+ pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
+ for (; addr != end; addr += PAGE_SIZE) {
+ pte_t ptent = *(pte++);
+ union mc_target target;
+ int type;
+ struct page *page;
+ struct page_cgroup *pc;
+ swp_entry_t ent;
+
+ if (!mc.precharge)
+ break;
+
+ type = is_target_pte_for_mc(vma, addr, ptent, &target);
+ switch (type) {
+ case MC_TARGET_PAGE:
+ page = target.page;
+ if (isolate_lru_page(page))
+ goto put;
+ pc = lookup_page_cgroup(page);
+ if (!mem_cgroup_move_account(pc,
+ mc.from, mc.to, false)) {
+ mc.precharge--;
+ /* we uncharge from mc.from later. */
+ mc.moved_charge++;
+ }
+ putback_lru_page(page);
+put: /* is_target_pte_for_mc() gets the page */
+ put_page(page);
+ break;
+ case MC_TARGET_SWAP:
+ ent = target.ent;
+ if (!mem_cgroup_move_swap_account(ent,
+ mc.from, mc.to, false)) {
+ mc.precharge--;
+ /* we fixup refcnts and charges later. */
+ mc.moved_swap++;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ pte_unmap_unlock(pte - 1, ptl);
+ cond_resched();
+
+ if (addr != end) {
+ /*
+ * We have consumed all precharges we got in can_attach().
+ * We try charge one by one, but don't do any additional
+ * charges to mc.to if we have failed in charge once in attach()
+ * phase.
+ */
+ ret = mem_cgroup_do_precharge(1);
+ if (!ret)
+ goto retry;
+ }
+
+ return ret;
+}
+
+static void mem_cgroup_move_charge(struct mm_struct *mm)
+{
+ struct vm_area_struct *vma;
+
+ lru_add_drain_all();
+ down_read(&mm->mmap_sem);
+ for (vma = mm->mmap; vma; vma = vma->vm_next) {
+ int ret;
+ struct mm_walk mem_cgroup_move_charge_walk = {
+ .pmd_entry = mem_cgroup_move_charge_pte_range,
+ .mm = mm,
+ .private = vma,
+ };
+ if (is_vm_hugetlb_page(vma))
+ continue;
+ ret = walk_page_range(vma->vm_start, vma->vm_end,
+ &mem_cgroup_move_charge_walk);
+ if (ret)
+ /*
+ * means we have consumed all precharges and failed in
+ * doing additional charge. Just abandon here.
+ */
+ break;
+ }
+ up_read(&mm->mmap_sem);
+}
+
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
struct cgroup *cont,
struct cgroup *old_cont,
struct task_struct *p,
bool threadgroup)
{
- /*
- * FIXME: It's better to move charges of this process from old
- * memcg to new memcg. But it's just on TODO-List now.
- */
+ struct mm_struct *mm;
+
+ if (!mc.to)
+ /* no need to move charge */
+ return;
+
+ mm = get_task_mm(p);
+ if (mm) {
+ mem_cgroup_move_charge(mm);
+ mmput(mm);
+ }
+ mem_cgroup_clear_mc();
+}
+#else /* !CONFIG_MMU */
+static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
+ struct cgroup *cgroup,
+ struct task_struct *p,
+ bool threadgroup)
+{
+ return 0;
}
+static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
+ struct cgroup *cgroup,
+ struct task_struct *p,
+ bool threadgroup)
+{
+}
+static void mem_cgroup_move_task(struct cgroup_subsys *ss,
+ struct cgroup *cont,
+ struct cgroup *old_cont,
+ struct task_struct *p,
+ bool threadgroup)
+{
+}
+#endif
struct cgroup_subsys mem_cgroup_subsys = {
.name = "memory",
@@ -3400,6 +4639,8 @@ struct cgroup_subsys mem_cgroup_subsys = {
.pre_destroy = mem_cgroup_pre_destroy,
.destroy = mem_cgroup_destroy,
.populate = mem_cgroup_populate,
+ .can_attach = mem_cgroup_can_attach,
+ .cancel_attach = mem_cgroup_cancel_attach,
.attach = mem_cgroup_move_task,
.early_init = 0,
.use_id = 1,
diff --git a/mm/memory-failure.c b/mm/memory-failure.c
index 17299fd4577c..620b0b461593 100644
--- a/mm/memory-failure.c
+++ b/mm/memory-failure.c
@@ -44,6 +44,7 @@
#include <linux/migrate.h>
#include <linux/page-isolation.h>
#include <linux/suspend.h>
+#include <linux/slab.h>
#include "internal.h"
int sysctl_memory_failure_early_kill __read_mostly = 0;
@@ -383,9 +384,12 @@ static void collect_procs_anon(struct page *page, struct list_head *to_kill,
if (av == NULL) /* Not actually mapped anymore */
goto out;
for_each_process (tsk) {
+ struct anon_vma_chain *vmac;
+
if (!task_early_kill(tsk))
continue;
- list_for_each_entry (vma, &av->head, anon_vma_node) {
+ list_for_each_entry(vmac, &av->head, same_anon_vma) {
+ vma = vmac->vma;
if (!page_mapped_in_vma(page, vma))
continue;
if (vma->vm_mm == tsk->mm)
diff --git a/mm/memory.c b/mm/memory.c
index 09e4b1be7b67..bde42c6d3633 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -56,6 +56,7 @@
#include <linux/kallsyms.h>
#include <linux/swapops.h>
#include <linux/elf.h>
+#include <linux/gfp.h>
#include <asm/io.h>
#include <asm/pgalloc.h>
@@ -121,6 +122,77 @@ static int __init init_zero_pfn(void)
}
core_initcall(init_zero_pfn);
+
+#if defined(SPLIT_RSS_COUNTING)
+
+static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
+{
+ int i;
+
+ for (i = 0; i < NR_MM_COUNTERS; i++) {
+ if (task->rss_stat.count[i]) {
+ add_mm_counter(mm, i, task->rss_stat.count[i]);
+ task->rss_stat.count[i] = 0;
+ }
+ }
+ task->rss_stat.events = 0;
+}
+
+static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
+{
+ struct task_struct *task = current;
+
+ if (likely(task->mm == mm))
+ task->rss_stat.count[member] += val;
+ else
+ add_mm_counter(mm, member, val);
+}
+#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
+#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
+
+/* sync counter once per 64 page faults */
+#define TASK_RSS_EVENTS_THRESH (64)
+static void check_sync_rss_stat(struct task_struct *task)
+{
+ if (unlikely(task != current))
+ return;
+ if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
+ __sync_task_rss_stat(task, task->mm);
+}
+
+unsigned long get_mm_counter(struct mm_struct *mm, int member)
+{
+ long val = 0;
+
+ /*
+ * Don't use task->mm here...for avoiding to use task_get_mm()..
+ * The caller must guarantee task->mm is not invalid.
+ */
+ val = atomic_long_read(&mm->rss_stat.count[member]);
+ /*
+ * counter is updated in asynchronous manner and may go to minus.
+ * But it's never be expected number for users.
+ */
+ if (val < 0)
+ return 0;
+ return (unsigned long)val;
+}
+
+void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
+{
+ __sync_task_rss_stat(task, mm);
+}
+#else
+
+#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
+#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
+
+static void check_sync_rss_stat(struct task_struct *task)
+{
+}
+
+#endif
+
/*
* If a p?d_bad entry is found while walking page tables, report
* the error, before resetting entry to p?d_none. Usually (but
@@ -300,7 +372,7 @@ void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
* Hide vma from rmap and truncate_pagecache before freeing
* pgtables
*/
- anon_vma_unlink(vma);
+ unlink_anon_vmas(vma);
unlink_file_vma(vma);
if (is_vm_hugetlb_page(vma)) {
@@ -314,7 +386,7 @@ void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
&& !is_vm_hugetlb_page(next)) {
vma = next;
next = vma->vm_next;
- anon_vma_unlink(vma);
+ unlink_anon_vmas(vma);
unlink_file_vma(vma);
}
free_pgd_range(tlb, addr, vma->vm_end,
@@ -376,12 +448,20 @@ int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
return 0;
}
-static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
+static inline void init_rss_vec(int *rss)
{
- if (file_rss)
- add_mm_counter(mm, file_rss, file_rss);
- if (anon_rss)
- add_mm_counter(mm, anon_rss, anon_rss);
+ memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
+}
+
+static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
+{
+ int i;
+
+ if (current->mm == mm)
+ sync_mm_rss(current, mm);
+ for (i = 0; i < NR_MM_COUNTERS; i++)
+ if (rss[i])
+ add_mm_counter(mm, i, rss[i]);
}
/*
@@ -430,12 +510,8 @@ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
"BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
current->comm,
(long long)pte_val(pte), (long long)pmd_val(*pmd));
- if (page) {
- printk(KERN_ALERT
- "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
- page, (void *)page->flags, page_count(page),
- page_mapcount(page), page->mapping, page->index);
- }
+ if (page)
+ dump_page(page);
printk(KERN_ALERT
"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
@@ -597,7 +673,9 @@ copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
&src_mm->mmlist);
spin_unlock(&mmlist_lock);
}
- if (is_write_migration_entry(entry) &&
+ if (likely(!non_swap_entry(entry)))
+ rss[MM_SWAPENTS]++;
+ else if (is_write_migration_entry(entry) &&
is_cow_mapping(vm_flags)) {
/*
* COW mappings require pages in both parent
@@ -632,7 +710,10 @@ copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
if (page) {
get_page(page);
page_dup_rmap(page);
- rss[PageAnon(page)]++;
+ if (PageAnon(page))
+ rss[MM_ANONPAGES]++;
+ else
+ rss[MM_FILEPAGES]++;
}
out_set_pte:
@@ -648,11 +729,12 @@ static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pte_t *src_pte, *dst_pte;
spinlock_t *src_ptl, *dst_ptl;
int progress = 0;
- int rss[2];
+ int rss[NR_MM_COUNTERS];
swp_entry_t entry = (swp_entry_t){0};
again:
- rss[1] = rss[0] = 0;
+ init_rss_vec(rss);
+
dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
if (!dst_pte)
return -ENOMEM;
@@ -688,7 +770,7 @@ again:
arch_leave_lazy_mmu_mode();
spin_unlock(src_ptl);
pte_unmap_nested(orig_src_pte);
- add_mm_rss(dst_mm, rss[0], rss[1]);
+ add_mm_rss_vec(dst_mm, rss);
pte_unmap_unlock(orig_dst_pte, dst_ptl);
cond_resched();
@@ -816,8 +898,9 @@ static unsigned long zap_pte_range(struct mmu_gather *tlb,
struct mm_struct *mm = tlb->mm;
pte_t *pte;
spinlock_t *ptl;
- int file_rss = 0;
- int anon_rss = 0;
+ int rss[NR_MM_COUNTERS];
+
+ init_rss_vec(rss);
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
arch_enter_lazy_mmu_mode();
@@ -863,14 +946,14 @@ static unsigned long zap_pte_range(struct mmu_gather *tlb,
set_pte_at(mm, addr, pte,
pgoff_to_pte(page->index));
if (PageAnon(page))
- anon_rss--;
+ rss[MM_ANONPAGES]--;
else {
if (pte_dirty(ptent))
set_page_dirty(page);
if (pte_young(ptent) &&
likely(!VM_SequentialReadHint(vma)))
mark_page_accessed(page);
- file_rss--;
+ rss[MM_FILEPAGES]--;
}
page_remove_rmap(page);
if (unlikely(page_mapcount(page) < 0))
@@ -887,13 +970,18 @@ static unsigned long zap_pte_range(struct mmu_gather *tlb,
if (pte_file(ptent)) {
if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
print_bad_pte(vma, addr, ptent, NULL);
- } else if
- (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
- print_bad_pte(vma, addr, ptent, NULL);
+ } else {
+ swp_entry_t entry = pte_to_swp_entry(ptent);
+
+ if (!non_swap_entry(entry))
+ rss[MM_SWAPENTS]--;
+ if (unlikely(!free_swap_and_cache(entry)))
+ print_bad_pte(vma, addr, ptent, NULL);
+ }
pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
- add_mm_rss(mm, file_rss, anon_rss);
+ add_mm_rss_vec(mm, rss);
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(pte - 1, ptl);
@@ -1139,8 +1227,17 @@ int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
}
EXPORT_SYMBOL_GPL(zap_vma_ptes);
-/*
- * Do a quick page-table lookup for a single page.
+/**
+ * follow_page - look up a page descriptor from a user-virtual address
+ * @vma: vm_area_struct mapping @address
+ * @address: virtual address to look up
+ * @flags: flags modifying lookup behaviour
+ *
+ * @flags can have FOLL_ flags set, defined in <linux/mm.h>
+ *
+ * Returns the mapped (struct page *), %NULL if no mapping exists, or
+ * an error pointer if there is a mapping to something not represented
+ * by a page descriptor (see also vm_normal_page()).
*/
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
unsigned int flags)
@@ -1297,10 +1394,20 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
return i ? : -EFAULT;
}
if (pages) {
- struct page *page = vm_normal_page(gate_vma, start, *pte);
+ struct page *page;
+
+ page = vm_normal_page(gate_vma, start, *pte);
+ if (!page) {
+ if (!(gup_flags & FOLL_DUMP) &&
+ is_zero_pfn(pte_pfn(*pte)))
+ page = pte_page(*pte);
+ else {
+ pte_unmap(pte);
+ return i ? : -EFAULT;
+ }
+ }
pages[i] = page;
- if (page)
- get_page(page);
+ get_page(page);
}
pte_unmap(pte);
if (vmas)
@@ -1527,7 +1634,7 @@ static int insert_page(struct vm_area_struct *vma, unsigned long addr,
/* Ok, finally just insert the thing.. */
get_page(page);
- inc_mm_counter(mm, file_rss);
+ inc_mm_counter_fast(mm, MM_FILEPAGES);
page_add_file_rmap(page);
set_pte_at(mm, addr, pte, mk_pte(page, prot));
@@ -1593,7 +1700,7 @@ static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
/* Ok, finally just insert the thing.. */
entry = pte_mkspecial(pfn_pte(pfn, prot));
set_pte_at(mm, addr, pte, entry);
- update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
+ update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
retval = 0;
out_unlock:
@@ -2044,6 +2151,13 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
page_cache_release(old_page);
}
reuse = reuse_swap_page(old_page);
+ if (reuse)
+ /*
+ * The page is all ours. Move it to our anon_vma so
+ * the rmap code will not search our parent or siblings.
+ * Protected against the rmap code by the page lock.
+ */
+ page_move_anon_rmap(old_page, vma, address);
unlock_page(old_page);
} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
(VM_WRITE|VM_SHARED))) {
@@ -2116,7 +2230,7 @@ reuse:
entry = pte_mkyoung(orig_pte);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
if (ptep_set_access_flags(vma, address, page_table, entry,1))
- update_mmu_cache(vma, address, entry);
+ update_mmu_cache(vma, address, page_table);
ret |= VM_FAULT_WRITE;
goto unlock;
}
@@ -2163,11 +2277,11 @@ gotten:
if (likely(pte_same(*page_table, orig_pte))) {
if (old_page) {
if (!PageAnon(old_page)) {
- dec_mm_counter(mm, file_rss);
- inc_mm_counter(mm, anon_rss);
+ dec_mm_counter_fast(mm, MM_FILEPAGES);
+ inc_mm_counter_fast(mm, MM_ANONPAGES);
}
} else
- inc_mm_counter(mm, anon_rss);
+ inc_mm_counter_fast(mm, MM_ANONPAGES);
flush_cache_page(vma, address, pte_pfn(orig_pte));
entry = mk_pte(new_page, vma->vm_page_prot);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
@@ -2185,7 +2299,7 @@ gotten:
* new page to be mapped directly into the secondary page table.
*/
set_pte_at_notify(mm, address, page_table, entry);
- update_mmu_cache(vma, address, entry);
+ update_mmu_cache(vma, address, page_table);
if (old_page) {
/*
* Only after switching the pte to the new page may
@@ -2604,7 +2718,8 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
* discarded at swap_free().
*/
- inc_mm_counter(mm, anon_rss);
+ inc_mm_counter_fast(mm, MM_ANONPAGES);
+ dec_mm_counter_fast(mm, MM_SWAPENTS);
pte = mk_pte(page, vma->vm_page_prot);
if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
pte = maybe_mkwrite(pte_mkdirty(pte), vma);
@@ -2629,7 +2744,7 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
}
/* No need to invalidate - it was non-present before */
- update_mmu_cache(vma, address, pte);
+ update_mmu_cache(vma, address, page_table);
unlock:
pte_unmap_unlock(page_table, ptl);
out:
@@ -2688,13 +2803,13 @@ static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
if (!pte_none(*page_table))
goto release;
- inc_mm_counter(mm, anon_rss);
+ inc_mm_counter_fast(mm, MM_ANONPAGES);
page_add_new_anon_rmap(page, vma, address);
setpte:
set_pte_at(mm, address, page_table, entry);
/* No need to invalidate - it was non-present before */
- update_mmu_cache(vma, address, entry);
+ update_mmu_cache(vma, address, page_table);
unlock:
pte_unmap_unlock(page_table, ptl);
return 0;
@@ -2842,10 +2957,10 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
if (flags & FAULT_FLAG_WRITE)
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
if (anon) {
- inc_mm_counter(mm, anon_rss);
+ inc_mm_counter_fast(mm, MM_ANONPAGES);
page_add_new_anon_rmap(page, vma, address);
} else {
- inc_mm_counter(mm, file_rss);
+ inc_mm_counter_fast(mm, MM_FILEPAGES);
page_add_file_rmap(page);
if (flags & FAULT_FLAG_WRITE) {
dirty_page = page;
@@ -2855,7 +2970,7 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
set_pte_at(mm, address, page_table, entry);
/* no need to invalidate: a not-present page won't be cached */
- update_mmu_cache(vma, address, entry);
+ update_mmu_cache(vma, address, page_table);
} else {
if (charged)
mem_cgroup_uncharge_page(page);
@@ -2992,7 +3107,7 @@ static inline int handle_pte_fault(struct mm_struct *mm,
}
entry = pte_mkyoung(entry);
if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
- update_mmu_cache(vma, address, entry);
+ update_mmu_cache(vma, address, pte);
} else {
/*
* This is needed only for protection faults but the arch code
@@ -3023,6 +3138,9 @@ int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
count_vm_event(PGFAULT);
+ /* do counter updates before entering really critical section. */
+ check_sync_rss_stat(current);
+
if (unlikely(is_vm_hugetlb_page(vma)))
return hugetlb_fault(mm, vma, address, flags);
diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c
index 030ce8a5bb0e..a4cfcdc00455 100644
--- a/mm/memory_hotplug.c
+++ b/mm/memory_hotplug.c
@@ -28,6 +28,7 @@
#include <linux/pfn.h>
#include <linux/suspend.h>
#include <linux/mm_inline.h>
+#include <linux/firmware-map.h>
#include <asm/tlbflush.h>
@@ -414,12 +415,14 @@ int online_pages(unsigned long pfn, unsigned long nr_pages)
* This means the page allocator ignores this zone.
* So, zonelist must be updated after online.
*/
+ mutex_lock(&zonelists_mutex);
if (!populated_zone(zone))
need_zonelists_rebuild = 1;
ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
online_pages_range);
if (ret) {
+ mutex_unlock(&zonelists_mutex);
printk(KERN_DEBUG "online_pages %lx at %lx failed\n",
nr_pages, pfn);
memory_notify(MEM_CANCEL_ONLINE, &arg);
@@ -428,8 +431,12 @@ int online_pages(unsigned long pfn, unsigned long nr_pages)
zone->present_pages += onlined_pages;
zone->zone_pgdat->node_present_pages += onlined_pages;
+ if (need_zonelists_rebuild)
+ build_all_zonelists(zone);
+ else
+ zone_pcp_update(zone);
- zone_pcp_update(zone);
+ mutex_unlock(&zonelists_mutex);
setup_per_zone_wmarks();
calculate_zone_inactive_ratio(zone);
if (onlined_pages) {
@@ -437,10 +444,7 @@ int online_pages(unsigned long pfn, unsigned long nr_pages)
node_set_state(zone_to_nid(zone), N_HIGH_MEMORY);
}
- if (need_zonelists_rebuild)
- build_all_zonelists();
- else
- vm_total_pages = nr_free_pagecache_pages();
+ vm_total_pages = nr_free_pagecache_pages();
writeback_set_ratelimit();
@@ -481,6 +485,29 @@ static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
}
+/*
+ * called by cpu_up() to online a node without onlined memory.
+ */
+int mem_online_node(int nid)
+{
+ pg_data_t *pgdat;
+ int ret;
+
+ lock_system_sleep();
+ pgdat = hotadd_new_pgdat(nid, 0);
+ if (pgdat) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ node_set_online(nid);
+ ret = register_one_node(nid);
+ BUG_ON(ret);
+
+out:
+ unlock_system_sleep();
+ return ret;
+}
+
/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
int __ref add_memory(int nid, u64 start, u64 size)
{
@@ -523,6 +550,9 @@ int __ref add_memory(int nid, u64 start, u64 size)
BUG_ON(ret);
}
+ /* create new memmap entry */
+ firmware_map_add_hotplug(start, start + size, "System RAM");
+
goto out;
error:
@@ -684,9 +714,9 @@ do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
if (page_count(page))
not_managed++;
#ifdef CONFIG_DEBUG_VM
- printk(KERN_INFO "removing from LRU failed"
- " %lx/%d/%lx\n",
- pfn, page_count(page), page->flags);
+ printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
+ pfn);
+ dump_page(page);
#endif
}
}
diff --git a/mm/mempolicy.c b/mm/mempolicy.c
index 290fb5bf0440..5bc0a96beb51 100644
--- a/mm/mempolicy.c
+++ b/mm/mempolicy.c
@@ -73,7 +73,6 @@
#include <linux/sched.h>
#include <linux/nodemask.h>
#include <linux/cpuset.h>
-#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/module.h>
@@ -120,7 +119,22 @@ struct mempolicy default_policy = {
static const struct mempolicy_operations {
int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
- void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
+ /*
+ * If read-side task has no lock to protect task->mempolicy, write-side
+ * task will rebind the task->mempolicy by two step. The first step is
+ * setting all the newly nodes, and the second step is cleaning all the
+ * disallowed nodes. In this way, we can avoid finding no node to alloc
+ * page.
+ * If we have a lock to protect task->mempolicy in read-side, we do
+ * rebind directly.
+ *
+ * step:
+ * MPOL_REBIND_ONCE - do rebind work at once
+ * MPOL_REBIND_STEP1 - set all the newly nodes
+ * MPOL_REBIND_STEP2 - clean all the disallowed nodes
+ */
+ void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
+ enum mpol_rebind_step step);
} mpol_ops[MPOL_MAX];
/* Check that the nodemask contains at least one populated zone */
@@ -128,9 +142,6 @@ static int is_valid_nodemask(const nodemask_t *nodemask)
{
int nd, k;
- /* Check that there is something useful in this mask */
- k = policy_zone;
-
for_each_node_mask(nd, *nodemask) {
struct zone *z;
@@ -146,7 +157,7 @@ static int is_valid_nodemask(const nodemask_t *nodemask)
static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
{
- return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
+ return pol->flags & MPOL_MODE_FLAGS;
}
static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
@@ -278,12 +289,19 @@ void __mpol_put(struct mempolicy *p)
kmem_cache_free(policy_cache, p);
}
-static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
+static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
+ enum mpol_rebind_step step)
{
}
-static void mpol_rebind_nodemask(struct mempolicy *pol,
- const nodemask_t *nodes)
+/*
+ * step:
+ * MPOL_REBIND_ONCE - do rebind work at once
+ * MPOL_REBIND_STEP1 - set all the newly nodes
+ * MPOL_REBIND_STEP2 - clean all the disallowed nodes
+ */
+static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
+ enum mpol_rebind_step step)
{
nodemask_t tmp;
@@ -292,12 +310,31 @@ static void mpol_rebind_nodemask(struct mempolicy *pol,
else if (pol->flags & MPOL_F_RELATIVE_NODES)
mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
else {
- nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
- *nodes);
- pol->w.cpuset_mems_allowed = *nodes;
+ /*
+ * if step == 1, we use ->w.cpuset_mems_allowed to cache the
+ * result
+ */
+ if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
+ nodes_remap(tmp, pol->v.nodes,
+ pol->w.cpuset_mems_allowed, *nodes);
+ pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
+ } else if (step == MPOL_REBIND_STEP2) {
+ tmp = pol->w.cpuset_mems_allowed;
+ pol->w.cpuset_mems_allowed = *nodes;
+ } else
+ BUG();
}
- pol->v.nodes = tmp;
+ if (nodes_empty(tmp))
+ tmp = *nodes;
+
+ if (step == MPOL_REBIND_STEP1)
+ nodes_or(pol->v.nodes, pol->v.nodes, tmp);
+ else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
+ pol->v.nodes = tmp;
+ else
+ BUG();
+
if (!node_isset(current->il_next, tmp)) {
current->il_next = next_node(current->il_next, tmp);
if (current->il_next >= MAX_NUMNODES)
@@ -308,7 +345,8 @@ static void mpol_rebind_nodemask(struct mempolicy *pol,
}
static void mpol_rebind_preferred(struct mempolicy *pol,
- const nodemask_t *nodes)
+ const nodemask_t *nodes,
+ enum mpol_rebind_step step)
{
nodemask_t tmp;
@@ -331,16 +369,45 @@ static void mpol_rebind_preferred(struct mempolicy *pol,
}
}
-/* Migrate a policy to a different set of nodes */
-static void mpol_rebind_policy(struct mempolicy *pol,
- const nodemask_t *newmask)
+/*
+ * mpol_rebind_policy - Migrate a policy to a different set of nodes
+ *
+ * If read-side task has no lock to protect task->mempolicy, write-side
+ * task will rebind the task->mempolicy by two step. The first step is
+ * setting all the newly nodes, and the second step is cleaning all the
+ * disallowed nodes. In this way, we can avoid finding no node to alloc
+ * page.
+ * If we have a lock to protect task->mempolicy in read-side, we do
+ * rebind directly.
+ *
+ * step:
+ * MPOL_REBIND_ONCE - do rebind work at once
+ * MPOL_REBIND_STEP1 - set all the newly nodes
+ * MPOL_REBIND_STEP2 - clean all the disallowed nodes
+ */
+static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
+ enum mpol_rebind_step step)
{
if (!pol)
return;
- if (!mpol_store_user_nodemask(pol) &&
+ if (!mpol_store_user_nodemask(pol) && step == 0 &&
nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
return;
- mpol_ops[pol->mode].rebind(pol, newmask);
+
+ if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
+ return;
+
+ if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
+ BUG();
+
+ if (step == MPOL_REBIND_STEP1)
+ pol->flags |= MPOL_F_REBINDING;
+ else if (step == MPOL_REBIND_STEP2)
+ pol->flags &= ~MPOL_F_REBINDING;
+ else if (step >= MPOL_REBIND_NSTEP)
+ BUG();
+
+ mpol_ops[pol->mode].rebind(pol, newmask, step);
}
/*
@@ -350,9 +417,10 @@ static void mpol_rebind_policy(struct mempolicy *pol,
* Called with task's alloc_lock held.
*/
-void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
+void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
+ enum mpol_rebind_step step)
{
- mpol_rebind_policy(tsk->mempolicy, new);
+ mpol_rebind_policy(tsk->mempolicy, new, step);
}
/*
@@ -367,7 +435,7 @@ void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
down_write(&mm->mmap_sem);
for (vma = mm->mmap; vma; vma = vma->vm_next)
- mpol_rebind_policy(vma->vm_policy, new);
+ mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
up_write(&mm->mmap_sem);
}
@@ -563,24 +631,50 @@ static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
}
/* Step 2: apply policy to a range and do splits. */
-static int mbind_range(struct vm_area_struct *vma, unsigned long start,
- unsigned long end, struct mempolicy *new)
+static int mbind_range(struct mm_struct *mm, unsigned long start,
+ unsigned long end, struct mempolicy *new_pol)
{
struct vm_area_struct *next;
- int err;
+ struct vm_area_struct *prev;
+ struct vm_area_struct *vma;
+ int err = 0;
+ pgoff_t pgoff;
+ unsigned long vmstart;
+ unsigned long vmend;
- err = 0;
- for (; vma && vma->vm_start < end; vma = next) {
+ vma = find_vma_prev(mm, start, &prev);
+ if (!vma || vma->vm_start > start)
+ return -EFAULT;
+
+ for (; vma && vma->vm_start < end; prev = vma, vma = next) {
next = vma->vm_next;
- if (vma->vm_start < start)
- err = split_vma(vma->vm_mm, vma, start, 1);
- if (!err && vma->vm_end > end)
- err = split_vma(vma->vm_mm, vma, end, 0);
- if (!err)
- err = policy_vma(vma, new);
+ vmstart = max(start, vma->vm_start);
+ vmend = min(end, vma->vm_end);
+
+ pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
+ prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
+ vma->anon_vma, vma->vm_file, pgoff, new_pol);
+ if (prev) {
+ vma = prev;
+ next = vma->vm_next;
+ continue;
+ }
+ if (vma->vm_start != vmstart) {
+ err = split_vma(vma->vm_mm, vma, vmstart, 1);
+ if (err)
+ goto out;
+ }
+ if (vma->vm_end != vmend) {
+ err = split_vma(vma->vm_mm, vma, vmend, 0);
+ if (err)
+ goto out;
+ }
+ err = policy_vma(vma, new_pol);
if (err)
- break;
+ goto out;
}
+
+ out:
return err;
}
@@ -780,9 +874,13 @@ static long do_get_mempolicy(int *policy, nodemask_t *nmask,
err = 0;
if (nmask) {
- task_lock(current);
- get_policy_nodemask(pol, nmask);
- task_unlock(current);
+ if (mpol_store_user_nodemask(pol)) {
+ *nmask = pol->w.user_nodemask;
+ } else {
+ task_lock(current);
+ get_policy_nodemask(pol, nmask);
+ task_unlock(current);
+ }
}
out:
@@ -830,7 +928,7 @@ static int migrate_to_node(struct mm_struct *mm, int source, int dest,
nodes_clear(nmask);
node_set(source, nmask);
- check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
+ check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
flags | MPOL_MF_DISCONTIG_OK, &pagelist);
if (!list_empty(&pagelist))
@@ -862,36 +960,36 @@ int do_migrate_pages(struct mm_struct *mm,
if (err)
goto out;
-/*
- * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
- * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
- * bit in 'tmp', and return that <source, dest> pair for migration.
- * The pair of nodemasks 'to' and 'from' define the map.
- *
- * If no pair of bits is found that way, fallback to picking some
- * pair of 'source' and 'dest' bits that are not the same. If the
- * 'source' and 'dest' bits are the same, this represents a node
- * that will be migrating to itself, so no pages need move.
- *
- * If no bits are left in 'tmp', or if all remaining bits left
- * in 'tmp' correspond to the same bit in 'to', return false
- * (nothing left to migrate).
- *
- * This lets us pick a pair of nodes to migrate between, such that
- * if possible the dest node is not already occupied by some other
- * source node, minimizing the risk of overloading the memory on a
- * node that would happen if we migrated incoming memory to a node
- * before migrating outgoing memory source that same node.
- *
- * A single scan of tmp is sufficient. As we go, we remember the
- * most recent <s, d> pair that moved (s != d). If we find a pair
- * that not only moved, but what's better, moved to an empty slot
- * (d is not set in tmp), then we break out then, with that pair.
- * Otherwise when we finish scannng from_tmp, we at least have the
- * most recent <s, d> pair that moved. If we get all the way through
- * the scan of tmp without finding any node that moved, much less
- * moved to an empty node, then there is nothing left worth migrating.
- */
+ /*
+ * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
+ * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
+ * bit in 'tmp', and return that <source, dest> pair for migration.
+ * The pair of nodemasks 'to' and 'from' define the map.
+ *
+ * If no pair of bits is found that way, fallback to picking some
+ * pair of 'source' and 'dest' bits that are not the same. If the
+ * 'source' and 'dest' bits are the same, this represents a node
+ * that will be migrating to itself, so no pages need move.
+ *
+ * If no bits are left in 'tmp', or if all remaining bits left
+ * in 'tmp' correspond to the same bit in 'to', return false
+ * (nothing left to migrate).
+ *
+ * This lets us pick a pair of nodes to migrate between, such that
+ * if possible the dest node is not already occupied by some other
+ * source node, minimizing the risk of overloading the memory on a
+ * node that would happen if we migrated incoming memory to a node
+ * before migrating outgoing memory source that same node.
+ *
+ * A single scan of tmp is sufficient. As we go, we remember the
+ * most recent <s, d> pair that moved (s != d). If we find a pair
+ * that not only moved, but what's better, moved to an empty slot
+ * (d is not set in tmp), then we break out then, with that pair.
+ * Otherwise when we finish scannng from_tmp, we at least have the
+ * most recent <s, d> pair that moved. If we get all the way through
+ * the scan of tmp without finding any node that moved, much less
+ * moved to an empty node, then there is nothing left worth migrating.
+ */
tmp = *from_nodes;
while (!nodes_empty(tmp)) {
@@ -1047,7 +1145,7 @@ static long do_mbind(unsigned long start, unsigned long len,
if (!IS_ERR(vma)) {
int nr_failed = 0;
- err = mbind_range(vma, start, end, new);
+ err = mbind_range(mm, start, end, new);
if (!list_empty(&pagelist))
nr_failed = migrate_pages(&pagelist, new_vma_page,
@@ -1415,15 +1513,13 @@ static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
/*
* Normally, MPOL_BIND allocations are node-local within the
* allowed nodemask. However, if __GFP_THISNODE is set and the
- * current node is part of the mask, we use the zonelist for
+ * current node isn't part of the mask, we use the zonelist for
* the first node in the mask instead.
*/
if (unlikely(gfp & __GFP_THISNODE) &&
unlikely(!node_isset(nd, policy->v.nodes)))
nd = first_node(policy->v.nodes);
break;
- case MPOL_INTERLEAVE: /* should not happen */
- break;
default:
BUG();
}
@@ -1543,6 +1639,8 @@ static inline unsigned interleave_nid(struct mempolicy *pol,
* to the struct mempolicy for conditional unref after allocation.
* If the effective policy is 'BIND, returns a pointer to the mempolicy's
* @nodemask for filtering the zonelist.
+ *
+ * Must be protected by get_mems_allowed()
*/
struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
gfp_t gfp_flags, struct mempolicy **mpol,
@@ -1588,6 +1686,7 @@ bool init_nodemask_of_mempolicy(nodemask_t *mask)
if (!(mask && current->mempolicy))
return false;
+ task_lock(current);
mempolicy = current->mempolicy;
switch (mempolicy->mode) {
case MPOL_PREFERRED:
@@ -1607,6 +1706,7 @@ bool init_nodemask_of_mempolicy(nodemask_t *mask)
default:
BUG();
}
+ task_unlock(current);
return true;
}
@@ -1654,13 +1754,17 @@ alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
{
struct mempolicy *pol = get_vma_policy(current, vma, addr);
struct zonelist *zl;
+ struct page *page;
+ get_mems_allowed();
if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
unsigned nid;
nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
mpol_cond_put(pol);
- return alloc_page_interleave(gfp, 0, nid);
+ page = alloc_page_interleave(gfp, 0, nid);
+ put_mems_allowed();
+ return page;
}
zl = policy_zonelist(gfp, pol);
if (unlikely(mpol_needs_cond_ref(pol))) {
@@ -1670,12 +1774,15 @@ alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
struct page *page = __alloc_pages_nodemask(gfp, 0,
zl, policy_nodemask(gfp, pol));
__mpol_put(pol);
+ put_mems_allowed();
return page;
}
/*
* fast path: default or task policy
*/
- return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
+ page = __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
+ put_mems_allowed();
+ return page;
}
/**
@@ -1700,18 +1807,23 @@ alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
struct page *alloc_pages_current(gfp_t gfp, unsigned order)
{
struct mempolicy *pol = current->mempolicy;
+ struct page *page;
if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
pol = &default_policy;
+ get_mems_allowed();
/*
* No reference counting needed for current->mempolicy
* nor system default_policy
*/
if (pol->mode == MPOL_INTERLEAVE)
- return alloc_page_interleave(gfp, order, interleave_nodes(pol));
- return __alloc_pages_nodemask(gfp, order,
+ page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
+ else
+ page = __alloc_pages_nodemask(gfp, order,
policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
+ put_mems_allowed();
+ return page;
}
EXPORT_SYMBOL(alloc_pages_current);
@@ -1721,6 +1833,9 @@ EXPORT_SYMBOL(alloc_pages_current);
* with the mems_allowed returned by cpuset_mems_allowed(). This
* keeps mempolicies cpuset relative after its cpuset moves. See
* further kernel/cpuset.c update_nodemask().
+ *
+ * current's mempolicy may be rebinded by the other task(the task that changes
+ * cpuset's mems), so we needn't do rebind work for current task.
*/
/* Slow path of a mempolicy duplicate */
@@ -1730,11 +1845,24 @@ struct mempolicy *__mpol_dup(struct mempolicy *old)
if (!new)
return ERR_PTR(-ENOMEM);
+
+ /* task's mempolicy is protected by alloc_lock */
+ if (old == current->mempolicy) {
+ task_lock(current);
+ *new = *old;
+ task_unlock(current);
+ } else
+ *new = *old;
+
+ rcu_read_lock();
if (current_cpuset_is_being_rebound()) {
nodemask_t mems = cpuset_mems_allowed(current);
- mpol_rebind_policy(old, &mems);
+ if (new->flags & MPOL_F_REBINDING)
+ mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
+ else
+ mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
}
- *new = *old;
+ rcu_read_unlock();
atomic_set(&new->refcnt, 1);
return new;
}
@@ -1761,16 +1889,6 @@ struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
return tompol;
}
-static int mpol_match_intent(const struct mempolicy *a,
- const struct mempolicy *b)
-{
- if (a->flags != b->flags)
- return 0;
- if (!mpol_store_user_nodemask(a))
- return 1;
- return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
-}
-
/* Slow path of a mempolicy comparison */
int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
{
@@ -1778,8 +1896,12 @@ int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
return 0;
if (a->mode != b->mode)
return 0;
- if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b))
+ if (a->flags != b->flags)
return 0;
+ if (mpol_store_user_nodemask(a))
+ if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
+ return 0;
+
switch (a->mode) {
case MPOL_BIND:
/* Fall through */
@@ -1972,31 +2094,29 @@ void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
NODEMASK_SCRATCH(scratch);
if (!scratch)
- return;
+ goto put_mpol;
/* contextualize the tmpfs mount point mempolicy */
new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
- if (IS_ERR(new)) {
- mpol_put(mpol); /* drop our ref on sb mpol */
- NODEMASK_SCRATCH_FREE(scratch);
- return; /* no valid nodemask intersection */
- }
+ if (IS_ERR(new))
+ goto free_scratch; /* no valid nodemask intersection */
task_lock(current);
ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
task_unlock(current);
- mpol_put(mpol); /* drop our ref on sb mpol */
- if (ret) {
- NODEMASK_SCRATCH_FREE(scratch);
- mpol_put(new);
- return;
- }
+ if (ret)
+ goto put_new;
/* Create pseudo-vma that contains just the policy */
memset(&pvma, 0, sizeof(struct vm_area_struct));
pvma.vm_end = TASK_SIZE; /* policy covers entire file */
mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
+
+put_new:
mpol_put(new); /* drop initial ref */
+free_scratch:
NODEMASK_SCRATCH_FREE(scratch);
+put_mpol:
+ mpol_put(mpol); /* drop our incoming ref on sb mpol */
}
}
@@ -2101,9 +2221,15 @@ void numa_default_policy(void)
* "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
* Used only for mpol_parse_str() and mpol_to_str()
*/
-#define MPOL_LOCAL (MPOL_INTERLEAVE + 1)
-static const char * const policy_types[] =
- { "default", "prefer", "bind", "interleave", "local" };
+#define MPOL_LOCAL MPOL_MAX
+static const char * const policy_modes[] =
+{
+ [MPOL_DEFAULT] = "default",
+ [MPOL_PREFERRED] = "prefer",
+ [MPOL_BIND] = "bind",
+ [MPOL_INTERLEAVE] = "interleave",
+ [MPOL_LOCAL] = "local"
+};
#ifdef CONFIG_TMPFS
@@ -2128,12 +2254,11 @@ static const char * const policy_types[] =
int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
{
struct mempolicy *new = NULL;
- unsigned short uninitialized_var(mode);
+ unsigned short mode;
unsigned short uninitialized_var(mode_flags);
nodemask_t nodes;
char *nodelist = strchr(str, ':');
char *flags = strchr(str, '=');
- int i;
int err = 1;
if (nodelist) {
@@ -2149,13 +2274,12 @@ int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
if (flags)
*flags++ = '\0'; /* terminate mode string */
- for (i = 0; i <= MPOL_LOCAL; i++) {
- if (!strcmp(str, policy_types[i])) {
- mode = i;
+ for (mode = 0; mode <= MPOL_LOCAL; mode++) {
+ if (!strcmp(str, policy_modes[mode])) {
break;
}
}
- if (i > MPOL_LOCAL)
+ if (mode > MPOL_LOCAL)
goto out;
switch (mode) {
@@ -2167,8 +2291,8 @@ int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
char *rest = nodelist;
while (isdigit(*rest))
rest++;
- if (!*rest)
- err = 0;
+ if (*rest)
+ goto out;
}
break;
case MPOL_INTERLEAVE:
@@ -2177,7 +2301,6 @@ int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
*/
if (!nodelist)
nodes = node_states[N_HIGH_MEMORY];
- err = 0;
break;
case MPOL_LOCAL:
/*
@@ -2187,11 +2310,19 @@ int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
goto out;
mode = MPOL_PREFERRED;
break;
-
- /*
- * case MPOL_BIND: mpol_new() enforces non-empty nodemask.
- * case MPOL_DEFAULT: mpol_new() enforces empty nodemask, ignores flags.
- */
+ case MPOL_DEFAULT:
+ /*
+ * Insist on a empty nodelist
+ */
+ if (!nodelist)
+ err = 0;
+ goto out;
+ case MPOL_BIND:
+ /*
+ * Insist on a nodelist
+ */
+ if (!nodelist)
+ goto out;
}
mode_flags = 0;
@@ -2205,13 +2336,17 @@ int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
else if (!strcmp(flags, "relative"))
mode_flags |= MPOL_F_RELATIVE_NODES;
else
- err = 1;
+ goto out;
}
new = mpol_new(mode, mode_flags, &nodes);
if (IS_ERR(new))
- err = 1;
- else {
+ goto out;
+
+ if (no_context) {
+ /* save for contextualization */
+ new->w.user_nodemask = nodes;
+ } else {
int ret;
NODEMASK_SCRATCH(scratch);
if (scratch) {
@@ -2222,13 +2357,11 @@ int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
ret = -ENOMEM;
NODEMASK_SCRATCH_FREE(scratch);
if (ret) {
- err = 1;
mpol_put(new);
- } else if (no_context) {
- /* save for contextualization */
- new->w.user_nodemask = nodes;
+ goto out;
}
}
+ err = 0;
out:
/* Restore string for error message */
@@ -2297,11 +2430,11 @@ int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
BUG();
}
- l = strlen(policy_types[mode]);
+ l = strlen(policy_modes[mode]);
if (buffer + maxlen < p + l + 1)
return -ENOSPC;
- strcpy(p, policy_types[mode]);
+ strcpy(p, policy_modes[mode]);
p += l;
if (flags & MPOL_MODE_FLAGS) {
diff --git a/mm/migrate.c b/mm/migrate.c
index efddbf0926b2..4205b1d6049e 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -32,6 +32,7 @@
#include <linux/security.h>
#include <linux/memcontrol.h>
#include <linux/syscalls.h>
+#include <linux/gfp.h>
#include "internal.h"
@@ -39,7 +40,8 @@
/*
* migrate_prep() needs to be called before we start compiling a list of pages
- * to be migrated using isolate_lru_page().
+ * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
+ * undesirable, use migrate_prep_local()
*/
int migrate_prep(void)
{
@@ -54,26 +56,29 @@ int migrate_prep(void)
return 0;
}
+/* Do the necessary work of migrate_prep but not if it involves other CPUs */
+int migrate_prep_local(void)
+{
+ lru_add_drain();
+
+ return 0;
+}
+
/*
* Add isolated pages on the list back to the LRU under page lock
* to avoid leaking evictable pages back onto unevictable list.
- *
- * returns the number of pages put back.
*/
-int putback_lru_pages(struct list_head *l)
+void putback_lru_pages(struct list_head *l)
{
struct page *page;
struct page *page2;
- int count = 0;
list_for_each_entry_safe(page, page2, l, lru) {
list_del(&page->lru);
dec_zone_page_state(page, NR_ISOLATED_ANON +
page_is_file_cache(page));
putback_lru_page(page);
- count++;
}
- return count;
}
/*
@@ -134,7 +139,7 @@ static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
page_add_file_rmap(new);
/* No need to invalidate - it was non-present before */
- update_mmu_cache(vma, addr, pte);
+ update_mmu_cache(vma, addr, ptep);
unlock:
pte_unmap_unlock(ptep, ptl);
out:
@@ -275,8 +280,6 @@ static int migrate_page_move_mapping(struct address_space *mapping,
*/
static void migrate_page_copy(struct page *newpage, struct page *page)
{
- int anon;
-
copy_highpage(newpage, page);
if (PageError(page))
@@ -313,8 +316,6 @@ static void migrate_page_copy(struct page *newpage, struct page *page)
ClearPageSwapCache(page);
ClearPagePrivate(page);
set_page_private(page, 0);
- /* page->mapping contains a flag for PageAnon() */
- anon = PageAnon(page);
page->mapping = NULL;
/*
@@ -493,7 +494,8 @@ static int fallback_migrate_page(struct address_space *mapping,
* < 0 - error code
* == 0 - success
*/
-static int move_to_new_page(struct page *newpage, struct page *page)
+static int move_to_new_page(struct page *newpage, struct page *page,
+ int remap_swapcache)
{
struct address_space *mapping;
int rc;
@@ -528,10 +530,12 @@ static int move_to_new_page(struct page *newpage, struct page *page)
else
rc = fallback_migrate_page(mapping, newpage, page);
- if (!rc)
- remove_migration_ptes(page, newpage);
- else
+ if (rc) {
newpage->mapping = NULL;
+ } else {
+ if (remap_swapcache)
+ remove_migration_ptes(page, newpage);
+ }
unlock_page(newpage);
@@ -548,9 +552,11 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private,
int rc = 0;
int *result = NULL;
struct page *newpage = get_new_page(page, private, &result);
+ int remap_swapcache = 1;
int rcu_locked = 0;
int charge = 0;
struct mem_cgroup *mem = NULL;
+ struct anon_vma *anon_vma = NULL;
if (!newpage)
return -ENOMEM;
@@ -584,7 +590,7 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private,
}
/* charge against new page */
- charge = mem_cgroup_prepare_migration(page, &mem);
+ charge = mem_cgroup_prepare_migration(page, newpage, &mem);
if (charge == -ENOMEM) {
rc = -ENOMEM;
goto unlock;
@@ -607,6 +613,34 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private,
if (PageAnon(page)) {
rcu_read_lock();
rcu_locked = 1;
+
+ /* Determine how to safely use anon_vma */
+ if (!page_mapped(page)) {
+ if (!PageSwapCache(page))
+ goto rcu_unlock;
+
+ /*
+ * We cannot be sure that the anon_vma of an unmapped
+ * swapcache page is safe to use because we don't
+ * know in advance if the VMA that this page belonged
+ * to still exists. If the VMA and others sharing the
+ * data have been freed, then the anon_vma could
+ * already be invalid.
+ *
+ * To avoid this possibility, swapcache pages get
+ * migrated but are not remapped when migration
+ * completes
+ */
+ remap_swapcache = 0;
+ } else {
+ /*
+ * Take a reference count on the anon_vma if the
+ * page is mapped so that it is guaranteed to
+ * exist when the page is remapped later
+ */
+ anon_vma = page_anon_vma(page);
+ atomic_inc(&anon_vma->external_refcount);
+ }
}
/*
@@ -641,11 +675,20 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private,
skip_unmap:
if (!page_mapped(page))
- rc = move_to_new_page(newpage, page);
+ rc = move_to_new_page(newpage, page, remap_swapcache);
- if (rc)
+ if (rc && remap_swapcache)
remove_migration_ptes(page, page);
rcu_unlock:
+
+ /* Drop an anon_vma reference if we took one */
+ if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->lock)) {
+ int empty = list_empty(&anon_vma->head);
+ spin_unlock(&anon_vma->lock);
+ if (empty)
+ anon_vma_free(anon_vma);
+ }
+
if (rcu_locked)
rcu_read_unlock();
uncharge:
@@ -912,6 +955,9 @@ static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
goto out_pm;
err = -ENODEV;
+ if (node < 0 || node >= MAX_NUMNODES)
+ goto out_pm;
+
if (!node_state(node, N_HIGH_MEMORY))
goto out_pm;
@@ -999,33 +1045,27 @@ static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
#define DO_PAGES_STAT_CHUNK_NR 16
const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
int chunk_status[DO_PAGES_STAT_CHUNK_NR];
- unsigned long i, chunk_nr = DO_PAGES_STAT_CHUNK_NR;
- int err;
- for (i = 0; i < nr_pages; i += chunk_nr) {
- if (chunk_nr > nr_pages - i)
- chunk_nr = nr_pages - i;
+ while (nr_pages) {
+ unsigned long chunk_nr;
- err = copy_from_user(chunk_pages, &pages[i],
- chunk_nr * sizeof(*chunk_pages));
- if (err) {
- err = -EFAULT;
- goto out;
- }
+ chunk_nr = nr_pages;
+ if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
+ chunk_nr = DO_PAGES_STAT_CHUNK_NR;
+
+ if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
+ break;
do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
- err = copy_to_user(&status[i], chunk_status,
- chunk_nr * sizeof(*chunk_status));
- if (err) {
- err = -EFAULT;
- goto out;
- }
- }
- err = 0;
+ if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
+ break;
-out:
- return err;
+ pages += chunk_nr;
+ status += chunk_nr;
+ nr_pages -= chunk_nr;
+ }
+ return nr_pages ? -EFAULT : 0;
}
/*
diff --git a/mm/mincore.c b/mm/mincore.c
index 7a3436ef39eb..9ac42dc6d7b6 100644
--- a/mm/mincore.c
+++ b/mm/mincore.c
@@ -7,8 +7,8 @@
/*
* The mincore() system call.
*/
-#include <linux/slab.h>
#include <linux/pagemap.h>
+#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/syscalls.h>
@@ -19,6 +19,40 @@
#include <asm/uaccess.h>
#include <asm/pgtable.h>
+static void mincore_hugetlb_page_range(struct vm_area_struct *vma,
+ unsigned long addr, unsigned long end,
+ unsigned char *vec)
+{
+#ifdef CONFIG_HUGETLB_PAGE
+ struct hstate *h;
+
+ h = hstate_vma(vma);
+ while (1) {
+ unsigned char present;
+ pte_t *ptep;
+ /*
+ * Huge pages are always in RAM for now, but
+ * theoretically it needs to be checked.
+ */
+ ptep = huge_pte_offset(current->mm,
+ addr & huge_page_mask(h));
+ present = ptep && !huge_pte_none(huge_ptep_get(ptep));
+ while (1) {
+ *vec = present;
+ vec++;
+ addr += PAGE_SIZE;
+ if (addr == end)
+ return;
+ /* check hugepage border */
+ if (!(addr & ~huge_page_mask(h)))
+ break;
+ }
+ }
+#else
+ BUG();
+#endif
+}
+
/*
* Later we can get more picky about what "in core" means precisely.
* For now, simply check to see if the page is in the page cache,
@@ -49,145 +83,150 @@ static unsigned char mincore_page(struct address_space *mapping, pgoff_t pgoff)
return present;
}
-/*
- * Do a chunk of "sys_mincore()". We've already checked
- * all the arguments, we hold the mmap semaphore: we should
- * just return the amount of info we're asked for.
- */
-static long do_mincore(unsigned long addr, unsigned char *vec, unsigned long pages)
+static void mincore_unmapped_range(struct vm_area_struct *vma,
+ unsigned long addr, unsigned long end,
+ unsigned char *vec)
{
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *ptep;
- spinlock_t *ptl;
- unsigned long nr;
+ unsigned long nr = (end - addr) >> PAGE_SHIFT;
int i;
- pgoff_t pgoff;
- struct vm_area_struct *vma = find_vma(current->mm, addr);
- /*
- * find_vma() didn't find anything above us, or we're
- * in an unmapped hole in the address space: ENOMEM.
- */
- if (!vma || addr < vma->vm_start)
- return -ENOMEM;
-
-#ifdef CONFIG_HUGETLB_PAGE
- if (is_vm_hugetlb_page(vma)) {
- struct hstate *h;
- unsigned long nr_huge;
- unsigned char present;
+ if (vma->vm_file) {
+ pgoff_t pgoff;
- i = 0;
- nr = min(pages, (vma->vm_end - addr) >> PAGE_SHIFT);
- h = hstate_vma(vma);
- nr_huge = ((addr + pages * PAGE_SIZE - 1) >> huge_page_shift(h))
- - (addr >> huge_page_shift(h)) + 1;
- nr_huge = min(nr_huge,
- (vma->vm_end - addr) >> huge_page_shift(h));
- while (1) {
- /* hugepage always in RAM for now,
- * but generally it needs to be check */
- ptep = huge_pte_offset(current->mm,
- addr & huge_page_mask(h));
- present = !!(ptep &&
- !huge_pte_none(huge_ptep_get(ptep)));
- while (1) {
- vec[i++] = present;
- addr += PAGE_SIZE;
- /* reach buffer limit */
- if (i == nr)
- return nr;
- /* check hugepage border */
- if (!((addr & ~huge_page_mask(h))
- >> PAGE_SHIFT))
- break;
- }
- }
- return nr;
+ pgoff = linear_page_index(vma, addr);
+ for (i = 0; i < nr; i++, pgoff++)
+ vec[i] = mincore_page(vma->vm_file->f_mapping, pgoff);
+ } else {
+ for (i = 0; i < nr; i++)
+ vec[i] = 0;
}
-#endif
-
- /*
- * Calculate how many pages there are left in the last level of the
- * PTE array for our address.
- */
- nr = PTRS_PER_PTE - ((addr >> PAGE_SHIFT) & (PTRS_PER_PTE-1));
-
- /*
- * Don't overrun this vma
- */
- nr = min(nr, (vma->vm_end - addr) >> PAGE_SHIFT);
-
- /*
- * Don't return more than the caller asked for
- */
- nr = min(nr, pages);
+}
- pgd = pgd_offset(vma->vm_mm, addr);
- if (pgd_none_or_clear_bad(pgd))
- goto none_mapped;
- pud = pud_offset(pgd, addr);
- if (pud_none_or_clear_bad(pud))
- goto none_mapped;
- pmd = pmd_offset(pud, addr);
- if (pmd_none_or_clear_bad(pmd))
- goto none_mapped;
+static void mincore_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
+ unsigned long addr, unsigned long end,
+ unsigned char *vec)
+{
+ unsigned long next;
+ spinlock_t *ptl;
+ pte_t *ptep;
ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
- for (i = 0; i < nr; i++, ptep++, addr += PAGE_SIZE) {
- unsigned char present;
+ do {
pte_t pte = *ptep;
+ pgoff_t pgoff;
- if (pte_present(pte)) {
- present = 1;
-
- } else if (pte_none(pte)) {
- if (vma->vm_file) {
- pgoff = linear_page_index(vma, addr);
- present = mincore_page(vma->vm_file->f_mapping,
- pgoff);
- } else
- present = 0;
-
- } else if (pte_file(pte)) {
+ next = addr + PAGE_SIZE;
+ if (pte_none(pte))
+ mincore_unmapped_range(vma, addr, next, vec);
+ else if (pte_present(pte))
+ *vec = 1;
+ else if (pte_file(pte)) {
pgoff = pte_to_pgoff(pte);
- present = mincore_page(vma->vm_file->f_mapping, pgoff);
-
+ *vec = mincore_page(vma->vm_file->f_mapping, pgoff);
} else { /* pte is a swap entry */
swp_entry_t entry = pte_to_swp_entry(pte);
+
if (is_migration_entry(entry)) {
/* migration entries are always uptodate */
- present = 1;
+ *vec = 1;
} else {
#ifdef CONFIG_SWAP
pgoff = entry.val;
- present = mincore_page(&swapper_space, pgoff);
+ *vec = mincore_page(&swapper_space, pgoff);
#else
WARN_ON(1);
- present = 1;
+ *vec = 1;
#endif
}
}
+ vec++;
+ } while (ptep++, addr = next, addr != end);
+ pte_unmap_unlock(ptep - 1, ptl);
+}
- vec[i] = present;
- }
- pte_unmap_unlock(ptep-1, ptl);
+static void mincore_pmd_range(struct vm_area_struct *vma, pud_t *pud,
+ unsigned long addr, unsigned long end,
+ unsigned char *vec)
+{
+ unsigned long next;
+ pmd_t *pmd;
- return nr;
+ pmd = pmd_offset(pud, addr);
+ do {
+ next = pmd_addr_end(addr, end);
+ if (pmd_none_or_clear_bad(pmd))
+ mincore_unmapped_range(vma, addr, next, vec);
+ else
+ mincore_pte_range(vma, pmd, addr, next, vec);
+ vec += (next - addr) >> PAGE_SHIFT;
+ } while (pmd++, addr = next, addr != end);
+}
-none_mapped:
- if (vma->vm_file) {
- pgoff = linear_page_index(vma, addr);
- for (i = 0; i < nr; i++, pgoff++)
- vec[i] = mincore_page(vma->vm_file->f_mapping, pgoff);
- } else {
- for (i = 0; i < nr; i++)
- vec[i] = 0;
+static void mincore_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
+ unsigned long addr, unsigned long end,
+ unsigned char *vec)
+{
+ unsigned long next;
+ pud_t *pud;
+
+ pud = pud_offset(pgd, addr);
+ do {
+ next = pud_addr_end(addr, end);
+ if (pud_none_or_clear_bad(pud))
+ mincore_unmapped_range(vma, addr, next, vec);
+ else
+ mincore_pmd_range(vma, pud, addr, next, vec);
+ vec += (next - addr) >> PAGE_SHIFT;
+ } while (pud++, addr = next, addr != end);
+}
+
+static void mincore_page_range(struct vm_area_struct *vma,
+ unsigned long addr, unsigned long end,
+ unsigned char *vec)
+{
+ unsigned long next;
+ pgd_t *pgd;
+
+ pgd = pgd_offset(vma->vm_mm, addr);
+ do {
+ next = pgd_addr_end(addr, end);
+ if (pgd_none_or_clear_bad(pgd))
+ mincore_unmapped_range(vma, addr, next, vec);
+ else
+ mincore_pud_range(vma, pgd, addr, next, vec);
+ vec += (next - addr) >> PAGE_SHIFT;
+ } while (pgd++, addr = next, addr != end);
+}
+
+/*
+ * Do a chunk of "sys_mincore()". We've already checked
+ * all the arguments, we hold the mmap semaphore: we should
+ * just return the amount of info we're asked for.
+ */
+static long do_mincore(unsigned long addr, unsigned long pages, unsigned char *vec)
+{
+ struct vm_area_struct *vma;
+ unsigned long end;
+
+ vma = find_vma(current->mm, addr);
+ if (!vma || addr < vma->vm_start)
+ return -ENOMEM;
+
+ end = min(vma->vm_end, addr + (pages << PAGE_SHIFT));
+
+ if (is_vm_hugetlb_page(vma)) {
+ mincore_hugetlb_page_range(vma, addr, end, vec);
+ return (end - addr) >> PAGE_SHIFT;
}
- return nr;
+ end = pmd_addr_end(addr, end);
+
+ if (is_vm_hugetlb_page(vma))
+ mincore_hugetlb_page_range(vma, addr, end, vec);
+ else
+ mincore_page_range(vma, addr, end, vec);
+
+ return (end - addr) >> PAGE_SHIFT;
}
/*
@@ -247,7 +286,7 @@ SYSCALL_DEFINE3(mincore, unsigned long, start, size_t, len,
* the temporary buffer size.
*/
down_read(&current->mm->mmap_sem);
- retval = do_mincore(start, tmp, min(pages, PAGE_SIZE));
+ retval = do_mincore(start, min(pages, PAGE_SIZE), tmp);
up_read(&current->mm->mmap_sem);
if (retval <= 0)
diff --git a/mm/mlock.c b/mm/mlock.c
index 2b8335a89400..3f82720e0515 100644
--- a/mm/mlock.c
+++ b/mm/mlock.c
@@ -25,7 +25,7 @@ int can_do_mlock(void)
{
if (capable(CAP_IPC_LOCK))
return 1;
- if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
+ if (rlimit(RLIMIT_MEMLOCK) != 0)
return 1;
return 0;
}
@@ -487,7 +487,7 @@ SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
locked = len >> PAGE_SHIFT;
locked += current->mm->locked_vm;
- lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
+ lock_limit = rlimit(RLIMIT_MEMLOCK);
lock_limit >>= PAGE_SHIFT;
/* check against resource limits */
@@ -550,7 +550,7 @@ SYSCALL_DEFINE1(mlockall, int, flags)
down_write(&current->mm->mmap_sem);
- lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
+ lock_limit = rlimit(RLIMIT_MEMLOCK);
lock_limit >>= PAGE_SHIFT;
ret = -ENOMEM;
@@ -584,7 +584,7 @@ int user_shm_lock(size_t size, struct user_struct *user)
int allowed = 0;
locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
- lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
+ lock_limit = rlimit(RLIMIT_MEMLOCK);
if (lock_limit == RLIM_INFINITY)
allowed = 1;
lock_limit >>= PAGE_SHIFT;
@@ -607,44 +607,3 @@ void user_shm_unlock(size_t size, struct user_struct *user)
spin_unlock(&shmlock_user_lock);
free_uid(user);
}
-
-int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim,
- size_t size)
-{
- unsigned long lim, vm, pgsz;
- int error = -ENOMEM;
-
- pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
-
- down_write(&mm->mmap_sem);
-
- lim = rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
- vm = mm->total_vm + pgsz;
- if (lim < vm)
- goto out;
-
- lim = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
- vm = mm->locked_vm + pgsz;
- if (lim < vm)
- goto out;
-
- mm->total_vm += pgsz;
- mm->locked_vm += pgsz;
-
- error = 0;
- out:
- up_write(&mm->mmap_sem);
- return error;
-}
-
-void refund_locked_memory(struct mm_struct *mm, size_t size)
-{
- unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
-
- down_write(&mm->mmap_sem);
-
- mm->total_vm -= pgsz;
- mm->locked_vm -= pgsz;
-
- up_write(&mm->mmap_sem);
-}
diff --git a/mm/mmap.c b/mm/mmap.c
index ee2298936fe6..456ec6f27889 100644
--- a/mm/mmap.c
+++ b/mm/mmap.c
@@ -265,7 +265,7 @@ SYSCALL_DEFINE1(brk, unsigned long, brk)
* segment grow beyond its set limit the in case where the limit is
* not page aligned -Ram Gupta
*/
- rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
+ rlim = rlimit(RLIMIT_DATA);
if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
(mm->end_data - mm->start_data) > rlim)
goto out;
@@ -437,7 +437,6 @@ __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
{
__vma_link_list(mm, vma, prev, rb_parent);
__vma_link_rb(mm, vma, rb_link, rb_parent);
- __anon_vma_link(vma);
}
static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
@@ -499,7 +498,7 @@ __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
* are necessary. The "insert" vma (if any) is to be inserted
* before we drop the necessary locks.
*/
-void vma_adjust(struct vm_area_struct *vma, unsigned long start,
+int vma_adjust(struct vm_area_struct *vma, unsigned long start,
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
{
struct mm_struct *mm = vma->vm_mm;
@@ -508,11 +507,12 @@ void vma_adjust(struct vm_area_struct *vma, unsigned long start,
struct address_space *mapping = NULL;
struct prio_tree_root *root = NULL;
struct file *file = vma->vm_file;
- struct anon_vma *anon_vma = NULL;
long adjust_next = 0;
int remove_next = 0;
if (next && !insert) {
+ struct vm_area_struct *exporter = NULL;
+
if (end >= next->vm_end) {
/*
* vma expands, overlapping all the next, and
@@ -520,7 +520,7 @@ void vma_adjust(struct vm_area_struct *vma, unsigned long start,
*/
again: remove_next = 1 + (end > next->vm_end);
end = next->vm_end;
- anon_vma = next->anon_vma;
+ exporter = next;
importer = vma;
} else if (end > next->vm_start) {
/*
@@ -528,7 +528,7 @@ again: remove_next = 1 + (end > next->vm_end);
* mprotect case 5 shifting the boundary up.
*/
adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
- anon_vma = next->anon_vma;
+ exporter = next;
importer = vma;
} else if (end < vma->vm_end) {
/*
@@ -537,9 +537,20 @@ again: remove_next = 1 + (end > next->vm_end);
* mprotect case 4 shifting the boundary down.
*/
adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
- anon_vma = next->anon_vma;
+ exporter = vma;
importer = next;
}
+
+ /*
+ * Easily overlooked: when mprotect shifts the boundary,
+ * make sure the expanding vma has anon_vma set if the
+ * shrinking vma had, to cover any anon pages imported.
+ */
+ if (exporter && exporter->anon_vma && !importer->anon_vma) {
+ if (anon_vma_clone(importer, exporter))
+ return -ENOMEM;
+ importer->anon_vma = exporter->anon_vma;
+ }
}
if (file) {
@@ -567,25 +578,6 @@ again: remove_next = 1 + (end > next->vm_end);
}
}
- /*
- * When changing only vma->vm_end, we don't really need
- * anon_vma lock.
- */
- if (vma->anon_vma && (insert || importer || start != vma->vm_start))
- anon_vma = vma->anon_vma;
- if (anon_vma) {
- spin_lock(&anon_vma->lock);
- /*
- * Easily overlooked: when mprotect shifts the boundary,
- * make sure the expanding vma has anon_vma set if the
- * shrinking vma had, to cover any anon pages imported.
- */
- if (importer && !importer->anon_vma) {
- importer->anon_vma = anon_vma;
- __anon_vma_link(importer);
- }
- }
-
if (root) {
flush_dcache_mmap_lock(mapping);
vma_prio_tree_remove(vma, root);
@@ -616,8 +608,6 @@ again: remove_next = 1 + (end > next->vm_end);
__vma_unlink(mm, next, vma);
if (file)
__remove_shared_vm_struct(next, file, mapping);
- if (next->anon_vma)
- __anon_vma_merge(vma, next);
} else if (insert) {
/*
* split_vma has split insert from vma, and needs
@@ -627,8 +617,6 @@ again: remove_next = 1 + (end > next->vm_end);
__insert_vm_struct(mm, insert);
}
- if (anon_vma)
- spin_unlock(&anon_vma->lock);
if (mapping)
spin_unlock(&mapping->i_mmap_lock);
@@ -638,6 +626,8 @@ again: remove_next = 1 + (end > next->vm_end);
if (next->vm_flags & VM_EXECUTABLE)
removed_exe_file_vma(mm);
}
+ if (next->anon_vma)
+ anon_vma_merge(vma, next);
mm->map_count--;
mpol_put(vma_policy(next));
kmem_cache_free(vm_area_cachep, next);
@@ -653,6 +643,8 @@ again: remove_next = 1 + (end > next->vm_end);
}
validate_mm(mm);
+
+ return 0;
}
/*
@@ -759,6 +751,7 @@ struct vm_area_struct *vma_merge(struct mm_struct *mm,
{
pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
struct vm_area_struct *area, *next;
+ int err;
/*
* We later require that vma->vm_flags == vm_flags,
@@ -792,11 +785,13 @@ struct vm_area_struct *vma_merge(struct mm_struct *mm,
is_mergeable_anon_vma(prev->anon_vma,
next->anon_vma)) {
/* cases 1, 6 */
- vma_adjust(prev, prev->vm_start,
+ err = vma_adjust(prev, prev->vm_start,
next->vm_end, prev->vm_pgoff, NULL);
} else /* cases 2, 5, 7 */
- vma_adjust(prev, prev->vm_start,
+ err = vma_adjust(prev, prev->vm_start,
end, prev->vm_pgoff, NULL);
+ if (err)
+ return NULL;
return prev;
}
@@ -808,11 +803,13 @@ struct vm_area_struct *vma_merge(struct mm_struct *mm,
can_vma_merge_before(next, vm_flags,
anon_vma, file, pgoff+pglen)) {
if (prev && addr < prev->vm_end) /* case 4 */
- vma_adjust(prev, prev->vm_start,
+ err = vma_adjust(prev, prev->vm_start,
addr, prev->vm_pgoff, NULL);
else /* cases 3, 8 */
- vma_adjust(area, addr, next->vm_end,
+ err = vma_adjust(area, addr, next->vm_end,
next->vm_pgoff - pglen, NULL);
+ if (err)
+ return NULL;
return area;
}
@@ -820,6 +817,61 @@ struct vm_area_struct *vma_merge(struct mm_struct *mm,
}
/*
+ * Rough compatbility check to quickly see if it's even worth looking
+ * at sharing an anon_vma.
+ *
+ * They need to have the same vm_file, and the flags can only differ
+ * in things that mprotect may change.
+ *
+ * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
+ * we can merge the two vma's. For example, we refuse to merge a vma if
+ * there is a vm_ops->close() function, because that indicates that the
+ * driver is doing some kind of reference counting. But that doesn't
+ * really matter for the anon_vma sharing case.
+ */
+static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
+{
+ return a->vm_end == b->vm_start &&
+ mpol_equal(vma_policy(a), vma_policy(b)) &&
+ a->vm_file == b->vm_file &&
+ !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
+ b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
+}
+
+/*
+ * Do some basic sanity checking to see if we can re-use the anon_vma
+ * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
+ * the same as 'old', the other will be the new one that is trying
+ * to share the anon_vma.
+ *
+ * NOTE! This runs with mm_sem held for reading, so it is possible that
+ * the anon_vma of 'old' is concurrently in the process of being set up
+ * by another page fault trying to merge _that_. But that's ok: if it
+ * is being set up, that automatically means that it will be a singleton
+ * acceptable for merging, so we can do all of this optimistically. But
+ * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
+ *
+ * IOW: that the "list_is_singular()" test on the anon_vma_chain only
+ * matters for the 'stable anon_vma' case (ie the thing we want to avoid
+ * is to return an anon_vma that is "complex" due to having gone through
+ * a fork).
+ *
+ * We also make sure that the two vma's are compatible (adjacent,
+ * and with the same memory policies). That's all stable, even with just
+ * a read lock on the mm_sem.
+ */
+static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
+{
+ if (anon_vma_compatible(a, b)) {
+ struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
+
+ if (anon_vma && list_is_singular(&old->anon_vma_chain))
+ return anon_vma;
+ }
+ return NULL;
+}
+
+/*
* find_mergeable_anon_vma is used by anon_vma_prepare, to check
* neighbouring vmas for a suitable anon_vma, before it goes off
* to allocate a new anon_vma. It checks because a repetitive
@@ -829,28 +881,16 @@ struct vm_area_struct *vma_merge(struct mm_struct *mm,
*/
struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
{
+ struct anon_vma *anon_vma;
struct vm_area_struct *near;
- unsigned long vm_flags;
near = vma->vm_next;
if (!near)
goto try_prev;
- /*
- * Since only mprotect tries to remerge vmas, match flags
- * which might be mprotected into each other later on.
- * Neither mlock nor madvise tries to remerge at present,
- * so leave their flags as obstructing a merge.
- */
- vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
- vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
-
- if (near->anon_vma && vma->vm_end == near->vm_start &&
- mpol_equal(vma_policy(vma), vma_policy(near)) &&
- can_vma_merge_before(near, vm_flags,
- NULL, vma->vm_file, vma->vm_pgoff +
- ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
- return near->anon_vma;
+ anon_vma = reusable_anon_vma(near, vma, near);
+ if (anon_vma)
+ return anon_vma;
try_prev:
/*
* It is potentially slow to have to call find_vma_prev here.
@@ -863,14 +903,9 @@ try_prev:
if (!near)
goto none;
- vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
- vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
-
- if (near->anon_vma && near->vm_end == vma->vm_start &&
- mpol_equal(vma_policy(near), vma_policy(vma)) &&
- can_vma_merge_after(near, vm_flags,
- NULL, vma->vm_file, vma->vm_pgoff))
- return near->anon_vma;
+ anon_vma = reusable_anon_vma(near, near, vma);
+ if (anon_vma)
+ return anon_vma;
none:
/*
* There's no absolute need to look only at touching neighbours:
@@ -967,7 +1002,7 @@ unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
unsigned long locked, lock_limit;
locked = len >> PAGE_SHIFT;
locked += mm->locked_vm;
- lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
+ lock_limit = rlimit(RLIMIT_MEMLOCK);
lock_limit >>= PAGE_SHIFT;
if (locked > lock_limit && !capable(CAP_IPC_LOCK))
return -EAGAIN;
@@ -1083,6 +1118,30 @@ out:
return retval;
}
+#ifdef __ARCH_WANT_SYS_OLD_MMAP
+struct mmap_arg_struct {
+ unsigned long addr;
+ unsigned long len;
+ unsigned long prot;
+ unsigned long flags;
+ unsigned long fd;
+ unsigned long offset;
+};
+
+SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
+{
+ struct mmap_arg_struct a;
+
+ if (copy_from_user(&a, arg, sizeof(a)))
+ return -EFAULT;
+ if (a.offset & ~PAGE_MASK)
+ return -EINVAL;
+
+ return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
+ a.offset >> PAGE_SHIFT);
+}
+#endif /* __ARCH_WANT_SYS_OLD_MMAP */
+
/*
* Some shared mappigns will want the pages marked read-only
* to track write events. If so, we'll downgrade vm_page_prot
@@ -1205,6 +1264,7 @@ munmap_back:
vma->vm_flags = vm_flags;
vma->vm_page_prot = vm_get_page_prot(vm_flags);
vma->vm_pgoff = pgoff;
+ INIT_LIST_HEAD(&vma->anon_vma_chain);
if (file) {
error = -EINVAL;
@@ -1265,13 +1325,8 @@ out:
mm->total_vm += len >> PAGE_SHIFT;
vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
if (vm_flags & VM_LOCKED) {
- /*
- * makes pages present; downgrades, drops, reacquires mmap_sem
- */
- long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
- if (nr_pages < 0)
- return nr_pages; /* vma gone! */
- mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
+ if (!mlock_vma_pages_range(vma, addr, addr + len))
+ mm->locked_vm += (len >> PAGE_SHIFT);
} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
make_pages_present(addr, addr + len);
return addr;
@@ -1599,7 +1654,7 @@ static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, uns
return -ENOMEM;
/* Stack limit test */
- if (size > rlim[RLIMIT_STACK].rlim_cur)
+ if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
return -ENOMEM;
/* mlock limit tests */
@@ -1607,7 +1662,8 @@ static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, uns
unsigned long locked;
unsigned long limit;
locked = mm->locked_vm + grow;
- limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
+ limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
+ limit >>= PAGE_SHIFT;
if (locked > limit && !capable(CAP_IPC_LOCK))
return -ENOMEM;
}
@@ -1754,8 +1810,7 @@ find_extend_vma(struct mm_struct *mm, unsigned long addr)
if (!prev || expand_stack(prev, addr))
return NULL;
if (prev->vm_flags & VM_LOCKED) {
- if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
- return NULL; /* vma gone! */
+ mlock_vma_pages_range(prev, addr, prev->vm_end);
}
return prev;
}
@@ -1783,8 +1838,7 @@ find_extend_vma(struct mm_struct * mm, unsigned long addr)
if (expand_stack(vma, addr))
return NULL;
if (vma->vm_flags & VM_LOCKED) {
- if (mlock_vma_pages_range(vma, addr, start) < 0)
- return NULL; /* vma gone! */
+ mlock_vma_pages_range(vma, addr, start);
}
return vma;
}
@@ -1871,6 +1925,7 @@ static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
{
struct mempolicy *pol;
struct vm_area_struct *new;
+ int err = -ENOMEM;
if (is_vm_hugetlb_page(vma) && (addr &
~(huge_page_mask(hstate_vma(vma)))))
@@ -1878,11 +1933,13 @@ static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
if (!new)
- return -ENOMEM;
+ goto out_err;
/* most fields are the same, copy all, and then fixup */
*new = *vma;
+ INIT_LIST_HEAD(&new->anon_vma_chain);
+
if (new_below)
new->vm_end = addr;
else {
@@ -1892,11 +1949,14 @@ static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
pol = mpol_dup(vma_policy(vma));
if (IS_ERR(pol)) {
- kmem_cache_free(vm_area_cachep, new);
- return PTR_ERR(pol);
+ err = PTR_ERR(pol);
+ goto out_free_vma;
}
vma_set_policy(new, pol);
+ if (anon_vma_clone(new, vma))
+ goto out_free_mpol;
+
if (new->vm_file) {
get_file(new->vm_file);
if (vma->vm_flags & VM_EXECUTABLE)
@@ -1907,12 +1967,29 @@ static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
new->vm_ops->open(new);
if (new_below)
- vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
+ err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
((addr - new->vm_start) >> PAGE_SHIFT), new);
else
- vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
+ err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
- return 0;
+ /* Success. */
+ if (!err)
+ return 0;
+
+ /* Clean everything up if vma_adjust failed. */
+ if (new->vm_ops && new->vm_ops->close)
+ new->vm_ops->close(new);
+ if (new->vm_file) {
+ if (vma->vm_flags & VM_EXECUTABLE)
+ removed_exe_file_vma(mm);
+ fput(new->vm_file);
+ }
+ out_free_mpol:
+ mpol_put(pol);
+ out_free_vma:
+ kmem_cache_free(vm_area_cachep, new);
+ out_err:
+ return err;
}
/*
@@ -2074,7 +2151,7 @@ unsigned long do_brk(unsigned long addr, unsigned long len)
unsigned long locked, lock_limit;
locked = len >> PAGE_SHIFT;
locked += mm->locked_vm;
- lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
+ lock_limit = rlimit(RLIMIT_MEMLOCK);
lock_limit >>= PAGE_SHIFT;
if (locked > lock_limit && !capable(CAP_IPC_LOCK))
return -EAGAIN;
@@ -2122,6 +2199,7 @@ unsigned long do_brk(unsigned long addr, unsigned long len)
return -ENOMEM;
}
+ INIT_LIST_HEAD(&vma->anon_vma_chain);
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
@@ -2258,10 +2336,11 @@ struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
if (new_vma) {
*new_vma = *vma;
pol = mpol_dup(vma_policy(vma));
- if (IS_ERR(pol)) {
- kmem_cache_free(vm_area_cachep, new_vma);
- return NULL;
- }
+ if (IS_ERR(pol))
+ goto out_free_vma;
+ INIT_LIST_HEAD(&new_vma->anon_vma_chain);
+ if (anon_vma_clone(new_vma, vma))
+ goto out_free_mempol;
vma_set_policy(new_vma, pol);
new_vma->vm_start = addr;
new_vma->vm_end = addr + len;
@@ -2277,6 +2356,12 @@ struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
}
}
return new_vma;
+
+ out_free_mempol:
+ mpol_put(pol);
+ out_free_vma:
+ kmem_cache_free(vm_area_cachep, new_vma);
+ return NULL;
}
/*
@@ -2288,7 +2373,7 @@ int may_expand_vm(struct mm_struct *mm, unsigned long npages)
unsigned long cur = mm->total_vm; /* pages */
unsigned long lim;
- lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
+ lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
if (cur + npages > lim)
return 0;
@@ -2354,6 +2439,7 @@ int install_special_mapping(struct mm_struct *mm,
if (unlikely(vma == NULL))
return -ENOMEM;
+ INIT_LIST_HEAD(&vma->anon_vma_chain);
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
@@ -2454,6 +2540,7 @@ static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
int mm_take_all_locks(struct mm_struct *mm)
{
struct vm_area_struct *vma;
+ struct anon_vma_chain *avc;
int ret = -EINTR;
BUG_ON(down_read_trylock(&mm->mmap_sem));
@@ -2471,7 +2558,8 @@ int mm_take_all_locks(struct mm_struct *mm)
if (signal_pending(current))
goto out_unlock;
if (vma->anon_vma)
- vm_lock_anon_vma(mm, vma->anon_vma);
+ list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
+ vm_lock_anon_vma(mm, avc->anon_vma);
}
ret = 0;
@@ -2526,13 +2614,15 @@ static void vm_unlock_mapping(struct address_space *mapping)
void mm_drop_all_locks(struct mm_struct *mm)
{
struct vm_area_struct *vma;
+ struct anon_vma_chain *avc;
BUG_ON(down_read_trylock(&mm->mmap_sem));
BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (vma->anon_vma)
- vm_unlock_anon_vma(vma->anon_vma);
+ list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
+ vm_unlock_anon_vma(avc->anon_vma);
if (vma->vm_file && vma->vm_file->f_mapping)
vm_unlock_mapping(vma->vm_file->f_mapping);
}
diff --git a/mm/mmu_context.c b/mm/mmu_context.c
index ded9081f4021..9e82e937000e 100644
--- a/mm/mmu_context.c
+++ b/mm/mmu_context.c
@@ -5,6 +5,7 @@
#include <linux/mm.h>
#include <linux/mmu_context.h>
+#include <linux/module.h>
#include <linux/sched.h>
#include <asm/mmu_context.h>
@@ -37,6 +38,7 @@ void use_mm(struct mm_struct *mm)
if (active_mm != mm)
mmdrop(active_mm);
}
+EXPORT_SYMBOL_GPL(use_mm);
/*
* unuse_mm
@@ -51,8 +53,10 @@ void unuse_mm(struct mm_struct *mm)
struct task_struct *tsk = current;
task_lock(tsk);
+ sync_mm_rss(tsk, mm);
tsk->mm = NULL;
/* active_mm is still 'mm' */
enter_lazy_tlb(mm, tsk);
task_unlock(tsk);
}
+EXPORT_SYMBOL_GPL(unuse_mm);
diff --git a/mm/mmu_notifier.c b/mm/mmu_notifier.c
index 7e33f2cb3c77..438951d366f2 100644
--- a/mm/mmu_notifier.c
+++ b/mm/mmu_notifier.c
@@ -16,6 +16,7 @@
#include <linux/err.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
+#include <linux/slab.h>
/*
* This function can't run concurrently against mmu_notifier_register
diff --git a/mm/mprotect.c b/mm/mprotect.c
index 8bc969d8112d..2d1bf7cf8851 100644
--- a/mm/mprotect.c
+++ b/mm/mprotect.c
@@ -10,7 +10,6 @@
#include <linux/mm.h>
#include <linux/hugetlb.h>
-#include <linux/slab.h>
#include <linux/shm.h>
#include <linux/mman.h>
#include <linux/fs.h>
diff --git a/mm/mremap.c b/mm/mremap.c
index 845190898d59..cde56ee51ef7 100644
--- a/mm/mremap.c
+++ b/mm/mremap.c
@@ -9,7 +9,6 @@
#include <linux/mm.h>
#include <linux/hugetlb.h>
-#include <linux/slab.h>
#include <linux/shm.h>
#include <linux/ksm.h>
#include <linux/mman.h>
@@ -285,7 +284,7 @@ static struct vm_area_struct *vma_to_resize(unsigned long addr,
if (vma->vm_flags & VM_LOCKED) {
unsigned long locked, lock_limit;
locked = mm->locked_vm << PAGE_SHIFT;
- lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
+ lock_limit = rlimit(RLIMIT_MEMLOCK);
locked += new_len - old_len;
if (locked > lock_limit && !capable(CAP_IPC_LOCK))
goto Eagain;
@@ -460,8 +459,11 @@ unsigned long do_mremap(unsigned long addr,
if (vma_expandable(vma, new_len - old_len)) {
int pages = (new_len - old_len) >> PAGE_SHIFT;
- vma_adjust(vma, vma->vm_start,
- addr + new_len, vma->vm_pgoff, NULL);
+ if (vma_adjust(vma, vma->vm_start, addr + new_len,
+ vma->vm_pgoff, NULL)) {
+ ret = -ENOMEM;
+ goto out;
+ }
mm->total_vm += pages;
vm_stat_account(mm, vma->vm_flags, vma->vm_file, pages);
diff --git a/mm/msync.c b/mm/msync.c
index 4083209b7f02..632df4527c01 100644
--- a/mm/msync.c
+++ b/mm/msync.c
@@ -82,7 +82,7 @@ SYSCALL_DEFINE3(msync, unsigned long, start, size_t, len, int, flags)
(vma->vm_flags & VM_SHARED)) {
get_file(file);
up_read(&mm->mmap_sem);
- error = vfs_fsync(file, file->f_path.dentry, 0);
+ error = vfs_fsync(file, 0);
fput(file);
if (error || start >= end)
goto out;
diff --git a/mm/nommu.c b/mm/nommu.c
index 48a2ecfaf059..b76f3ee0abe0 100644
--- a/mm/nommu.c
+++ b/mm/nommu.c
@@ -162,7 +162,7 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
}
if (vmas)
vmas[i] = vma;
- start += PAGE_SIZE;
+ start = (start + PAGE_SIZE) & PAGE_MASK;
}
return i;
@@ -918,14 +918,6 @@ static int validate_mmap_request(struct file *file,
if (!(capabilities & BDI_CAP_MAP_DIRECT))
return -ENODEV;
- if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
- ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
- ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
- ) {
- printk("MAP_SHARED not completely supported on !MMU\n");
- return -EINVAL;
- }
-
/* we mustn't privatise shared mappings */
capabilities &= ~BDI_CAP_MAP_COPY;
}
@@ -941,6 +933,20 @@ static int validate_mmap_request(struct file *file,
capabilities &= ~BDI_CAP_MAP_DIRECT;
}
+ if (capabilities & BDI_CAP_MAP_DIRECT) {
+ if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
+ ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
+ ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
+ ) {
+ capabilities &= ~BDI_CAP_MAP_DIRECT;
+ if (flags & MAP_SHARED) {
+ printk(KERN_WARNING
+ "MAP_SHARED not completely supported on !MMU\n");
+ return -EINVAL;
+ }
+ }
+ }
+
/* handle executable mappings and implied executable
* mappings */
if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
@@ -996,22 +1002,20 @@ static unsigned long determine_vm_flags(struct file *file,
unsigned long vm_flags;
vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
- vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
/* vm_flags |= mm->def_flags; */
if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
/* attempt to share read-only copies of mapped file chunks */
+ vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
if (file && !(prot & PROT_WRITE))
vm_flags |= VM_MAYSHARE;
- }
- else {
+ } else {
/* overlay a shareable mapping on the backing device or inode
* if possible - used for chardevs, ramfs/tmpfs/shmfs and
* romfs/cramfs */
+ vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
if (flags & MAP_SHARED)
- vm_flags |= VM_MAYSHARE | VM_SHARED;
- else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
- vm_flags |= VM_MAYSHARE;
+ vm_flags |= VM_SHARED;
}
/* refuse to let anyone share private mappings with this process if
@@ -1040,10 +1044,9 @@ static int do_mmap_shared_file(struct vm_area_struct *vma)
if (ret != -ENOSYS)
return ret;
- /* getting an ENOSYS error indicates that direct mmap isn't
- * possible (as opposed to tried but failed) so we'll fall
- * through to making a private copy of the data and mapping
- * that if we can */
+ /* getting -ENOSYS indicates that direct mmap isn't possible (as
+ * opposed to tried but failed) so we can only give a suitable error as
+ * it's not possible to make a private copy if MAP_SHARED was given */
return -ENODEV;
}
@@ -1209,7 +1212,7 @@ unsigned long do_mmap_pgoff(struct file *file,
region->vm_flags = vm_flags;
region->vm_pgoff = pgoff;
- INIT_LIST_HEAD(&vma->anon_vma_node);
+ INIT_LIST_HEAD(&vma->anon_vma_chain);
vma->vm_flags = vm_flags;
vma->vm_pgoff = pgoff;
@@ -1428,6 +1431,30 @@ out:
return retval;
}
+#ifdef __ARCH_WANT_SYS_OLD_MMAP
+struct mmap_arg_struct {
+ unsigned long addr;
+ unsigned long len;
+ unsigned long prot;
+ unsigned long flags;
+ unsigned long fd;
+ unsigned long offset;
+};
+
+SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
+{
+ struct mmap_arg_struct a;
+
+ if (copy_from_user(&a, arg, sizeof(a)))
+ return -EFAULT;
+ if (a.offset & ~PAGE_MASK)
+ return -EINVAL;
+
+ return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
+ a.offset >> PAGE_SHIFT);
+}
+#endif /* __ARCH_WANT_SYS_OLD_MMAP */
+
/*
* split a vma into two pieces at address 'addr', a new vma is allocated either
* for the first part or the tail.
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
index f52481b1c1e5..709aedfaa014 100644
--- a/mm/oom_kill.c
+++ b/mm/oom_kill.c
@@ -18,6 +18,7 @@
#include <linux/oom.h>
#include <linux/mm.h>
#include <linux/err.h>
+#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/swap.h>
#include <linux/timex.h>
@@ -401,8 +402,8 @@ static void __oom_kill_task(struct task_struct *p, int verbose)
"vsz:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
task_pid_nr(p), p->comm,
K(p->mm->total_vm),
- K(get_mm_counter(p->mm, anon_rss)),
- K(get_mm_counter(p->mm, file_rss)));
+ K(get_mm_counter(p->mm, MM_ANONPAGES)),
+ K(get_mm_counter(p->mm, MM_FILEPAGES)));
task_unlock(p);
/*
@@ -459,6 +460,8 @@ static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
list_for_each_entry(c, &p->children, sibling) {
if (c->mm == p->mm)
continue;
+ if (mem && !task_in_mem_cgroup(c, mem))
+ continue;
if (!oom_kill_task(c))
return 0;
}
@@ -471,15 +474,14 @@ void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
unsigned long points = 0;
struct task_struct *p;
+ if (sysctl_panic_on_oom == 2)
+ panic("out of memory(memcg). panic_on_oom is selected.\n");
read_lock(&tasklist_lock);
retry:
p = select_bad_process(&points, mem);
- if (PTR_ERR(p) == -1UL)
+ if (!p || PTR_ERR(p) == -1UL)
goto out;
- if (!p)
- p = current;
-
if (oom_kill_process(p, gfp_mask, 0, points, mem,
"Memory cgroup out of memory"))
goto retry;
@@ -599,13 +601,6 @@ void pagefault_out_of_memory(void)
/* Got some memory back in the last second. */
return;
- /*
- * If this is from memcg, oom-killer is already invoked.
- * and not worth to go system-wide-oom.
- */
- if (mem_cgroup_oom_called(current))
- goto rest_and_return;
-
if (sysctl_panic_on_oom)
panic("out of memory from page fault. panic_on_oom is selected.\n");
@@ -617,7 +612,6 @@ void pagefault_out_of_memory(void)
* Give "p" a good chance of killing itself before we
* retry to allocate memory.
*/
-rest_and_return:
if (!test_thread_flag(TIF_MEMDIE))
schedule_timeout_uninterruptible(1);
}
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index 0b19943ecf8b..37498ef61548 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -495,7 +495,6 @@ static void balance_dirty_pages(struct address_space *mapping,
for (;;) {
struct writeback_control wbc = {
- .bdi = bdi,
.sync_mode = WB_SYNC_NONE,
.older_than_this = NULL,
.nr_to_write = write_chunk,
@@ -537,7 +536,7 @@ static void balance_dirty_pages(struct address_space *mapping,
* up.
*/
if (bdi_nr_reclaimable > bdi_thresh) {
- writeback_inodes_wbc(&wbc);
+ writeback_inodes_wb(&bdi->wb, &wbc);
pages_written += write_chunk - wbc.nr_to_write;
get_dirty_limits(&background_thresh, &dirty_thresh,
&bdi_thresh, bdi);
@@ -597,7 +596,7 @@ static void balance_dirty_pages(struct address_space *mapping,
(!laptop_mode && ((global_page_state(NR_FILE_DIRTY)
+ global_page_state(NR_UNSTABLE_NFS))
> background_thresh)))
- bdi_start_writeback(bdi, NULL, 0);
+ bdi_start_background_writeback(bdi);
}
void set_page_dirty_balance(struct page *page, int page_mkwrite)
@@ -683,10 +682,6 @@ void throttle_vm_writeout(gfp_t gfp_mask)
}
}
-static void laptop_timer_fn(unsigned long unused);
-
-static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
-
/*
* sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
*/
@@ -694,24 +689,23 @@ int dirty_writeback_centisecs_handler(ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
proc_dointvec(table, write, buffer, length, ppos);
+ bdi_arm_supers_timer();
return 0;
}
-static void do_laptop_sync(struct work_struct *work)
-{
- wakeup_flusher_threads(0);
- kfree(work);
-}
-
-static void laptop_timer_fn(unsigned long unused)
+#ifdef CONFIG_BLOCK
+void laptop_mode_timer_fn(unsigned long data)
{
- struct work_struct *work;
+ struct request_queue *q = (struct request_queue *)data;
+ int nr_pages = global_page_state(NR_FILE_DIRTY) +
+ global_page_state(NR_UNSTABLE_NFS);
- work = kmalloc(sizeof(*work), GFP_ATOMIC);
- if (work) {
- INIT_WORK(work, do_laptop_sync);
- schedule_work(work);
- }
+ /*
+ * We want to write everything out, not just down to the dirty
+ * threshold
+ */
+ if (bdi_has_dirty_io(&q->backing_dev_info))
+ bdi_start_writeback(&q->backing_dev_info, nr_pages);
}
/*
@@ -719,9 +713,9 @@ static void laptop_timer_fn(unsigned long unused)
* of all dirty data a few seconds from now. If the flush is already scheduled
* then push it back - the user is still using the disk.
*/
-void laptop_io_completion(void)
+void laptop_io_completion(struct backing_dev_info *info)
{
- mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
+ mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
}
/*
@@ -731,8 +725,16 @@ void laptop_io_completion(void)
*/
void laptop_sync_completion(void)
{
- del_timer(&laptop_mode_wb_timer);
+ struct backing_dev_info *bdi;
+
+ rcu_read_lock();
+
+ list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
+ del_timer(&bdi->laptop_mode_wb_timer);
+
+ rcu_read_unlock();
}
+#endif
/*
* If ratelimit_pages is too high then we can get into dirty-data overload
@@ -831,7 +833,6 @@ int write_cache_pages(struct address_space *mapping,
pgoff_t done_index;
int cycled;
int range_whole = 0;
- long nr_to_write = wbc->nr_to_write;
pagevec_init(&pvec, 0);
if (wbc->range_cyclic) {
@@ -848,7 +849,22 @@ int write_cache_pages(struct address_space *mapping,
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
range_whole = 1;
cycled = 1; /* ignore range_cyclic tests */
+
+ /*
+ * If this is a data integrity sync, cap the writeback to the
+ * current end of file. Any extension to the file that occurs
+ * after this is a new write and we don't need to write those
+ * pages out to fulfil our data integrity requirements. If we
+ * try to write them out, we can get stuck in this scan until
+ * the concurrent writer stops adding dirty pages and extending
+ * EOF.
+ */
+ if (wbc->sync_mode == WB_SYNC_ALL &&
+ wbc->range_end == LLONG_MAX) {
+ end = i_size_read(mapping->host) >> PAGE_CACHE_SHIFT;
+ }
}
+
retry:
done_index = index;
while (!done && (index <= end)) {
@@ -931,11 +947,10 @@ continue_unlock:
done = 1;
break;
}
- }
+ }
- if (nr_to_write > 0) {
- nr_to_write--;
- if (nr_to_write == 0 &&
+ if (wbc->nr_to_write > 0) {
+ if (--wbc->nr_to_write == 0 &&
wbc->sync_mode == WB_SYNC_NONE) {
/*
* We stop writing back only if we are
@@ -966,11 +981,8 @@ continue_unlock:
end = writeback_index - 1;
goto retry;
}
- if (!wbc->no_nrwrite_index_update) {
- if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
- mapping->writeback_index = done_index;
- wbc->nr_to_write = nr_to_write;
- }
+ if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
+ mapping->writeback_index = done_index;
return ret;
}
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 8deb9d0fd5b1..9bd339eb04c6 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -49,12 +49,30 @@
#include <linux/debugobjects.h>
#include <linux/kmemleak.h>
#include <linux/memory.h>
+#include <linux/compaction.h>
#include <trace/events/kmem.h>
+#include <linux/ftrace_event.h>
#include <asm/tlbflush.h>
#include <asm/div64.h>
#include "internal.h"
+#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
+DEFINE_PER_CPU(int, numa_node);
+EXPORT_PER_CPU_SYMBOL(numa_node);
+#endif
+
+#ifdef CONFIG_HAVE_MEMORYLESS_NODES
+/*
+ * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
+ * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
+ * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
+ * defined in <linux/topology.h>.
+ */
+DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
+EXPORT_PER_CPU_SYMBOL(_numa_mem_);
+#endif
+
/*
* Array of node states.
*/
@@ -76,6 +94,31 @@ unsigned long totalreserve_pages __read_mostly;
int percpu_pagelist_fraction;
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
+#ifdef CONFIG_PM_SLEEP
+/*
+ * The following functions are used by the suspend/hibernate code to temporarily
+ * change gfp_allowed_mask in order to avoid using I/O during memory allocations
+ * while devices are suspended. To avoid races with the suspend/hibernate code,
+ * they should always be called with pm_mutex held (gfp_allowed_mask also should
+ * only be modified with pm_mutex held, unless the suspend/hibernate code is
+ * guaranteed not to run in parallel with that modification).
+ */
+void set_gfp_allowed_mask(gfp_t mask)
+{
+ WARN_ON(!mutex_is_locked(&pm_mutex));
+ gfp_allowed_mask = mask;
+}
+
+gfp_t clear_gfp_allowed_mask(gfp_t mask)
+{
+ gfp_t ret = gfp_allowed_mask;
+
+ WARN_ON(!mutex_is_locked(&pm_mutex));
+ gfp_allowed_mask &= ~mask;
+ return ret;
+}
+#endif /* CONFIG_PM_SLEEP */
+
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
int pageblock_order __read_mostly;
#endif
@@ -263,10 +306,7 @@ static void bad_page(struct page *page)
printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
current->comm, page_to_pfn(page));
- printk(KERN_ALERT
- "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
- page, (void *)page->flags, page_count(page),
- page_mapcount(page), page->mapping, page->index);
+ dump_page(page);
dump_stack();
out:
@@ -452,6 +492,8 @@ static inline void __free_one_page(struct page *page,
int migratetype)
{
unsigned long page_idx;
+ unsigned long combined_idx;
+ struct page *buddy;
if (unlikely(PageCompound(page)))
if (unlikely(destroy_compound_page(page, order)))
@@ -465,9 +507,6 @@ static inline void __free_one_page(struct page *page,
VM_BUG_ON(bad_range(zone, page));
while (order < MAX_ORDER-1) {
- unsigned long combined_idx;
- struct page *buddy;
-
buddy = __page_find_buddy(page, page_idx, order);
if (!page_is_buddy(page, buddy, order))
break;
@@ -482,8 +521,29 @@ static inline void __free_one_page(struct page *page,
order++;
}
set_page_order(page, order);
- list_add(&page->lru,
- &zone->free_area[order].free_list[migratetype]);
+
+ /*
+ * If this is not the largest possible page, check if the buddy
+ * of the next-highest order is free. If it is, it's possible
+ * that pages are being freed that will coalesce soon. In case,
+ * that is happening, add the free page to the tail of the list
+ * so it's less likely to be used soon and more likely to be merged
+ * as a higher order page
+ */
+ if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
+ struct page *higher_page, *higher_buddy;
+ combined_idx = __find_combined_index(page_idx, order);
+ higher_page = page + combined_idx - page_idx;
+ higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
+ if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
+ list_add_tail(&page->lru,
+ &zone->free_area[order].free_list[migratetype]);
+ goto out;
+ }
+ }
+
+ list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
+out:
zone->free_area[order].nr_free++;
}
@@ -530,7 +590,7 @@ static void free_pcppages_bulk(struct zone *zone, int count,
int batch_free = 0;
spin_lock(&zone->lock);
- zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
+ zone->all_unreclaimable = 0;
zone->pages_scanned = 0;
__mod_zone_page_state(zone, NR_FREE_PAGES, count);
@@ -568,7 +628,7 @@ static void free_one_page(struct zone *zone, struct page *page, int order,
int migratetype)
{
spin_lock(&zone->lock);
- zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
+ zone->all_unreclaimable = 0;
zone->pages_scanned = 0;
__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
@@ -576,19 +636,23 @@ static void free_one_page(struct zone *zone, struct page *page, int order,
spin_unlock(&zone->lock);
}
-static void __free_pages_ok(struct page *page, unsigned int order)
+static bool free_pages_prepare(struct page *page, unsigned int order)
{
- unsigned long flags;
int i;
int bad = 0;
- int wasMlocked = __TestClearPageMlocked(page);
+ trace_mm_page_free_direct(page, order);
kmemcheck_free_shadow(page, order);
- for (i = 0 ; i < (1 << order) ; ++i)
- bad += free_pages_check(page + i);
+ for (i = 0; i < (1 << order); i++) {
+ struct page *pg = page + i;
+
+ if (PageAnon(pg))
+ pg->mapping = NULL;
+ bad += free_pages_check(pg);
+ }
if (bad)
- return;
+ return false;
if (!PageHighMem(page)) {
debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
@@ -598,6 +662,17 @@ static void __free_pages_ok(struct page *page, unsigned int order)
arch_free_page(page, order);
kernel_map_pages(page, 1 << order, 0);
+ return true;
+}
+
+static void __free_pages_ok(struct page *page, unsigned int order)
+{
+ unsigned long flags;
+ int wasMlocked = __TestClearPageMlocked(page);
+
+ if (!free_pages_prepare(page, order))
+ return;
+
local_irq_save(flags);
if (unlikely(wasMlocked))
free_page_mlock(page);
@@ -1009,10 +1084,10 @@ static void drain_pages(unsigned int cpu)
struct per_cpu_pageset *pset;
struct per_cpu_pages *pcp;
- pset = zone_pcp(zone, cpu);
+ local_irq_save(flags);
+ pset = per_cpu_ptr(zone->pageset, cpu);
pcp = &pset->pcp;
- local_irq_save(flags);
free_pcppages_bulk(zone, pcp->count, pcp);
pcp->count = 0;
local_irq_restore(flags);
@@ -1073,8 +1148,9 @@ void mark_free_pages(struct zone *zone)
/*
* Free a 0-order page
+ * cold == 1 ? free a cold page : free a hot page
*/
-static void free_hot_cold_page(struct page *page, int cold)
+void free_hot_cold_page(struct page *page, int cold)
{
struct zone *zone = page_zone(page);
struct per_cpu_pages *pcp;
@@ -1082,21 +1158,9 @@ static void free_hot_cold_page(struct page *page, int cold)
int migratetype;
int wasMlocked = __TestClearPageMlocked(page);
- kmemcheck_free_shadow(page, 0);
-
- if (PageAnon(page))
- page->mapping = NULL;
- if (free_pages_check(page))
+ if (!free_pages_prepare(page, 0))
return;
- if (!PageHighMem(page)) {
- debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
- debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
- }
- arch_free_page(page, 0);
- kernel_map_pages(page, 1, 0);
-
- pcp = &zone_pcp(zone, get_cpu())->pcp;
migratetype = get_pageblock_migratetype(page);
set_page_private(page, migratetype);
local_irq_save(flags);
@@ -1119,6 +1183,7 @@ static void free_hot_cold_page(struct page *page, int cold)
migratetype = MIGRATE_MOVABLE;
}
+ pcp = &this_cpu_ptr(zone->pageset)->pcp;
if (cold)
list_add_tail(&page->lru, &pcp->lists[migratetype]);
else
@@ -1131,15 +1196,8 @@ static void free_hot_cold_page(struct page *page, int cold)
out:
local_irq_restore(flags);
- put_cpu();
}
-void free_hot_page(struct page *page)
-{
- trace_mm_page_free_direct(page, 0);
- free_hot_cold_page(page, 0);
-}
-
/*
* split_page takes a non-compound higher-order page, and splits it into
* n (1<<order) sub-pages: page[0..n]
@@ -1169,6 +1227,51 @@ void split_page(struct page *page, unsigned int order)
}
/*
+ * Similar to split_page except the page is already free. As this is only
+ * being used for migration, the migratetype of the block also changes.
+ * As this is called with interrupts disabled, the caller is responsible
+ * for calling arch_alloc_page() and kernel_map_page() after interrupts
+ * are enabled.
+ *
+ * Note: this is probably too low level an operation for use in drivers.
+ * Please consult with lkml before using this in your driver.
+ */
+int split_free_page(struct page *page)
+{
+ unsigned int order;
+ unsigned long watermark;
+ struct zone *zone;
+
+ BUG_ON(!PageBuddy(page));
+
+ zone = page_zone(page);
+ order = page_order(page);
+
+ /* Obey watermarks as if the page was being allocated */
+ watermark = low_wmark_pages(zone) + (1 << order);
+ if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
+ return 0;
+
+ /* Remove page from free list */
+ list_del(&page->lru);
+ zone->free_area[order].nr_free--;
+ rmv_page_order(page);
+ __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
+
+ /* Split into individual pages */
+ set_page_refcounted(page);
+ split_page(page, order);
+
+ if (order >= pageblock_order - 1) {
+ struct page *endpage = page + (1 << order) - 1;
+ for (; page < endpage; page += pageblock_nr_pages)
+ set_pageblock_migratetype(page, MIGRATE_MOVABLE);
+ }
+
+ return 1 << order;
+}
+
+/*
* Really, prep_compound_page() should be called from __rmqueue_bulk(). But
* we cheat by calling it from here, in the order > 0 path. Saves a branch
* or two.
@@ -1181,17 +1284,15 @@ struct page *buffered_rmqueue(struct zone *preferred_zone,
unsigned long flags;
struct page *page;
int cold = !!(gfp_flags & __GFP_COLD);
- int cpu;
again:
- cpu = get_cpu();
if (likely(order == 0)) {
struct per_cpu_pages *pcp;
struct list_head *list;
- pcp = &zone_pcp(zone, cpu)->pcp;
- list = &pcp->lists[migratetype];
local_irq_save(flags);
+ pcp = &this_cpu_ptr(zone->pageset)->pcp;
+ list = &pcp->lists[migratetype];
if (list_empty(list)) {
pcp->count += rmqueue_bulk(zone, 0,
pcp->batch, list,
@@ -1232,7 +1333,6 @@ again:
__count_zone_vm_events(PGALLOC, zone, 1 << order);
zone_statistics(preferred_zone, zone);
local_irq_restore(flags);
- put_cpu();
VM_BUG_ON(bad_range(zone, page));
if (prep_new_page(page, order, gfp_flags))
@@ -1241,7 +1341,6 @@ again:
failed:
local_irq_restore(flags);
- put_cpu();
return NULL;
}
@@ -1678,6 +1777,62 @@ out:
return page;
}
+#ifdef CONFIG_COMPACTION
+/* Try memory compaction for high-order allocations before reclaim */
+static struct page *
+__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
+ struct zonelist *zonelist, enum zone_type high_zoneidx,
+ nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
+ int migratetype, unsigned long *did_some_progress)
+{
+ struct page *page;
+
+ if (!order || compaction_deferred(preferred_zone))
+ return NULL;
+
+ *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
+ nodemask);
+ if (*did_some_progress != COMPACT_SKIPPED) {
+
+ /* Page migration frees to the PCP lists but we want merging */
+ drain_pages(get_cpu());
+ put_cpu();
+
+ page = get_page_from_freelist(gfp_mask, nodemask,
+ order, zonelist, high_zoneidx,
+ alloc_flags, preferred_zone,
+ migratetype);
+ if (page) {
+ preferred_zone->compact_considered = 0;
+ preferred_zone->compact_defer_shift = 0;
+ count_vm_event(COMPACTSUCCESS);
+ return page;
+ }
+
+ /*
+ * It's bad if compaction run occurs and fails.
+ * The most likely reason is that pages exist,
+ * but not enough to satisfy watermarks.
+ */
+ count_vm_event(COMPACTFAIL);
+ defer_compaction(preferred_zone);
+
+ cond_resched();
+ }
+
+ return NULL;
+}
+#else
+static inline struct page *
+__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
+ struct zonelist *zonelist, enum zone_type high_zoneidx,
+ nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
+ int migratetype, unsigned long *did_some_progress)
+{
+ return NULL;
+}
+#endif /* CONFIG_COMPACTION */
+
/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
@@ -1864,6 +2019,15 @@ rebalance:
if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
goto nopage;
+ /* Try direct compaction */
+ page = __alloc_pages_direct_compact(gfp_mask, order,
+ zonelist, high_zoneidx,
+ nodemask,
+ alloc_flags, preferred_zone,
+ migratetype, &did_some_progress);
+ if (page)
+ goto got_pg;
+
/* Try direct reclaim and then allocating */
page = __alloc_pages_direct_reclaim(gfp_mask, order,
zonelist, high_zoneidx,
@@ -1955,10 +2119,13 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
if (unlikely(!zonelist->_zonerefs->zone))
return NULL;
+ get_mems_allowed();
/* The preferred zone is used for statistics later */
first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
- if (!preferred_zone)
+ if (!preferred_zone) {
+ put_mems_allowed();
return NULL;
+ }
/* First allocation attempt */
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
@@ -1968,6 +2135,7 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
page = __alloc_pages_slowpath(gfp_mask, order,
zonelist, high_zoneidx, nodemask,
preferred_zone, migratetype);
+ put_mems_allowed();
trace_mm_page_alloc(page, order, gfp_mask, migratetype);
return page;
@@ -2013,9 +2181,8 @@ void __pagevec_free(struct pagevec *pvec)
void __free_pages(struct page *page, unsigned int order)
{
if (put_page_testzero(page)) {
- trace_mm_page_free_direct(page, order);
if (order == 0)
- free_hot_page(page);
+ free_hot_cold_page(page, 0);
else
__free_pages_ok(page, order);
}
@@ -2180,7 +2347,7 @@ void show_free_areas(void)
for_each_online_cpu(cpu) {
struct per_cpu_pageset *pageset;
- pageset = zone_pcp(zone, cpu);
+ pageset = per_cpu_ptr(zone->pageset, cpu);
printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
cpu, pageset->pcp.high,
@@ -2271,7 +2438,7 @@ void show_free_areas(void)
K(zone_page_state(zone, NR_BOUNCE)),
K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
zone->pages_scanned,
- (zone_is_all_unreclaimable(zone) ? "yes" : "no")
+ (zone->all_unreclaimable ? "yes" : "no")
);
printk("lowmem_reserve[]:");
for (i = 0; i < MAX_NR_ZONES; i++)
@@ -2420,8 +2587,11 @@ int numa_zonelist_order_handler(ctl_table *table, int write,
strncpy((char*)table->data, saved_string,
NUMA_ZONELIST_ORDER_LEN);
user_zonelist_order = oldval;
- } else if (oldval != user_zonelist_order)
- build_all_zonelists();
+ } else if (oldval != user_zonelist_order) {
+ mutex_lock(&zonelists_mutex);
+ build_all_zonelists(NULL);
+ mutex_unlock(&zonelists_mutex);
+ }
}
out:
mutex_unlock(&zl_order_mutex);
@@ -2565,10 +2735,10 @@ static int default_zonelist_order(void)
struct zone *z;
int average_size;
/*
- * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
+ * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
* If they are really small and used heavily, the system can fall
* into OOM very easily.
- * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
+ * This function detect ZONE_DMA/DMA32 size and configures zone order.
*/
/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
low_kmem_size = 0;
@@ -2580,6 +2750,15 @@ static int default_zonelist_order(void)
if (zone_type < ZONE_NORMAL)
low_kmem_size += z->present_pages;
total_size += z->present_pages;
+ } else if (zone_type == ZONE_NORMAL) {
+ /*
+ * If any node has only lowmem, then node order
+ * is preferred to allow kernel allocations
+ * locally; otherwise, they can easily infringe
+ * on other nodes when there is an abundance of
+ * lowmem available to allocate from.
+ */
+ return ZONELIST_ORDER_NODE;
}
}
}
@@ -2693,6 +2872,24 @@ static void build_zonelist_cache(pg_data_t *pgdat)
zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
}
+#ifdef CONFIG_HAVE_MEMORYLESS_NODES
+/*
+ * Return node id of node used for "local" allocations.
+ * I.e., first node id of first zone in arg node's generic zonelist.
+ * Used for initializing percpu 'numa_mem', which is used primarily
+ * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
+ */
+int local_memory_node(int node)
+{
+ struct zone *zone;
+
+ (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
+ gfp_zone(GFP_KERNEL),
+ NULL,
+ &zone);
+ return zone->node;
+}
+#endif
#else /* CONFIG_NUMA */
@@ -2745,10 +2942,36 @@ static void build_zonelist_cache(pg_data_t *pgdat)
#endif /* CONFIG_NUMA */
+/*
+ * Boot pageset table. One per cpu which is going to be used for all
+ * zones and all nodes. The parameters will be set in such a way
+ * that an item put on a list will immediately be handed over to
+ * the buddy list. This is safe since pageset manipulation is done
+ * with interrupts disabled.
+ *
+ * The boot_pagesets must be kept even after bootup is complete for
+ * unused processors and/or zones. They do play a role for bootstrapping
+ * hotplugged processors.
+ *
+ * zoneinfo_show() and maybe other functions do
+ * not check if the processor is online before following the pageset pointer.
+ * Other parts of the kernel may not check if the zone is available.
+ */
+static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
+static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
+static void setup_zone_pageset(struct zone *zone);
+
+/*
+ * Global mutex to protect against size modification of zonelists
+ * as well as to serialize pageset setup for the new populated zone.
+ */
+DEFINE_MUTEX(zonelists_mutex);
+
/* return values int ....just for stop_machine() */
-static int __build_all_zonelists(void *dummy)
+static __init_refok int __build_all_zonelists(void *data)
{
int nid;
+ int cpu;
#ifdef CONFIG_NUMA
memset(node_load, 0, sizeof(node_load));
@@ -2759,10 +2982,53 @@ static int __build_all_zonelists(void *dummy)
build_zonelists(pgdat);
build_zonelist_cache(pgdat);
}
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+ /* Setup real pagesets for the new zone */
+ if (data) {
+ struct zone *zone = data;
+ setup_zone_pageset(zone);
+ }
+#endif
+
+ /*
+ * Initialize the boot_pagesets that are going to be used
+ * for bootstrapping processors. The real pagesets for
+ * each zone will be allocated later when the per cpu
+ * allocator is available.
+ *
+ * boot_pagesets are used also for bootstrapping offline
+ * cpus if the system is already booted because the pagesets
+ * are needed to initialize allocators on a specific cpu too.
+ * F.e. the percpu allocator needs the page allocator which
+ * needs the percpu allocator in order to allocate its pagesets
+ * (a chicken-egg dilemma).
+ */
+ for_each_possible_cpu(cpu) {
+ setup_pageset(&per_cpu(boot_pageset, cpu), 0);
+
+#ifdef CONFIG_HAVE_MEMORYLESS_NODES
+ /*
+ * We now know the "local memory node" for each node--
+ * i.e., the node of the first zone in the generic zonelist.
+ * Set up numa_mem percpu variable for on-line cpus. During
+ * boot, only the boot cpu should be on-line; we'll init the
+ * secondary cpus' numa_mem as they come on-line. During
+ * node/memory hotplug, we'll fixup all on-line cpus.
+ */
+ if (cpu_online(cpu))
+ set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
+#endif
+ }
+
return 0;
}
-void build_all_zonelists(void)
+/*
+ * Called with zonelists_mutex held always
+ * unless system_state == SYSTEM_BOOTING.
+ */
+void build_all_zonelists(void *data)
{
set_zonelist_order();
@@ -2773,7 +3039,7 @@ void build_all_zonelists(void)
} else {
/* we have to stop all cpus to guarantee there is no user
of zonelist */
- stop_machine(__build_all_zonelists, NULL, NULL);
+ stop_machine(__build_all_zonelists, data, NULL);
/* cpuset refresh routine should be here */
}
vm_total_pages = nr_free_pagecache_pages();
@@ -3096,121 +3362,36 @@ static void setup_pagelist_highmark(struct per_cpu_pageset *p,
pcp->batch = PAGE_SHIFT * 8;
}
-
-#ifdef CONFIG_NUMA
-/*
- * Boot pageset table. One per cpu which is going to be used for all
- * zones and all nodes. The parameters will be set in such a way
- * that an item put on a list will immediately be handed over to
- * the buddy list. This is safe since pageset manipulation is done
- * with interrupts disabled.
- *
- * Some NUMA counter updates may also be caught by the boot pagesets.
- *
- * The boot_pagesets must be kept even after bootup is complete for
- * unused processors and/or zones. They do play a role for bootstrapping
- * hotplugged processors.
- *
- * zoneinfo_show() and maybe other functions do
- * not check if the processor is online before following the pageset pointer.
- * Other parts of the kernel may not check if the zone is available.
- */
-static struct per_cpu_pageset boot_pageset[NR_CPUS];
-
-/*
- * Dynamically allocate memory for the
- * per cpu pageset array in struct zone.
- */
-static int __cpuinit process_zones(int cpu)
+static __meminit void setup_zone_pageset(struct zone *zone)
{
- struct zone *zone, *dzone;
- int node = cpu_to_node(cpu);
+ int cpu;
- node_set_state(node, N_CPU); /* this node has a cpu */
+ zone->pageset = alloc_percpu(struct per_cpu_pageset);
- for_each_populated_zone(zone) {
- zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
- GFP_KERNEL, node);
- if (!zone_pcp(zone, cpu))
- goto bad;
+ for_each_possible_cpu(cpu) {
+ struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
- setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
+ setup_pageset(pcp, zone_batchsize(zone));
if (percpu_pagelist_fraction)
- setup_pagelist_highmark(zone_pcp(zone, cpu),
- (zone->present_pages / percpu_pagelist_fraction));
- }
-
- return 0;
-bad:
- for_each_zone(dzone) {
- if (!populated_zone(dzone))
- continue;
- if (dzone == zone)
- break;
- kfree(zone_pcp(dzone, cpu));
- zone_pcp(dzone, cpu) = &boot_pageset[cpu];
+ setup_pagelist_highmark(pcp,
+ (zone->present_pages /
+ percpu_pagelist_fraction));
}
- return -ENOMEM;
}
-static inline void free_zone_pagesets(int cpu)
-{
- struct zone *zone;
-
- for_each_zone(zone) {
- struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
-
- /* Free per_cpu_pageset if it is slab allocated */
- if (pset != &boot_pageset[cpu])
- kfree(pset);
- zone_pcp(zone, cpu) = &boot_pageset[cpu];
- }
-}
-
-static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
- unsigned long action,
- void *hcpu)
-{
- int cpu = (long)hcpu;
- int ret = NOTIFY_OK;
-
- switch (action) {
- case CPU_UP_PREPARE:
- case CPU_UP_PREPARE_FROZEN:
- if (process_zones(cpu))
- ret = NOTIFY_BAD;
- break;
- case CPU_UP_CANCELED:
- case CPU_UP_CANCELED_FROZEN:
- case CPU_DEAD:
- case CPU_DEAD_FROZEN:
- free_zone_pagesets(cpu);
- break;
- default:
- break;
- }
- return ret;
-}
-
-static struct notifier_block __cpuinitdata pageset_notifier =
- { &pageset_cpuup_callback, NULL, 0 };
-
+/*
+ * Allocate per cpu pagesets and initialize them.
+ * Before this call only boot pagesets were available.
+ */
void __init setup_per_cpu_pageset(void)
{
- int err;
+ struct zone *zone;
- /* Initialize per_cpu_pageset for cpu 0.
- * A cpuup callback will do this for every cpu
- * as it comes online
- */
- err = process_zones(smp_processor_id());
- BUG_ON(err);
- register_cpu_notifier(&pageset_notifier);
+ for_each_populated_zone(zone)
+ setup_zone_pageset(zone);
}
-#endif
-
static noinline __init_refok
int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
{
@@ -3260,11 +3441,11 @@ static int __zone_pcp_update(void *data)
int cpu;
unsigned long batch = zone_batchsize(zone), flags;
- for (cpu = 0; cpu < NR_CPUS; cpu++) {
+ for_each_possible_cpu(cpu) {
struct per_cpu_pageset *pset;
struct per_cpu_pages *pcp;
- pset = zone_pcp(zone, cpu);
+ pset = per_cpu_ptr(zone->pageset, cpu);
pcp = &pset->pcp;
local_irq_save(flags);
@@ -3282,21 +3463,17 @@ void zone_pcp_update(struct zone *zone)
static __meminit void zone_pcp_init(struct zone *zone)
{
- int cpu;
- unsigned long batch = zone_batchsize(zone);
+ /*
+ * per cpu subsystem is not up at this point. The following code
+ * relies on the ability of the linker to provide the
+ * offset of a (static) per cpu variable into the per cpu area.
+ */
+ zone->pageset = &boot_pageset;
- for (cpu = 0; cpu < NR_CPUS; cpu++) {
-#ifdef CONFIG_NUMA
- /* Early boot. Slab allocator not functional yet */
- zone_pcp(zone, cpu) = &boot_pageset[cpu];
- setup_pageset(&boot_pageset[cpu],0);
-#else
- setup_pageset(zone_pcp(zone,cpu), batch);
-#endif
- }
if (zone->present_pages)
- printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
- zone->name, zone->present_pages, batch);
+ printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
+ zone->name, zone->present_pages,
+ zone_batchsize(zone));
}
__meminit int init_currently_empty_zone(struct zone *zone,
@@ -3435,6 +3612,69 @@ void __init free_bootmem_with_active_regions(int nid,
}
}
+int __init add_from_early_node_map(struct range *range, int az,
+ int nr_range, int nid)
+{
+ int i;
+ u64 start, end;
+
+ /* need to go over early_node_map to find out good range for node */
+ for_each_active_range_index_in_nid(i, nid) {
+ start = early_node_map[i].start_pfn;
+ end = early_node_map[i].end_pfn;
+ nr_range = add_range(range, az, nr_range, start, end);
+ }
+ return nr_range;
+}
+
+#ifdef CONFIG_NO_BOOTMEM
+void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
+ u64 goal, u64 limit)
+{
+ int i;
+ void *ptr;
+
+ if (limit > get_max_mapped())
+ limit = get_max_mapped();
+
+ /* need to go over early_node_map to find out good range for node */
+ for_each_active_range_index_in_nid(i, nid) {
+ u64 addr;
+ u64 ei_start, ei_last;
+
+ ei_last = early_node_map[i].end_pfn;
+ ei_last <<= PAGE_SHIFT;
+ ei_start = early_node_map[i].start_pfn;
+ ei_start <<= PAGE_SHIFT;
+ addr = find_early_area(ei_start, ei_last,
+ goal, limit, size, align);
+
+ if (addr == -1ULL)
+ continue;
+
+#if 0
+ printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
+ nid,
+ ei_start, ei_last, goal, limit, size,
+ align, addr);
+#endif
+
+ ptr = phys_to_virt(addr);
+ memset(ptr, 0, size);
+ reserve_early_without_check(addr, addr + size, "BOOTMEM");
+ /*
+ * The min_count is set to 0 so that bootmem allocated blocks
+ * are never reported as leaks.
+ */
+ kmemleak_alloc(ptr, size, 0, 0);
+ return ptr;
+ }
+
+ return NULL;
+}
+#endif
+
+
void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
{
int i;
@@ -4377,8 +4617,12 @@ void __init free_area_init_nodes(unsigned long *max_zone_pfn)
for (i = 0; i < MAX_NR_ZONES; i++) {
if (i == ZONE_MOVABLE)
continue;
- printk(" %-8s %0#10lx -> %0#10lx\n",
- zone_names[i],
+ printk(" %-8s ", zone_names[i]);
+ if (arch_zone_lowest_possible_pfn[i] ==
+ arch_zone_highest_possible_pfn[i])
+ printk("empty\n");
+ else
+ printk("%0#10lx -> %0#10lx\n",
arch_zone_lowest_possible_pfn[i],
arch_zone_highest_possible_pfn[i]);
}
@@ -4467,7 +4711,11 @@ void __init set_dma_reserve(unsigned long new_dma_reserve)
}
#ifndef CONFIG_NEED_MULTIPLE_NODES
-struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
+struct pglist_data __refdata contig_page_data = {
+#ifndef CONFIG_NO_BOOTMEM
+ .bdata = &bootmem_node_data[0]
+#endif
+ };
EXPORT_SYMBOL(contig_page_data);
#endif
@@ -4810,10 +5058,11 @@ int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
if (!write || (ret == -EINVAL))
return ret;
for_each_populated_zone(zone) {
- for_each_online_cpu(cpu) {
+ for_each_possible_cpu(cpu) {
unsigned long high;
high = zone->present_pages / percpu_pagelist_fraction;
- setup_pagelist_highmark(zone_pcp(zone, cpu), high);
+ setup_pagelist_highmark(
+ per_cpu_ptr(zone->pageset, cpu), high);
}
}
return 0;
@@ -5159,3 +5408,80 @@ bool is_free_buddy_page(struct page *page)
return order < MAX_ORDER;
}
#endif
+
+static struct trace_print_flags pageflag_names[] = {
+ {1UL << PG_locked, "locked" },
+ {1UL << PG_error, "error" },
+ {1UL << PG_referenced, "referenced" },
+ {1UL << PG_uptodate, "uptodate" },
+ {1UL << PG_dirty, "dirty" },
+ {1UL << PG_lru, "lru" },
+ {1UL << PG_active, "active" },
+ {1UL << PG_slab, "slab" },
+ {1UL << PG_owner_priv_1, "owner_priv_1" },
+ {1UL << PG_arch_1, "arch_1" },
+ {1UL << PG_reserved, "reserved" },
+ {1UL << PG_private, "private" },
+ {1UL << PG_private_2, "private_2" },
+ {1UL << PG_writeback, "writeback" },
+#ifdef CONFIG_PAGEFLAGS_EXTENDED
+ {1UL << PG_head, "head" },
+ {1UL << PG_tail, "tail" },
+#else
+ {1UL << PG_compound, "compound" },
+#endif
+ {1UL << PG_swapcache, "swapcache" },
+ {1UL << PG_mappedtodisk, "mappedtodisk" },
+ {1UL << PG_reclaim, "reclaim" },
+ {1UL << PG_buddy, "buddy" },
+ {1UL << PG_swapbacked, "swapbacked" },
+ {1UL << PG_unevictable, "unevictable" },
+#ifdef CONFIG_MMU
+ {1UL << PG_mlocked, "mlocked" },
+#endif
+#ifdef CONFIG_ARCH_USES_PG_UNCACHED
+ {1UL << PG_uncached, "uncached" },
+#endif
+#ifdef CONFIG_MEMORY_FAILURE
+ {1UL << PG_hwpoison, "hwpoison" },
+#endif
+ {-1UL, NULL },
+};
+
+static void dump_page_flags(unsigned long flags)
+{
+ const char *delim = "";
+ unsigned long mask;
+ int i;
+
+ printk(KERN_ALERT "page flags: %#lx(", flags);
+
+ /* remove zone id */
+ flags &= (1UL << NR_PAGEFLAGS) - 1;
+
+ for (i = 0; pageflag_names[i].name && flags; i++) {
+
+ mask = pageflag_names[i].mask;
+ if ((flags & mask) != mask)
+ continue;
+
+ flags &= ~mask;
+ printk("%s%s", delim, pageflag_names[i].name);
+ delim = "|";
+ }
+
+ /* check for left over flags */
+ if (flags)
+ printk("%s%#lx", delim, flags);
+
+ printk(")\n");
+}
+
+void dump_page(struct page *page)
+{
+ printk(KERN_ALERT
+ "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
+ page, page_count(page), page_mapcount(page),
+ page->mapping, page->index);
+ dump_page_flags(page->flags);
+}
diff --git a/mm/page_cgroup.c b/mm/page_cgroup.c
index 3d535d594826..5bffada7cde1 100644
--- a/mm/page_cgroup.c
+++ b/mm/page_cgroup.c
@@ -9,6 +9,7 @@
#include <linux/vmalloc.h>
#include <linux/cgroup.h>
#include <linux/swapops.h>
+#include <linux/kmemleak.h>
static void __meminit
__init_page_cgroup(struct page_cgroup *pc, unsigned long pfn)
@@ -126,6 +127,12 @@ static int __init_refok init_section_page_cgroup(unsigned long pfn)
if (!base)
base = vmalloc(table_size);
}
+ /*
+ * The value stored in section->page_cgroup is (base - pfn)
+ * and it does not point to the memory block allocated above,
+ * causing kmemleak false positives.
+ */
+ kmemleak_not_leak(base);
} else {
/*
* We don't have to allocate page_cgroup again, but
@@ -284,6 +291,7 @@ static DEFINE_MUTEX(swap_cgroup_mutex);
struct swap_cgroup_ctrl {
struct page **map;
unsigned long length;
+ spinlock_t lock;
};
struct swap_cgroup_ctrl swap_cgroup_ctrl[MAX_SWAPFILES];
@@ -335,6 +343,43 @@ not_enough_page:
}
/**
+ * swap_cgroup_cmpxchg - cmpxchg mem_cgroup's id for this swp_entry.
+ * @end: swap entry to be cmpxchged
+ * @old: old id
+ * @new: new id
+ *
+ * Returns old id at success, 0 at failure.
+ * (There is no mem_cgroup useing 0 as its id)
+ */
+unsigned short swap_cgroup_cmpxchg(swp_entry_t ent,
+ unsigned short old, unsigned short new)
+{
+ int type = swp_type(ent);
+ unsigned long offset = swp_offset(ent);
+ unsigned long idx = offset / SC_PER_PAGE;
+ unsigned long pos = offset & SC_POS_MASK;
+ struct swap_cgroup_ctrl *ctrl;
+ struct page *mappage;
+ struct swap_cgroup *sc;
+ unsigned long flags;
+ unsigned short retval;
+
+ ctrl = &swap_cgroup_ctrl[type];
+
+ mappage = ctrl->map[idx];
+ sc = page_address(mappage);
+ sc += pos;
+ spin_lock_irqsave(&ctrl->lock, flags);
+ retval = sc->id;
+ if (retval == old)
+ sc->id = new;
+ else
+ retval = 0;
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+ return retval;
+}
+
+/**
* swap_cgroup_record - record mem_cgroup for this swp_entry.
* @ent: swap entry to be recorded into
* @mem: mem_cgroup to be recorded
@@ -352,14 +397,17 @@ unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id)
struct page *mappage;
struct swap_cgroup *sc;
unsigned short old;
+ unsigned long flags;
ctrl = &swap_cgroup_ctrl[type];
mappage = ctrl->map[idx];
sc = page_address(mappage);
sc += pos;
+ spin_lock_irqsave(&ctrl->lock, flags);
old = sc->id;
sc->id = id;
+ spin_unlock_irqrestore(&ctrl->lock, flags);
return old;
}
@@ -411,6 +459,7 @@ int swap_cgroup_swapon(int type, unsigned long max_pages)
mutex_lock(&swap_cgroup_mutex);
ctrl->length = length;
ctrl->map = array;
+ spin_lock_init(&ctrl->lock);
if (swap_cgroup_prepare(type)) {
/* memory shortage */
ctrl->map = NULL;
diff --git a/mm/page_io.c b/mm/page_io.c
index a19af956ee1b..31a3b962230a 100644
--- a/mm/page_io.c
+++ b/mm/page_io.c
@@ -12,6 +12,7 @@
#include <linux/mm.h>
#include <linux/kernel_stat.h>
+#include <linux/gfp.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/bio.h>
diff --git a/mm/pagewalk.c b/mm/pagewalk.c
index 7b47a57b6646..8b1a2ce21ee5 100644
--- a/mm/pagewalk.c
+++ b/mm/pagewalk.c
@@ -80,6 +80,37 @@ static int walk_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end,
return err;
}
+#ifdef CONFIG_HUGETLB_PAGE
+static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
+ unsigned long end)
+{
+ unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
+ return boundary < end ? boundary : end;
+}
+
+static int walk_hugetlb_range(struct vm_area_struct *vma,
+ unsigned long addr, unsigned long end,
+ struct mm_walk *walk)
+{
+ struct hstate *h = hstate_vma(vma);
+ unsigned long next;
+ unsigned long hmask = huge_page_mask(h);
+ pte_t *pte;
+ int err = 0;
+
+ do {
+ next = hugetlb_entry_end(h, addr, end);
+ pte = huge_pte_offset(walk->mm, addr & hmask);
+ if (pte && walk->hugetlb_entry)
+ err = walk->hugetlb_entry(pte, hmask, addr, next, walk);
+ if (err)
+ return err;
+ } while (addr = next, addr != end);
+
+ return 0;
+}
+#endif
+
/**
* walk_page_range - walk a memory map's page tables with a callback
* @mm: memory map to walk
@@ -128,20 +159,16 @@ int walk_page_range(unsigned long addr, unsigned long end,
vma = find_vma(walk->mm, addr);
#ifdef CONFIG_HUGETLB_PAGE
if (vma && is_vm_hugetlb_page(vma)) {
- pte_t *pte;
- struct hstate *hs;
-
if (vma->vm_end < next)
next = vma->vm_end;
- hs = hstate_vma(vma);
- pte = huge_pte_offset(walk->mm,
- addr & huge_page_mask(hs));
- if (pte && !huge_pte_none(huge_ptep_get(pte))
- && walk->hugetlb_entry)
- err = walk->hugetlb_entry(pte, addr,
- next, walk);
+ /*
+ * Hugepage is very tightly coupled with vma, so
+ * walk through hugetlb entries within a given vma.
+ */
+ err = walk_hugetlb_range(vma, addr, next, walk);
if (err)
break;
+ pgd = pgd_offset(walk->mm, next);
continue;
}
#endif
diff --git a/mm/percpu-km.c b/mm/percpu-km.c
new file mode 100644
index 000000000000..df680855540a
--- /dev/null
+++ b/mm/percpu-km.c
@@ -0,0 +1,104 @@
+/*
+ * mm/percpu-km.c - kernel memory based chunk allocation
+ *
+ * Copyright (C) 2010 SUSE Linux Products GmbH
+ * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
+ *
+ * This file is released under the GPLv2.
+ *
+ * Chunks are allocated as a contiguous kernel memory using gfp
+ * allocation. This is to be used on nommu architectures.
+ *
+ * To use percpu-km,
+ *
+ * - define CONFIG_NEED_PER_CPU_KM from the arch Kconfig.
+ *
+ * - CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK must not be defined. It's
+ * not compatible with PER_CPU_KM. EMBED_FIRST_CHUNK should work
+ * fine.
+ *
+ * - NUMA is not supported. When setting up the first chunk,
+ * @cpu_distance_fn should be NULL or report all CPUs to be nearer
+ * than or at LOCAL_DISTANCE.
+ *
+ * - It's best if the chunk size is power of two multiple of
+ * PAGE_SIZE. Because each chunk is allocated as a contiguous
+ * kernel memory block using alloc_pages(), memory will be wasted if
+ * chunk size is not aligned. percpu-km code will whine about it.
+ */
+
+#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
+#error "contiguous percpu allocation is incompatible with paged first chunk"
+#endif
+
+#include <linux/log2.h>
+
+static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
+{
+ /* noop */
+ return 0;
+}
+
+static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
+{
+ /* nada */
+}
+
+static struct pcpu_chunk *pcpu_create_chunk(void)
+{
+ const int nr_pages = pcpu_group_sizes[0] >> PAGE_SHIFT;
+ struct pcpu_chunk *chunk;
+ struct page *pages;
+ int i;
+
+ chunk = pcpu_alloc_chunk();
+ if (!chunk)
+ return NULL;
+
+ pages = alloc_pages(GFP_KERNEL, order_base_2(nr_pages));
+ if (!pages) {
+ pcpu_free_chunk(chunk);
+ return NULL;
+ }
+
+ for (i = 0; i < nr_pages; i++)
+ pcpu_set_page_chunk(nth_page(pages, i), chunk);
+
+ chunk->data = pages;
+ chunk->base_addr = page_address(pages) - pcpu_group_offsets[0];
+ return chunk;
+}
+
+static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
+{
+ const int nr_pages = pcpu_group_sizes[0] >> PAGE_SHIFT;
+
+ if (chunk && chunk->data)
+ __free_pages(chunk->data, order_base_2(nr_pages));
+ pcpu_free_chunk(chunk);
+}
+
+static struct page *pcpu_addr_to_page(void *addr)
+{
+ return virt_to_page(addr);
+}
+
+static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
+{
+ size_t nr_pages, alloc_pages;
+
+ /* all units must be in a single group */
+ if (ai->nr_groups != 1) {
+ printk(KERN_CRIT "percpu: can't handle more than one groups\n");
+ return -EINVAL;
+ }
+
+ nr_pages = (ai->groups[0].nr_units * ai->unit_size) >> PAGE_SHIFT;
+ alloc_pages = roundup_pow_of_two(nr_pages);
+
+ if (alloc_pages > nr_pages)
+ printk(KERN_WARNING "percpu: wasting %zu pages per chunk\n",
+ alloc_pages - nr_pages);
+
+ return 0;
+}
diff --git a/mm/percpu-vm.c b/mm/percpu-vm.c
new file mode 100644
index 000000000000..7d9c1d0ebd3f
--- /dev/null
+++ b/mm/percpu-vm.c
@@ -0,0 +1,451 @@
+/*
+ * mm/percpu-vm.c - vmalloc area based chunk allocation
+ *
+ * Copyright (C) 2010 SUSE Linux Products GmbH
+ * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
+ *
+ * This file is released under the GPLv2.
+ *
+ * Chunks are mapped into vmalloc areas and populated page by page.
+ * This is the default chunk allocator.
+ */
+
+static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
+ unsigned int cpu, int page_idx)
+{
+ /* must not be used on pre-mapped chunk */
+ WARN_ON(chunk->immutable);
+
+ return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
+}
+
+/**
+ * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
+ * @chunk: chunk of interest
+ * @bitmapp: output parameter for bitmap
+ * @may_alloc: may allocate the array
+ *
+ * Returns pointer to array of pointers to struct page and bitmap,
+ * both of which can be indexed with pcpu_page_idx(). The returned
+ * array is cleared to zero and *@bitmapp is copied from
+ * @chunk->populated. Note that there is only one array and bitmap
+ * and access exclusion is the caller's responsibility.
+ *
+ * CONTEXT:
+ * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
+ * Otherwise, don't care.
+ *
+ * RETURNS:
+ * Pointer to temp pages array on success, NULL on failure.
+ */
+static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
+ unsigned long **bitmapp,
+ bool may_alloc)
+{
+ static struct page **pages;
+ static unsigned long *bitmap;
+ size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
+ size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
+ sizeof(unsigned long);
+
+ if (!pages || !bitmap) {
+ if (may_alloc && !pages)
+ pages = pcpu_mem_alloc(pages_size);
+ if (may_alloc && !bitmap)
+ bitmap = pcpu_mem_alloc(bitmap_size);
+ if (!pages || !bitmap)
+ return NULL;
+ }
+
+ memset(pages, 0, pages_size);
+ bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
+
+ *bitmapp = bitmap;
+ return pages;
+}
+
+/**
+ * pcpu_free_pages - free pages which were allocated for @chunk
+ * @chunk: chunk pages were allocated for
+ * @pages: array of pages to be freed, indexed by pcpu_page_idx()
+ * @populated: populated bitmap
+ * @page_start: page index of the first page to be freed
+ * @page_end: page index of the last page to be freed + 1
+ *
+ * Free pages [@page_start and @page_end) in @pages for all units.
+ * The pages were allocated for @chunk.
+ */
+static void pcpu_free_pages(struct pcpu_chunk *chunk,
+ struct page **pages, unsigned long *populated,
+ int page_start, int page_end)
+{
+ unsigned int cpu;
+ int i;
+
+ for_each_possible_cpu(cpu) {
+ for (i = page_start; i < page_end; i++) {
+ struct page *page = pages[pcpu_page_idx(cpu, i)];
+
+ if (page)
+ __free_page(page);
+ }
+ }
+}
+
+/**
+ * pcpu_alloc_pages - allocates pages for @chunk
+ * @chunk: target chunk
+ * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
+ * @populated: populated bitmap
+ * @page_start: page index of the first page to be allocated
+ * @page_end: page index of the last page to be allocated + 1
+ *
+ * Allocate pages [@page_start,@page_end) into @pages for all units.
+ * The allocation is for @chunk. Percpu core doesn't care about the
+ * content of @pages and will pass it verbatim to pcpu_map_pages().
+ */
+static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
+ struct page **pages, unsigned long *populated,
+ int page_start, int page_end)
+{
+ const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
+ unsigned int cpu;
+ int i;
+
+ for_each_possible_cpu(cpu) {
+ for (i = page_start; i < page_end; i++) {
+ struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
+
+ *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
+ if (!*pagep) {
+ pcpu_free_pages(chunk, pages, populated,
+ page_start, page_end);
+ return -ENOMEM;
+ }
+ }
+ }
+ return 0;
+}
+
+/**
+ * pcpu_pre_unmap_flush - flush cache prior to unmapping
+ * @chunk: chunk the regions to be flushed belongs to
+ * @page_start: page index of the first page to be flushed
+ * @page_end: page index of the last page to be flushed + 1
+ *
+ * Pages in [@page_start,@page_end) of @chunk are about to be
+ * unmapped. Flush cache. As each flushing trial can be very
+ * expensive, issue flush on the whole region at once rather than
+ * doing it for each cpu. This could be an overkill but is more
+ * scalable.
+ */
+static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
+ int page_start, int page_end)
+{
+ flush_cache_vunmap(
+ pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
+ pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
+}
+
+static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
+{
+ unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
+}
+
+/**
+ * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
+ * @chunk: chunk of interest
+ * @pages: pages array which can be used to pass information to free
+ * @populated: populated bitmap
+ * @page_start: page index of the first page to unmap
+ * @page_end: page index of the last page to unmap + 1
+ *
+ * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
+ * Corresponding elements in @pages were cleared by the caller and can
+ * be used to carry information to pcpu_free_pages() which will be
+ * called after all unmaps are finished. The caller should call
+ * proper pre/post flush functions.
+ */
+static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
+ struct page **pages, unsigned long *populated,
+ int page_start, int page_end)
+{
+ unsigned int cpu;
+ int i;
+
+ for_each_possible_cpu(cpu) {
+ for (i = page_start; i < page_end; i++) {
+ struct page *page;
+
+ page = pcpu_chunk_page(chunk, cpu, i);
+ WARN_ON(!page);
+ pages[pcpu_page_idx(cpu, i)] = page;
+ }
+ __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
+ page_end - page_start);
+ }
+
+ for (i = page_start; i < page_end; i++)
+ __clear_bit(i, populated);
+}
+
+/**
+ * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
+ * @chunk: pcpu_chunk the regions to be flushed belong to
+ * @page_start: page index of the first page to be flushed
+ * @page_end: page index of the last page to be flushed + 1
+ *
+ * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
+ * TLB for the regions. This can be skipped if the area is to be
+ * returned to vmalloc as vmalloc will handle TLB flushing lazily.
+ *
+ * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
+ * for the whole region.
+ */
+static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
+ int page_start, int page_end)
+{
+ flush_tlb_kernel_range(
+ pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
+ pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
+}
+
+static int __pcpu_map_pages(unsigned long addr, struct page **pages,
+ int nr_pages)
+{
+ return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
+ PAGE_KERNEL, pages);
+}
+
+/**
+ * pcpu_map_pages - map pages into a pcpu_chunk
+ * @chunk: chunk of interest
+ * @pages: pages array containing pages to be mapped
+ * @populated: populated bitmap
+ * @page_start: page index of the first page to map
+ * @page_end: page index of the last page to map + 1
+ *
+ * For each cpu, map pages [@page_start,@page_end) into @chunk. The
+ * caller is responsible for calling pcpu_post_map_flush() after all
+ * mappings are complete.
+ *
+ * This function is responsible for setting corresponding bits in
+ * @chunk->populated bitmap and whatever is necessary for reverse
+ * lookup (addr -> chunk).
+ */
+static int pcpu_map_pages(struct pcpu_chunk *chunk,
+ struct page **pages, unsigned long *populated,
+ int page_start, int page_end)
+{
+ unsigned int cpu, tcpu;
+ int i, err;
+
+ for_each_possible_cpu(cpu) {
+ err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
+ &pages[pcpu_page_idx(cpu, page_start)],
+ page_end - page_start);
+ if (err < 0)
+ goto err;
+ }
+
+ /* mapping successful, link chunk and mark populated */
+ for (i = page_start; i < page_end; i++) {
+ for_each_possible_cpu(cpu)
+ pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
+ chunk);
+ __set_bit(i, populated);
+ }
+
+ return 0;
+
+err:
+ for_each_possible_cpu(tcpu) {
+ if (tcpu == cpu)
+ break;
+ __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
+ page_end - page_start);
+ }
+ return err;
+}
+
+/**
+ * pcpu_post_map_flush - flush cache after mapping
+ * @chunk: pcpu_chunk the regions to be flushed belong to
+ * @page_start: page index of the first page to be flushed
+ * @page_end: page index of the last page to be flushed + 1
+ *
+ * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
+ * cache.
+ *
+ * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
+ * for the whole region.
+ */
+static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
+ int page_start, int page_end)
+{
+ flush_cache_vmap(
+ pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
+ pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
+}
+
+/**
+ * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
+ * @chunk: chunk of interest
+ * @off: offset to the area to populate
+ * @size: size of the area to populate in bytes
+ *
+ * For each cpu, populate and map pages [@page_start,@page_end) into
+ * @chunk. The area is cleared on return.
+ *
+ * CONTEXT:
+ * pcpu_alloc_mutex, does GFP_KERNEL allocation.
+ */
+static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
+{
+ int page_start = PFN_DOWN(off);
+ int page_end = PFN_UP(off + size);
+ int free_end = page_start, unmap_end = page_start;
+ struct page **pages;
+ unsigned long *populated;
+ unsigned int cpu;
+ int rs, re, rc;
+
+ /* quick path, check whether all pages are already there */
+ rs = page_start;
+ pcpu_next_pop(chunk, &rs, &re, page_end);
+ if (rs == page_start && re == page_end)
+ goto clear;
+
+ /* need to allocate and map pages, this chunk can't be immutable */
+ WARN_ON(chunk->immutable);
+
+ pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
+ if (!pages)
+ return -ENOMEM;
+
+ /* alloc and map */
+ pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
+ rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
+ if (rc)
+ goto err_free;
+ free_end = re;
+ }
+
+ pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
+ rc = pcpu_map_pages(chunk, pages, populated, rs, re);
+ if (rc)
+ goto err_unmap;
+ unmap_end = re;
+ }
+ pcpu_post_map_flush(chunk, page_start, page_end);
+
+ /* commit new bitmap */
+ bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
+clear:
+ for_each_possible_cpu(cpu)
+ memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
+ return 0;
+
+err_unmap:
+ pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
+ pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
+ pcpu_unmap_pages(chunk, pages, populated, rs, re);
+ pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
+err_free:
+ pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
+ pcpu_free_pages(chunk, pages, populated, rs, re);
+ return rc;
+}
+
+/**
+ * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
+ * @chunk: chunk to depopulate
+ * @off: offset to the area to depopulate
+ * @size: size of the area to depopulate in bytes
+ * @flush: whether to flush cache and tlb or not
+ *
+ * For each cpu, depopulate and unmap pages [@page_start,@page_end)
+ * from @chunk. If @flush is true, vcache is flushed before unmapping
+ * and tlb after.
+ *
+ * CONTEXT:
+ * pcpu_alloc_mutex.
+ */
+static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
+{
+ int page_start = PFN_DOWN(off);
+ int page_end = PFN_UP(off + size);
+ struct page **pages;
+ unsigned long *populated;
+ int rs, re;
+
+ /* quick path, check whether it's empty already */
+ rs = page_start;
+ pcpu_next_unpop(chunk, &rs, &re, page_end);
+ if (rs == page_start && re == page_end)
+ return;
+
+ /* immutable chunks can't be depopulated */
+ WARN_ON(chunk->immutable);
+
+ /*
+ * If control reaches here, there must have been at least one
+ * successful population attempt so the temp pages array must
+ * be available now.
+ */
+ pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
+ BUG_ON(!pages);
+
+ /* unmap and free */
+ pcpu_pre_unmap_flush(chunk, page_start, page_end);
+
+ pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
+ pcpu_unmap_pages(chunk, pages, populated, rs, re);
+
+ /* no need to flush tlb, vmalloc will handle it lazily */
+
+ pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
+ pcpu_free_pages(chunk, pages, populated, rs, re);
+
+ /* commit new bitmap */
+ bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
+}
+
+static struct pcpu_chunk *pcpu_create_chunk(void)
+{
+ struct pcpu_chunk *chunk;
+ struct vm_struct **vms;
+
+ chunk = pcpu_alloc_chunk();
+ if (!chunk)
+ return NULL;
+
+ vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
+ pcpu_nr_groups, pcpu_atom_size, GFP_KERNEL);
+ if (!vms) {
+ pcpu_free_chunk(chunk);
+ return NULL;
+ }
+
+ chunk->data = vms;
+ chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
+ return chunk;
+}
+
+static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
+{
+ if (chunk && chunk->data)
+ pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
+ pcpu_free_chunk(chunk);
+}
+
+static struct page *pcpu_addr_to_page(void *addr)
+{
+ return vmalloc_to_page(addr);
+}
+
+static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
+{
+ /* no extra restriction */
+ return 0;
+}
diff --git a/mm/percpu.c b/mm/percpu.c
index 083e7c91e5f6..6470e7710231 100644
--- a/mm/percpu.c
+++ b/mm/percpu.c
@@ -1,5 +1,5 @@
/*
- * linux/mm/percpu.c - percpu memory allocator
+ * mm/percpu.c - percpu memory allocator
*
* Copyright (C) 2009 SUSE Linux Products GmbH
* Copyright (C) 2009 Tejun Heo <tj@kernel.org>
@@ -7,14 +7,13 @@
* This file is released under the GPLv2.
*
* This is percpu allocator which can handle both static and dynamic
- * areas. Percpu areas are allocated in chunks in vmalloc area. Each
- * chunk is consisted of boot-time determined number of units and the
- * first chunk is used for static percpu variables in the kernel image
+ * areas. Percpu areas are allocated in chunks. Each chunk is
+ * consisted of boot-time determined number of units and the first
+ * chunk is used for static percpu variables in the kernel image
* (special boot time alloc/init handling necessary as these areas
* need to be brought up before allocation services are running).
* Unit grows as necessary and all units grow or shrink in unison.
- * When a chunk is filled up, another chunk is allocated. ie. in
- * vmalloc area
+ * When a chunk is filled up, another chunk is allocated.
*
* c0 c1 c2
* ------------------- ------------------- ------------
@@ -80,13 +79,15 @@
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr) \
- (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \
- + (unsigned long)__per_cpu_start)
+ (void __percpu *)((unsigned long)(addr) - \
+ (unsigned long)pcpu_base_addr + \
+ (unsigned long)__per_cpu_start)
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr) \
- (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \
- - (unsigned long)__per_cpu_start)
+ (void __force *)((unsigned long)(ptr) + \
+ (unsigned long)pcpu_base_addr - \
+ (unsigned long)__per_cpu_start)
#endif
struct pcpu_chunk {
@@ -97,7 +98,7 @@ struct pcpu_chunk {
int map_used; /* # of map entries used */
int map_alloc; /* # of map entries allocated */
int *map; /* allocation map */
- struct vm_struct **vms; /* mapped vmalloc regions */
+ void *data; /* chunk data */
bool immutable; /* no [de]population allowed */
unsigned long populated[]; /* populated bitmap */
};
@@ -175,6 +176,21 @@ static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
static void pcpu_reclaim(struct work_struct *work);
static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
+static bool pcpu_addr_in_first_chunk(void *addr)
+{
+ void *first_start = pcpu_first_chunk->base_addr;
+
+ return addr >= first_start && addr < first_start + pcpu_unit_size;
+}
+
+static bool pcpu_addr_in_reserved_chunk(void *addr)
+{
+ void *first_start = pcpu_first_chunk->base_addr;
+
+ return addr >= first_start &&
+ addr < first_start + pcpu_reserved_chunk_limit;
+}
+
static int __pcpu_size_to_slot(int size)
{
int highbit = fls(size); /* size is in bytes */
@@ -196,27 +212,6 @@ static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
return pcpu_size_to_slot(chunk->free_size);
}
-static int pcpu_page_idx(unsigned int cpu, int page_idx)
-{
- return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
-}
-
-static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
- unsigned int cpu, int page_idx)
-{
- return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
- (page_idx << PAGE_SHIFT);
-}
-
-static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
- unsigned int cpu, int page_idx)
-{
- /* must not be used on pre-mapped chunk */
- WARN_ON(chunk->immutable);
-
- return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
-}
-
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
@@ -229,13 +224,27 @@ static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
return (struct pcpu_chunk *)page->index;
}
-static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
+static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
+{
+ return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
+}
+
+static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
+ unsigned int cpu, int page_idx)
+{
+ return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
+ (page_idx << PAGE_SHIFT);
+}
+
+static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
+ int *rs, int *re, int end)
{
*rs = find_next_zero_bit(chunk->populated, end, *rs);
*re = find_next_bit(chunk->populated, end, *rs + 1);
}
-static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
+static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
+ int *rs, int *re, int end)
{
*rs = find_next_bit(chunk->populated, end, *rs);
*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
@@ -324,36 +333,6 @@ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
}
/**
- * pcpu_chunk_addr_search - determine chunk containing specified address
- * @addr: address for which the chunk needs to be determined.
- *
- * RETURNS:
- * The address of the found chunk.
- */
-static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
-{
- void *first_start = pcpu_first_chunk->base_addr;
-
- /* is it in the first chunk? */
- if (addr >= first_start && addr < first_start + pcpu_unit_size) {
- /* is it in the reserved area? */
- if (addr < first_start + pcpu_reserved_chunk_limit)
- return pcpu_reserved_chunk;
- return pcpu_first_chunk;
- }
-
- /*
- * The address is relative to unit0 which might be unused and
- * thus unmapped. Offset the address to the unit space of the
- * current processor before looking it up in the vmalloc
- * space. Note that any possible cpu id can be used here, so
- * there's no need to worry about preemption or cpu hotplug.
- */
- addr += pcpu_unit_offsets[raw_smp_processor_id()];
- return pcpu_get_page_chunk(vmalloc_to_page(addr));
-}
-
-/**
* pcpu_need_to_extend - determine whether chunk area map needs to be extended
* @chunk: chunk of interest
*
@@ -621,436 +600,92 @@ static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
pcpu_chunk_relocate(chunk, oslot);
}
-/**
- * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
- * @chunk: chunk of interest
- * @bitmapp: output parameter for bitmap
- * @may_alloc: may allocate the array
- *
- * Returns pointer to array of pointers to struct page and bitmap,
- * both of which can be indexed with pcpu_page_idx(). The returned
- * array is cleared to zero and *@bitmapp is copied from
- * @chunk->populated. Note that there is only one array and bitmap
- * and access exclusion is the caller's responsibility.
- *
- * CONTEXT:
- * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
- * Otherwise, don't care.
- *
- * RETURNS:
- * Pointer to temp pages array on success, NULL on failure.
- */
-static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
- unsigned long **bitmapp,
- bool may_alloc)
+static struct pcpu_chunk *pcpu_alloc_chunk(void)
{
- static struct page **pages;
- static unsigned long *bitmap;
- size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
- size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
- sizeof(unsigned long);
-
- if (!pages || !bitmap) {
- if (may_alloc && !pages)
- pages = pcpu_mem_alloc(pages_size);
- if (may_alloc && !bitmap)
- bitmap = pcpu_mem_alloc(bitmap_size);
- if (!pages || !bitmap)
- return NULL;
- }
-
- memset(pages, 0, pages_size);
- bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
-
- *bitmapp = bitmap;
- return pages;
-}
-
-/**
- * pcpu_free_pages - free pages which were allocated for @chunk
- * @chunk: chunk pages were allocated for
- * @pages: array of pages to be freed, indexed by pcpu_page_idx()
- * @populated: populated bitmap
- * @page_start: page index of the first page to be freed
- * @page_end: page index of the last page to be freed + 1
- *
- * Free pages [@page_start and @page_end) in @pages for all units.
- * The pages were allocated for @chunk.
- */
-static void pcpu_free_pages(struct pcpu_chunk *chunk,
- struct page **pages, unsigned long *populated,
- int page_start, int page_end)
-{
- unsigned int cpu;
- int i;
-
- for_each_possible_cpu(cpu) {
- for (i = page_start; i < page_end; i++) {
- struct page *page = pages[pcpu_page_idx(cpu, i)];
-
- if (page)
- __free_page(page);
- }
- }
-}
-
-/**
- * pcpu_alloc_pages - allocates pages for @chunk
- * @chunk: target chunk
- * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
- * @populated: populated bitmap
- * @page_start: page index of the first page to be allocated
- * @page_end: page index of the last page to be allocated + 1
- *
- * Allocate pages [@page_start,@page_end) into @pages for all units.
- * The allocation is for @chunk. Percpu core doesn't care about the
- * content of @pages and will pass it verbatim to pcpu_map_pages().
- */
-static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
- struct page **pages, unsigned long *populated,
- int page_start, int page_end)
-{
- const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
- unsigned int cpu;
- int i;
-
- for_each_possible_cpu(cpu) {
- for (i = page_start; i < page_end; i++) {
- struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
-
- *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
- if (!*pagep) {
- pcpu_free_pages(chunk, pages, populated,
- page_start, page_end);
- return -ENOMEM;
- }
- }
- }
- return 0;
-}
-
-/**
- * pcpu_pre_unmap_flush - flush cache prior to unmapping
- * @chunk: chunk the regions to be flushed belongs to
- * @page_start: page index of the first page to be flushed
- * @page_end: page index of the last page to be flushed + 1
- *
- * Pages in [@page_start,@page_end) of @chunk are about to be
- * unmapped. Flush cache. As each flushing trial can be very
- * expensive, issue flush on the whole region at once rather than
- * doing it for each cpu. This could be an overkill but is more
- * scalable.
- */
-static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
- int page_start, int page_end)
-{
- flush_cache_vunmap(
- pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
- pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
-}
-
-static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
-{
- unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
-}
-
-/**
- * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
- * @chunk: chunk of interest
- * @pages: pages array which can be used to pass information to free
- * @populated: populated bitmap
- * @page_start: page index of the first page to unmap
- * @page_end: page index of the last page to unmap + 1
- *
- * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
- * Corresponding elements in @pages were cleared by the caller and can
- * be used to carry information to pcpu_free_pages() which will be
- * called after all unmaps are finished. The caller should call
- * proper pre/post flush functions.
- */
-static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
- struct page **pages, unsigned long *populated,
- int page_start, int page_end)
-{
- unsigned int cpu;
- int i;
+ struct pcpu_chunk *chunk;
- for_each_possible_cpu(cpu) {
- for (i = page_start; i < page_end; i++) {
- struct page *page;
+ chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
+ if (!chunk)
+ return NULL;
- page = pcpu_chunk_page(chunk, cpu, i);
- WARN_ON(!page);
- pages[pcpu_page_idx(cpu, i)] = page;
- }
- __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
- page_end - page_start);
+ chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
+ if (!chunk->map) {
+ kfree(chunk);
+ return NULL;
}
- for (i = page_start; i < page_end; i++)
- __clear_bit(i, populated);
-}
+ chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
+ chunk->map[chunk->map_used++] = pcpu_unit_size;
-/**
- * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
- * @chunk: pcpu_chunk the regions to be flushed belong to
- * @page_start: page index of the first page to be flushed
- * @page_end: page index of the last page to be flushed + 1
- *
- * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
- * TLB for the regions. This can be skipped if the area is to be
- * returned to vmalloc as vmalloc will handle TLB flushing lazily.
- *
- * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
- * for the whole region.
- */
-static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
- int page_start, int page_end)
-{
- flush_tlb_kernel_range(
- pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
- pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
-}
+ INIT_LIST_HEAD(&chunk->list);
+ chunk->free_size = pcpu_unit_size;
+ chunk->contig_hint = pcpu_unit_size;
-static int __pcpu_map_pages(unsigned long addr, struct page **pages,
- int nr_pages)
-{
- return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
- PAGE_KERNEL, pages);
+ return chunk;
}
-/**
- * pcpu_map_pages - map pages into a pcpu_chunk
- * @chunk: chunk of interest
- * @pages: pages array containing pages to be mapped
- * @populated: populated bitmap
- * @page_start: page index of the first page to map
- * @page_end: page index of the last page to map + 1
- *
- * For each cpu, map pages [@page_start,@page_end) into @chunk. The
- * caller is responsible for calling pcpu_post_map_flush() after all
- * mappings are complete.
- *
- * This function is responsible for setting corresponding bits in
- * @chunk->populated bitmap and whatever is necessary for reverse
- * lookup (addr -> chunk).
- */
-static int pcpu_map_pages(struct pcpu_chunk *chunk,
- struct page **pages, unsigned long *populated,
- int page_start, int page_end)
+static void pcpu_free_chunk(struct pcpu_chunk *chunk)
{
- unsigned int cpu, tcpu;
- int i, err;
-
- for_each_possible_cpu(cpu) {
- err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
- &pages[pcpu_page_idx(cpu, page_start)],
- page_end - page_start);
- if (err < 0)
- goto err;
- }
-
- /* mapping successful, link chunk and mark populated */
- for (i = page_start; i < page_end; i++) {
- for_each_possible_cpu(cpu)
- pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
- chunk);
- __set_bit(i, populated);
- }
-
- return 0;
-
-err:
- for_each_possible_cpu(tcpu) {
- if (tcpu == cpu)
- break;
- __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
- page_end - page_start);
- }
- return err;
+ if (!chunk)
+ return;
+ pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
+ kfree(chunk);
}
-/**
- * pcpu_post_map_flush - flush cache after mapping
- * @chunk: pcpu_chunk the regions to be flushed belong to
- * @page_start: page index of the first page to be flushed
- * @page_end: page index of the last page to be flushed + 1
- *
- * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
- * cache.
- *
- * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
- * for the whole region.
+/*
+ * Chunk management implementation.
+ *
+ * To allow different implementations, chunk alloc/free and
+ * [de]population are implemented in a separate file which is pulled
+ * into this file and compiled together. The following functions
+ * should be implemented.
+ *
+ * pcpu_populate_chunk - populate the specified range of a chunk
+ * pcpu_depopulate_chunk - depopulate the specified range of a chunk
+ * pcpu_create_chunk - create a new chunk
+ * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
+ * pcpu_addr_to_page - translate address to physical address
+ * pcpu_verify_alloc_info - check alloc_info is acceptable during init
*/
-static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
- int page_start, int page_end)
-{
- flush_cache_vmap(
- pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
- pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
-}
+static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
+static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
+static struct pcpu_chunk *pcpu_create_chunk(void);
+static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
+static struct page *pcpu_addr_to_page(void *addr);
+static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
+
+#ifdef CONFIG_NEED_PER_CPU_KM
+#include "percpu-km.c"
+#else
+#include "percpu-vm.c"
+#endif
/**
- * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
- * @chunk: chunk to depopulate
- * @off: offset to the area to depopulate
- * @size: size of the area to depopulate in bytes
- * @flush: whether to flush cache and tlb or not
- *
- * For each cpu, depopulate and unmap pages [@page_start,@page_end)
- * from @chunk. If @flush is true, vcache is flushed before unmapping
- * and tlb after.
+ * pcpu_chunk_addr_search - determine chunk containing specified address
+ * @addr: address for which the chunk needs to be determined.
*
- * CONTEXT:
- * pcpu_alloc_mutex.
+ * RETURNS:
+ * The address of the found chunk.
*/
-static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
+static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
- int page_start = PFN_DOWN(off);
- int page_end = PFN_UP(off + size);
- struct page **pages;
- unsigned long *populated;
- int rs, re;
-
- /* quick path, check whether it's empty already */
- pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
- if (rs == page_start && re == page_end)
- return;
- break;
+ /* is it in the first chunk? */
+ if (pcpu_addr_in_first_chunk(addr)) {
+ /* is it in the reserved area? */
+ if (pcpu_addr_in_reserved_chunk(addr))
+ return pcpu_reserved_chunk;
+ return pcpu_first_chunk;
}
- /* immutable chunks can't be depopulated */
- WARN_ON(chunk->immutable);
-
/*
- * If control reaches here, there must have been at least one
- * successful population attempt so the temp pages array must
- * be available now.
+ * The address is relative to unit0 which might be unused and
+ * thus unmapped. Offset the address to the unit space of the
+ * current processor before looking it up in the vmalloc
+ * space. Note that any possible cpu id can be used here, so
+ * there's no need to worry about preemption or cpu hotplug.
*/
- pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
- BUG_ON(!pages);
-
- /* unmap and free */
- pcpu_pre_unmap_flush(chunk, page_start, page_end);
-
- pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
- pcpu_unmap_pages(chunk, pages, populated, rs, re);
-
- /* no need to flush tlb, vmalloc will handle it lazily */
-
- pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
- pcpu_free_pages(chunk, pages, populated, rs, re);
-
- /* commit new bitmap */
- bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
-}
-
-/**
- * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
- * @chunk: chunk of interest
- * @off: offset to the area to populate
- * @size: size of the area to populate in bytes
- *
- * For each cpu, populate and map pages [@page_start,@page_end) into
- * @chunk. The area is cleared on return.
- *
- * CONTEXT:
- * pcpu_alloc_mutex, does GFP_KERNEL allocation.
- */
-static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
-{
- int page_start = PFN_DOWN(off);
- int page_end = PFN_UP(off + size);
- int free_end = page_start, unmap_end = page_start;
- struct page **pages;
- unsigned long *populated;
- unsigned int cpu;
- int rs, re, rc;
-
- /* quick path, check whether all pages are already there */
- pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
- if (rs == page_start && re == page_end)
- goto clear;
- break;
- }
-
- /* need to allocate and map pages, this chunk can't be immutable */
- WARN_ON(chunk->immutable);
-
- pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
- if (!pages)
- return -ENOMEM;
-
- /* alloc and map */
- pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
- rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
- if (rc)
- goto err_free;
- free_end = re;
- }
-
- pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
- rc = pcpu_map_pages(chunk, pages, populated, rs, re);
- if (rc)
- goto err_unmap;
- unmap_end = re;
- }
- pcpu_post_map_flush(chunk, page_start, page_end);
-
- /* commit new bitmap */
- bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
-clear:
- for_each_possible_cpu(cpu)
- memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
- return 0;
-
-err_unmap:
- pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
- pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
- pcpu_unmap_pages(chunk, pages, populated, rs, re);
- pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
-err_free:
- pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
- pcpu_free_pages(chunk, pages, populated, rs, re);
- return rc;
-}
-
-static void free_pcpu_chunk(struct pcpu_chunk *chunk)
-{
- if (!chunk)
- return;
- if (chunk->vms)
- pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
- pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
- kfree(chunk);
-}
-
-static struct pcpu_chunk *alloc_pcpu_chunk(void)
-{
- struct pcpu_chunk *chunk;
-
- chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
- if (!chunk)
- return NULL;
-
- chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
- chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
- chunk->map[chunk->map_used++] = pcpu_unit_size;
-
- chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
- pcpu_nr_groups, pcpu_atom_size,
- GFP_KERNEL);
- if (!chunk->vms) {
- free_pcpu_chunk(chunk);
- return NULL;
- }
-
- INIT_LIST_HEAD(&chunk->list);
- chunk->free_size = pcpu_unit_size;
- chunk->contig_hint = pcpu_unit_size;
- chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0];
-
- return chunk;
+ addr += pcpu_unit_offsets[raw_smp_processor_id()];
+ return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
}
/**
@@ -1067,7 +702,7 @@ static struct pcpu_chunk *alloc_pcpu_chunk(void)
* RETURNS:
* Percpu pointer to the allocated area on success, NULL on failure.
*/
-static void *pcpu_alloc(size_t size, size_t align, bool reserved)
+static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
{
static int warn_limit = 10;
struct pcpu_chunk *chunk;
@@ -1142,7 +777,7 @@ restart:
/* hmmm... no space left, create a new chunk */
spin_unlock_irqrestore(&pcpu_lock, flags);
- chunk = alloc_pcpu_chunk();
+ chunk = pcpu_create_chunk();
if (!chunk) {
err = "failed to allocate new chunk";
goto fail_unlock_mutex;
@@ -1196,7 +831,7 @@ fail_unlock_mutex:
* RETURNS:
* Percpu pointer to the allocated area on success, NULL on failure.
*/
-void *__alloc_percpu(size_t size, size_t align)
+void __percpu *__alloc_percpu(size_t size, size_t align)
{
return pcpu_alloc(size, align, false);
}
@@ -1217,7 +852,7 @@ EXPORT_SYMBOL_GPL(__alloc_percpu);
* RETURNS:
* Percpu pointer to the allocated area on success, NULL on failure.
*/
-void *__alloc_reserved_percpu(size_t size, size_t align)
+void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
{
return pcpu_alloc(size, align, true);
}
@@ -1254,7 +889,7 @@ static void pcpu_reclaim(struct work_struct *work)
list_for_each_entry_safe(chunk, next, &todo, list) {
pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
- free_pcpu_chunk(chunk);
+ pcpu_destroy_chunk(chunk);
}
mutex_unlock(&pcpu_alloc_mutex);
@@ -1269,7 +904,7 @@ static void pcpu_reclaim(struct work_struct *work)
* CONTEXT:
* Can be called from atomic context.
*/
-void free_percpu(void *ptr)
+void free_percpu(void __percpu *ptr)
{
void *addr;
struct pcpu_chunk *chunk;
@@ -1304,6 +939,32 @@ void free_percpu(void *ptr)
EXPORT_SYMBOL_GPL(free_percpu);
/**
+ * is_kernel_percpu_address - test whether address is from static percpu area
+ * @addr: address to test
+ *
+ * Test whether @addr belongs to in-kernel static percpu area. Module
+ * static percpu areas are not considered. For those, use
+ * is_module_percpu_address().
+ *
+ * RETURNS:
+ * %true if @addr is from in-kernel static percpu area, %false otherwise.
+ */
+bool is_kernel_percpu_address(unsigned long addr)
+{
+ const size_t static_size = __per_cpu_end - __per_cpu_start;
+ void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
+ unsigned int cpu;
+
+ for_each_possible_cpu(cpu) {
+ void *start = per_cpu_ptr(base, cpu);
+
+ if ((void *)addr >= start && (void *)addr < start + static_size)
+ return true;
+ }
+ return false;
+}
+
+/**
* per_cpu_ptr_to_phys - convert translated percpu address to physical address
* @addr: the address to be converted to physical address
*
@@ -1317,11 +978,39 @@ EXPORT_SYMBOL_GPL(free_percpu);
*/
phys_addr_t per_cpu_ptr_to_phys(void *addr)
{
- if ((unsigned long)addr < VMALLOC_START ||
- (unsigned long)addr >= VMALLOC_END)
- return __pa(addr);
- else
- return page_to_phys(vmalloc_to_page(addr));
+ void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
+ bool in_first_chunk = false;
+ unsigned long first_start, first_end;
+ unsigned int cpu;
+
+ /*
+ * The following test on first_start/end isn't strictly
+ * necessary but will speed up lookups of addresses which
+ * aren't in the first chunk.
+ */
+ first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0);
+ first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu,
+ pcpu_unit_pages);
+ if ((unsigned long)addr >= first_start &&
+ (unsigned long)addr < first_end) {
+ for_each_possible_cpu(cpu) {
+ void *start = per_cpu_ptr(base, cpu);
+
+ if (addr >= start && addr < start + pcpu_unit_size) {
+ in_first_chunk = true;
+ break;
+ }
+ }
+ }
+
+ if (in_first_chunk) {
+ if ((unsigned long)addr < VMALLOC_START ||
+ (unsigned long)addr >= VMALLOC_END)
+ return __pa(addr);
+ else
+ return page_to_phys(vmalloc_to_page(addr));
+ } else
+ return page_to_phys(pcpu_addr_to_page(addr));
}
static inline size_t pcpu_calc_fc_sizes(size_t static_size,
@@ -1422,7 +1111,7 @@ struct pcpu_alloc_info * __init pcpu_build_alloc_info(
static int group_map[NR_CPUS] __initdata;
static int group_cnt[NR_CPUS] __initdata;
const size_t static_size = __per_cpu_end - __per_cpu_start;
- int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
+ int nr_groups = 1, nr_units = 0;
size_t size_sum, min_unit_size, alloc_size;
int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
int last_allocs, group, unit;
@@ -1432,7 +1121,7 @@ struct pcpu_alloc_info * __init pcpu_build_alloc_info(
/* this function may be called multiple times */
memset(group_map, 0, sizeof(group_map));
- memset(group_cnt, 0, sizeof(group_map));
+ memset(group_cnt, 0, sizeof(group_cnt));
/*
* Determine min_unit_size, alloc_size and max_upa such that
@@ -1466,7 +1155,6 @@ struct pcpu_alloc_info * __init pcpu_build_alloc_info(
}
group_map[cpu] = group;
group_cnt[group]++;
- group_cnt_max = max(group_cnt_max, group_cnt[group]);
}
/*
@@ -1693,6 +1381,7 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
+ PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
/* process group information and build config tables accordingly */
group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
diff --git a/mm/percpu_up.c b/mm/percpu_up.c
new file mode 100644
index 000000000000..c4351c7f57d2
--- /dev/null
+++ b/mm/percpu_up.c
@@ -0,0 +1,30 @@
+/*
+ * mm/percpu_up.c - dummy percpu memory allocator implementation for UP
+ */
+
+#include <linux/module.h>
+#include <linux/percpu.h>
+#include <linux/slab.h>
+
+void __percpu *__alloc_percpu(size_t size, size_t align)
+{
+ /*
+ * Can't easily make larger alignment work with kmalloc. WARN
+ * on it. Larger alignment should only be used for module
+ * percpu sections on SMP for which this path isn't used.
+ */
+ WARN_ON_ONCE(align > SMP_CACHE_BYTES);
+ return kzalloc(size, GFP_KERNEL);
+}
+EXPORT_SYMBOL_GPL(__alloc_percpu);
+
+void free_percpu(void __percpu *p)
+{
+ kfree(p);
+}
+EXPORT_SYMBOL_GPL(free_percpu);
+
+phys_addr_t per_cpu_ptr_to_phys(void *addr)
+{
+ return __pa(addr);
+}
diff --git a/mm/quicklist.c b/mm/quicklist.c
index 6633965bb27b..2876349339a7 100644
--- a/mm/quicklist.c
+++ b/mm/quicklist.c
@@ -14,6 +14,7 @@
*/
#include <linux/kernel.h>
+#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/module.h>
diff --git a/mm/readahead.c b/mm/readahead.c
index 033bc135a41f..77506a291a2d 100644
--- a/mm/readahead.c
+++ b/mm/readahead.c
@@ -9,6 +9,7 @@
#include <linux/kernel.h>
#include <linux/fs.h>
+#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/blkdev.h>
@@ -501,6 +502,12 @@ void page_cache_sync_readahead(struct address_space *mapping,
if (!ra->ra_pages)
return;
+ /* be dumb */
+ if (filp && (filp->f_mode & FMODE_RANDOM)) {
+ force_page_cache_readahead(mapping, filp, offset, req_size);
+ return;
+ }
+
/* do read-ahead */
ondemand_readahead(mapping, ra, filp, false, offset, req_size);
}
@@ -516,7 +523,7 @@ EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
* @req_size: hint: total size of the read which the caller is performing in
* pagecache pages
*
- * page_cache_async_ondemand() should be called when a page is used which
+ * page_cache_async_readahead() should be called when a page is used which
* has the PG_readahead flag; this is a marker to suggest that the application
* has used up enough of the readahead window that we should start pulling in
* more pages.
diff --git a/mm/rmap.c b/mm/rmap.c
index 278cd277bdec..38a336e2eea1 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -62,6 +62,7 @@
#include "internal.h"
static struct kmem_cache *anon_vma_cachep;
+static struct kmem_cache *anon_vma_chain_cachep;
static inline struct anon_vma *anon_vma_alloc(void)
{
@@ -73,6 +74,16 @@ void anon_vma_free(struct anon_vma *anon_vma)
kmem_cache_free(anon_vma_cachep, anon_vma);
}
+static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
+{
+ return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
+}
+
+void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
+{
+ kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
+}
+
/**
* anon_vma_prepare - attach an anon_vma to a memory region
* @vma: the memory region in question
@@ -103,88 +114,167 @@ void anon_vma_free(struct anon_vma *anon_vma)
int anon_vma_prepare(struct vm_area_struct *vma)
{
struct anon_vma *anon_vma = vma->anon_vma;
+ struct anon_vma_chain *avc;
might_sleep();
if (unlikely(!anon_vma)) {
struct mm_struct *mm = vma->vm_mm;
struct anon_vma *allocated;
+ avc = anon_vma_chain_alloc();
+ if (!avc)
+ goto out_enomem;
+
anon_vma = find_mergeable_anon_vma(vma);
allocated = NULL;
if (!anon_vma) {
anon_vma = anon_vma_alloc();
if (unlikely(!anon_vma))
- return -ENOMEM;
+ goto out_enomem_free_avc;
allocated = anon_vma;
}
- spin_lock(&anon_vma->lock);
+ spin_lock(&anon_vma->lock);
/* page_table_lock to protect against threads */
spin_lock(&mm->page_table_lock);
if (likely(!vma->anon_vma)) {
vma->anon_vma = anon_vma;
- list_add_tail(&vma->anon_vma_node, &anon_vma->head);
+ avc->anon_vma = anon_vma;
+ avc->vma = vma;
+ list_add(&avc->same_vma, &vma->anon_vma_chain);
+ list_add(&avc->same_anon_vma, &anon_vma->head);
allocated = NULL;
+ avc = NULL;
}
spin_unlock(&mm->page_table_lock);
-
spin_unlock(&anon_vma->lock);
+
if (unlikely(allocated))
anon_vma_free(allocated);
+ if (unlikely(avc))
+ anon_vma_chain_free(avc);
}
return 0;
+
+ out_enomem_free_avc:
+ anon_vma_chain_free(avc);
+ out_enomem:
+ return -ENOMEM;
}
-void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
+static void anon_vma_chain_link(struct vm_area_struct *vma,
+ struct anon_vma_chain *avc,
+ struct anon_vma *anon_vma)
{
- BUG_ON(vma->anon_vma != next->anon_vma);
- list_del(&next->anon_vma_node);
+ avc->vma = vma;
+ avc->anon_vma = anon_vma;
+ list_add(&avc->same_vma, &vma->anon_vma_chain);
+
+ spin_lock(&anon_vma->lock);
+ list_add_tail(&avc->same_anon_vma, &anon_vma->head);
+ spin_unlock(&anon_vma->lock);
}
-void __anon_vma_link(struct vm_area_struct *vma)
+/*
+ * Attach the anon_vmas from src to dst.
+ * Returns 0 on success, -ENOMEM on failure.
+ */
+int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
{
- struct anon_vma *anon_vma = vma->anon_vma;
+ struct anon_vma_chain *avc, *pavc;
- if (anon_vma)
- list_add_tail(&vma->anon_vma_node, &anon_vma->head);
+ list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
+ avc = anon_vma_chain_alloc();
+ if (!avc)
+ goto enomem_failure;
+ anon_vma_chain_link(dst, avc, pavc->anon_vma);
+ }
+ return 0;
+
+ enomem_failure:
+ unlink_anon_vmas(dst);
+ return -ENOMEM;
}
-void anon_vma_link(struct vm_area_struct *vma)
+/*
+ * Attach vma to its own anon_vma, as well as to the anon_vmas that
+ * the corresponding VMA in the parent process is attached to.
+ * Returns 0 on success, non-zero on failure.
+ */
+int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
{
- struct anon_vma *anon_vma = vma->anon_vma;
+ struct anon_vma_chain *avc;
+ struct anon_vma *anon_vma;
- if (anon_vma) {
- spin_lock(&anon_vma->lock);
- list_add_tail(&vma->anon_vma_node, &anon_vma->head);
- spin_unlock(&anon_vma->lock);
- }
+ /* Don't bother if the parent process has no anon_vma here. */
+ if (!pvma->anon_vma)
+ return 0;
+
+ /*
+ * First, attach the new VMA to the parent VMA's anon_vmas,
+ * so rmap can find non-COWed pages in child processes.
+ */
+ if (anon_vma_clone(vma, pvma))
+ return -ENOMEM;
+
+ /* Then add our own anon_vma. */
+ anon_vma = anon_vma_alloc();
+ if (!anon_vma)
+ goto out_error;
+ avc = anon_vma_chain_alloc();
+ if (!avc)
+ goto out_error_free_anon_vma;
+ anon_vma_chain_link(vma, avc, anon_vma);
+ /* Mark this anon_vma as the one where our new (COWed) pages go. */
+ vma->anon_vma = anon_vma;
+
+ return 0;
+
+ out_error_free_anon_vma:
+ anon_vma_free(anon_vma);
+ out_error:
+ unlink_anon_vmas(vma);
+ return -ENOMEM;
}
-void anon_vma_unlink(struct vm_area_struct *vma)
+static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
{
- struct anon_vma *anon_vma = vma->anon_vma;
+ struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
int empty;
+ /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
if (!anon_vma)
return;
spin_lock(&anon_vma->lock);
- list_del(&vma->anon_vma_node);
+ list_del(&anon_vma_chain->same_anon_vma);
/* We must garbage collect the anon_vma if it's empty */
- empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
+ empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
spin_unlock(&anon_vma->lock);
if (empty)
anon_vma_free(anon_vma);
}
+void unlink_anon_vmas(struct vm_area_struct *vma)
+{
+ struct anon_vma_chain *avc, *next;
+
+ /* Unlink each anon_vma chained to the VMA. */
+ list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
+ anon_vma_unlink(avc);
+ list_del(&avc->same_vma);
+ anon_vma_chain_free(avc);
+ }
+}
+
static void anon_vma_ctor(void *data)
{
struct anon_vma *anon_vma = data;
spin_lock_init(&anon_vma->lock);
- ksm_refcount_init(anon_vma);
+ anonvma_external_refcount_init(anon_vma);
INIT_LIST_HEAD(&anon_vma->head);
}
@@ -192,6 +282,7 @@ void __init anon_vma_init(void)
{
anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
+ anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
}
/*
@@ -245,14 +336,13 @@ vma_address(struct page *page, struct vm_area_struct *vma)
/*
* At what user virtual address is page expected in vma?
- * checking that the page matches the vma.
+ * Caller should check the page is actually part of the vma.
*/
unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
{
- if (PageAnon(page)) {
- if (vma->anon_vma != page_anon_vma(page))
- return -EFAULT;
- } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
+ if (PageAnon(page))
+ ;
+ else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
if (!vma->vm_file ||
vma->vm_file->f_mapping != page->mapping)
return -EFAULT;
@@ -396,7 +486,7 @@ static int page_referenced_anon(struct page *page,
{
unsigned int mapcount;
struct anon_vma *anon_vma;
- struct vm_area_struct *vma;
+ struct anon_vma_chain *avc;
int referenced = 0;
anon_vma = page_lock_anon_vma(page);
@@ -404,7 +494,8 @@ static int page_referenced_anon(struct page *page,
return referenced;
mapcount = page_mapcount(page);
- list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
+ list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
+ struct vm_area_struct *vma = avc->vma;
unsigned long address = vma_address(page, vma);
if (address == -EFAULT)
continue;
@@ -511,9 +602,6 @@ int page_referenced(struct page *page,
int referenced = 0;
int we_locked = 0;
- if (TestClearPageReferenced(page))
- referenced++;
-
*vm_flags = 0;
if (page_mapped(page) && page_rmapping(page)) {
if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
@@ -614,17 +702,57 @@ int page_mkclean(struct page *page)
EXPORT_SYMBOL_GPL(page_mkclean);
/**
+ * page_move_anon_rmap - move a page to our anon_vma
+ * @page: the page to move to our anon_vma
+ * @vma: the vma the page belongs to
+ * @address: the user virtual address mapped
+ *
+ * When a page belongs exclusively to one process after a COW event,
+ * that page can be moved into the anon_vma that belongs to just that
+ * process, so the rmap code will not search the parent or sibling
+ * processes.
+ */
+void page_move_anon_rmap(struct page *page,
+ struct vm_area_struct *vma, unsigned long address)
+{
+ struct anon_vma *anon_vma = vma->anon_vma;
+
+ VM_BUG_ON(!PageLocked(page));
+ VM_BUG_ON(!anon_vma);
+ VM_BUG_ON(page->index != linear_page_index(vma, address));
+
+ anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
+ page->mapping = (struct address_space *) anon_vma;
+}
+
+/**
* __page_set_anon_rmap - setup new anonymous rmap
* @page: the page to add the mapping to
* @vma: the vm area in which the mapping is added
* @address: the user virtual address mapped
+ * @exclusive: the page is exclusively owned by the current process
*/
static void __page_set_anon_rmap(struct page *page,
- struct vm_area_struct *vma, unsigned long address)
+ struct vm_area_struct *vma, unsigned long address, int exclusive)
{
struct anon_vma *anon_vma = vma->anon_vma;
BUG_ON(!anon_vma);
+
+ /*
+ * If the page isn't exclusively mapped into this vma,
+ * we must use the _oldest_ possible anon_vma for the
+ * page mapping!
+ *
+ * So take the last AVC chain entry in the vma, which is
+ * the deepest ancestor, and use the anon_vma from that.
+ */
+ if (!exclusive) {
+ struct anon_vma_chain *avc;
+ avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
+ anon_vma = avc->anon_vma;
+ }
+
anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
page->mapping = (struct address_space *) anon_vma;
page->index = linear_page_index(vma, address);
@@ -652,9 +780,6 @@ static void __page_check_anon_rmap(struct page *page,
* are initially only visible via the pagetables, and the pte is locked
* over the call to page_add_new_anon_rmap.
*/
- struct anon_vma *anon_vma = vma->anon_vma;
- anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
- BUG_ON(page->mapping != (struct address_space *)anon_vma);
BUG_ON(page->index != linear_page_index(vma, address));
#endif
}
@@ -682,7 +807,7 @@ void page_add_anon_rmap(struct page *page,
VM_BUG_ON(!PageLocked(page));
VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
if (first)
- __page_set_anon_rmap(page, vma, address);
+ __page_set_anon_rmap(page, vma, address, 0);
else
__page_check_anon_rmap(page, vma, address);
}
@@ -704,7 +829,7 @@ void page_add_new_anon_rmap(struct page *page,
SetPageSwapBacked(page);
atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
__inc_zone_page_state(page, NR_ANON_PAGES);
- __page_set_anon_rmap(page, vma, address);
+ __page_set_anon_rmap(page, vma, address, 1);
if (page_evictable(page, vma))
lru_cache_add_lru(page, LRU_ACTIVE_ANON);
else
@@ -815,9 +940,9 @@ int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
if (PageAnon(page))
- dec_mm_counter(mm, anon_rss);
+ dec_mm_counter(mm, MM_ANONPAGES);
else
- dec_mm_counter(mm, file_rss);
+ dec_mm_counter(mm, MM_FILEPAGES);
set_pte_at(mm, address, pte,
swp_entry_to_pte(make_hwpoison_entry(page)));
} else if (PageAnon(page)) {
@@ -839,7 +964,8 @@ int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
list_add(&mm->mmlist, &init_mm.mmlist);
spin_unlock(&mmlist_lock);
}
- dec_mm_counter(mm, anon_rss);
+ dec_mm_counter(mm, MM_ANONPAGES);
+ inc_mm_counter(mm, MM_SWAPENTS);
} else if (PAGE_MIGRATION) {
/*
* Store the pfn of the page in a special migration
@@ -857,7 +983,7 @@ int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
entry = make_migration_entry(page, pte_write(pteval));
set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
} else
- dec_mm_counter(mm, file_rss);
+ dec_mm_counter(mm, MM_FILEPAGES);
page_remove_rmap(page);
page_cache_release(page);
@@ -996,7 +1122,7 @@ static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
page_remove_rmap(page);
page_cache_release(page);
- dec_mm_counter(mm, file_rss);
+ dec_mm_counter(mm, MM_FILEPAGES);
(*mapcount)--;
}
pte_unmap_unlock(pte - 1, ptl);
@@ -1005,6 +1131,20 @@ static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
return ret;
}
+static bool is_vma_temporary_stack(struct vm_area_struct *vma)
+{
+ int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
+
+ if (!maybe_stack)
+ return false;
+
+ if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
+ VM_STACK_INCOMPLETE_SETUP)
+ return true;
+
+ return false;
+}
+
/**
* try_to_unmap_anon - unmap or unlock anonymous page using the object-based
* rmap method
@@ -1024,15 +1164,30 @@ static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
{
struct anon_vma *anon_vma;
- struct vm_area_struct *vma;
+ struct anon_vma_chain *avc;
int ret = SWAP_AGAIN;
anon_vma = page_lock_anon_vma(page);
if (!anon_vma)
return ret;
- list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
- unsigned long address = vma_address(page, vma);
+ list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
+ struct vm_area_struct *vma = avc->vma;
+ unsigned long address;
+
+ /*
+ * During exec, a temporary VMA is setup and later moved.
+ * The VMA is moved under the anon_vma lock but not the
+ * page tables leading to a race where migration cannot
+ * find the migration ptes. Rather than increasing the
+ * locking requirements of exec(), migration skips
+ * temporary VMAs until after exec() completes.
+ */
+ if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
+ is_vma_temporary_stack(vma))
+ continue;
+
+ address = vma_address(page, vma);
if (address == -EFAULT)
continue;
ret = try_to_unmap_one(page, vma, address, flags);
@@ -1222,22 +1377,21 @@ static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
struct vm_area_struct *, unsigned long, void *), void *arg)
{
struct anon_vma *anon_vma;
- struct vm_area_struct *vma;
+ struct anon_vma_chain *avc;
int ret = SWAP_AGAIN;
/*
* Note: remove_migration_ptes() cannot use page_lock_anon_vma()
* because that depends on page_mapped(); but not all its usages
- * are holding mmap_sem, which also gave the necessary guarantee
- * (that this anon_vma's slab has not already been destroyed).
- * This needs to be reviewed later: avoiding page_lock_anon_vma()
- * is risky, and currently limits the usefulness of rmap_walk().
+ * are holding mmap_sem. Users without mmap_sem are required to
+ * take a reference count to prevent the anon_vma disappearing
*/
anon_vma = page_anon_vma(page);
if (!anon_vma)
return ret;
spin_lock(&anon_vma->lock);
- list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
+ list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
+ struct vm_area_struct *vma = avc->vma;
unsigned long address = vma_address(page, vma);
if (address == -EFAULT)
continue;
diff --git a/mm/shmem.c b/mm/shmem.c
index eef4ebea5158..f65f84062db5 100644
--- a/mm/shmem.c
+++ b/mm/shmem.c
@@ -433,8 +433,6 @@ static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long
spin_unlock(&info->lock);
page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
- if (page)
- set_page_private(page, 0);
spin_lock(&info->lock);
if (!page) {
@@ -729,10 +727,11 @@ done2:
if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
/*
* Call truncate_inode_pages again: racing shmem_unuse_inode
- * may have swizzled a page in from swap since vmtruncate or
- * generic_delete_inode did it, before we lowered next_index.
- * Also, though shmem_getpage checks i_size before adding to
- * cache, no recheck after: so fix the narrow window there too.
+ * may have swizzled a page in from swap since
+ * truncate_pagecache or generic_delete_inode did it, before we
+ * lowered next_index. Also, though shmem_getpage checks
+ * i_size before adding to cache, no recheck after: so fix the
+ * narrow window there too.
*
* Recalling truncate_inode_pages_range and unmap_mapping_range
* every time for punch_hole (which never got a chance to clear
@@ -762,19 +761,17 @@ done2:
}
}
-static void shmem_truncate(struct inode *inode)
-{
- shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
-}
-
static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = dentry->d_inode;
- struct page *page = NULL;
+ loff_t newsize = attr->ia_size;
int error;
- if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
- if (attr->ia_size < inode->i_size) {
+ if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
+ && newsize != inode->i_size) {
+ struct page *page = NULL;
+
+ if (newsize < inode->i_size) {
/*
* If truncating down to a partial page, then
* if that page is already allocated, hold it
@@ -782,9 +779,9 @@ static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
* truncate_partial_page cannnot miss it were
* it assigned to swap.
*/
- if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
+ if (newsize & (PAGE_CACHE_SIZE-1)) {
(void) shmem_getpage(inode,
- attr->ia_size>>PAGE_CACHE_SHIFT,
+ newsize >> PAGE_CACHE_SHIFT,
&page, SGP_READ, NULL);
if (page)
unlock_page(page);
@@ -796,24 +793,29 @@ static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
* if it's being fully truncated to zero-length: the
* nrpages check is efficient enough in that case.
*/
- if (attr->ia_size) {
+ if (newsize) {
struct shmem_inode_info *info = SHMEM_I(inode);
spin_lock(&info->lock);
info->flags &= ~SHMEM_PAGEIN;
spin_unlock(&info->lock);
}
}
+
+ error = simple_setsize(inode, newsize);
+ if (page)
+ page_cache_release(page);
+ if (error)
+ return error;
+ shmem_truncate_range(inode, newsize, (loff_t)-1);
}
error = inode_change_ok(inode, attr);
if (!error)
- error = inode_setattr(inode, attr);
+ generic_setattr(inode, attr);
#ifdef CONFIG_TMPFS_POSIX_ACL
if (!error && (attr->ia_valid & ATTR_MODE))
error = generic_acl_chmod(inode);
#endif
- if (page)
- page_cache_release(page);
return error;
}
@@ -821,11 +823,11 @@ static void shmem_delete_inode(struct inode *inode)
{
struct shmem_inode_info *info = SHMEM_I(inode);
- if (inode->i_op->truncate == shmem_truncate) {
+ if (inode->i_mapping->a_ops == &shmem_aops) {
truncate_inode_pages(inode->i_mapping, 0);
shmem_unacct_size(info->flags, inode->i_size);
inode->i_size = 0;
- shmem_truncate(inode);
+ shmem_truncate_range(inode, 0, (loff_t)-1);
if (!list_empty(&info->swaplist)) {
mutex_lock(&shmem_swaplist_mutex);
list_del_init(&info->swaplist);
@@ -1545,8 +1547,8 @@ static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
return 0;
}
-static struct inode *shmem_get_inode(struct super_block *sb, int mode,
- dev_t dev, unsigned long flags)
+static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
+ int mode, dev_t dev, unsigned long flags)
{
struct inode *inode;
struct shmem_inode_info *info;
@@ -1557,9 +1559,7 @@ static struct inode *shmem_get_inode(struct super_block *sb, int mode,
inode = new_inode(sb);
if (inode) {
- inode->i_mode = mode;
- inode->i_uid = current_fsuid();
- inode->i_gid = current_fsgid();
+ inode_init_owner(inode, dir, mode);
inode->i_blocks = 0;
inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
@@ -1814,7 +1814,7 @@ shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
struct inode *inode;
int error = -ENOSPC;
- inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE);
+ inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
if (inode) {
error = security_inode_init_security(inode, dir, NULL, NULL,
NULL);
@@ -1833,11 +1833,6 @@ shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
#else
error = 0;
#endif
- if (dir->i_mode & S_ISGID) {
- inode->i_gid = dir->i_gid;
- if (S_ISDIR(mode))
- inode->i_mode |= S_ISGID;
- }
dir->i_size += BOGO_DIRENT_SIZE;
dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d_instantiate(dentry, inode);
@@ -1957,7 +1952,7 @@ static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *s
if (len > PAGE_CACHE_SIZE)
return -ENAMETOOLONG;
- inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
+ inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
if (!inode)
return -ENOSPC;
@@ -1992,8 +1987,6 @@ static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *s
unlock_page(page);
page_cache_release(page);
}
- if (dir->i_mode & S_ISGID)
- inode->i_gid = dir->i_gid;
dir->i_size += BOGO_DIRENT_SIZE;
dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d_instantiate(dentry, inode);
@@ -2033,7 +2026,6 @@ static const struct inode_operations shmem_symlink_inline_operations = {
};
static const struct inode_operations shmem_symlink_inode_operations = {
- .truncate = shmem_truncate,
.readlink = generic_readlink,
.follow_link = shmem_follow_link,
.put_link = shmem_put_link,
@@ -2071,14 +2063,14 @@ static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
size, flags);
}
-static struct xattr_handler shmem_xattr_security_handler = {
+static const struct xattr_handler shmem_xattr_security_handler = {
.prefix = XATTR_SECURITY_PREFIX,
.list = shmem_xattr_security_list,
.get = shmem_xattr_security_get,
.set = shmem_xattr_security_set,
};
-static struct xattr_handler *shmem_xattr_handlers[] = {
+static const struct xattr_handler *shmem_xattr_handlers[] = {
&generic_acl_access_handler,
&generic_acl_default_handler,
&shmem_xattr_security_handler,
@@ -2366,7 +2358,7 @@ int shmem_fill_super(struct super_block *sb, void *data, int silent)
sb->s_flags |= MS_POSIXACL;
#endif
- inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
+ inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
if (!inode)
goto failed;
inode->i_uid = sbinfo->uid;
@@ -2444,14 +2436,13 @@ static const struct file_operations shmem_file_operations = {
.write = do_sync_write,
.aio_read = shmem_file_aio_read,
.aio_write = generic_file_aio_write,
- .fsync = simple_sync_file,
+ .fsync = noop_fsync,
.splice_read = generic_file_splice_read,
.splice_write = generic_file_splice_write,
#endif
};
static const struct inode_operations shmem_inode_operations = {
- .truncate = shmem_truncate,
.setattr = shmem_notify_change,
.truncate_range = shmem_truncate_range,
#ifdef CONFIG_TMPFS_POSIX_ACL
@@ -2570,6 +2561,45 @@ out4:
return error;
}
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR
+/**
+ * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
+ * @inode: the inode to be searched
+ * @pgoff: the offset to be searched
+ * @pagep: the pointer for the found page to be stored
+ * @ent: the pointer for the found swap entry to be stored
+ *
+ * If a page is found, refcount of it is incremented. Callers should handle
+ * these refcount.
+ */
+void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
+ struct page **pagep, swp_entry_t *ent)
+{
+ swp_entry_t entry = { .val = 0 }, *ptr;
+ struct page *page = NULL;
+ struct shmem_inode_info *info = SHMEM_I(inode);
+
+ if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
+ goto out;
+
+ spin_lock(&info->lock);
+ ptr = shmem_swp_entry(info, pgoff, NULL);
+#ifdef CONFIG_SWAP
+ if (ptr && ptr->val) {
+ entry.val = ptr->val;
+ page = find_get_page(&swapper_space, entry.val);
+ } else
+#endif
+ page = find_get_page(inode->i_mapping, pgoff);
+ if (ptr)
+ shmem_swp_unmap(ptr);
+ spin_unlock(&info->lock);
+out:
+ *pagep = page;
+ *ent = entry;
+}
+#endif
+
#else /* !CONFIG_SHMEM */
/*
@@ -2609,9 +2639,34 @@ int shmem_lock(struct file *file, int lock, struct user_struct *user)
return 0;
}
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR
+/**
+ * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
+ * @inode: the inode to be searched
+ * @pgoff: the offset to be searched
+ * @pagep: the pointer for the found page to be stored
+ * @ent: the pointer for the found swap entry to be stored
+ *
+ * If a page is found, refcount of it is incremented. Callers should handle
+ * these refcount.
+ */
+void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
+ struct page **pagep, swp_entry_t *ent)
+{
+ struct page *page = NULL;
+
+ if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
+ goto out;
+ page = find_get_page(inode->i_mapping, pgoff);
+out:
+ *pagep = page;
+ *ent = (swp_entry_t){ .val = 0 };
+}
+#endif
+
#define shmem_vm_ops generic_file_vm_ops
#define shmem_file_operations ramfs_file_operations
-#define shmem_get_inode(sb, mode, dev, flags) ramfs_get_inode(sb, mode, dev)
+#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
#define shmem_acct_size(flags, size) 0
#define shmem_unacct_size(flags, size) do {} while (0)
#define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
@@ -2655,7 +2710,7 @@ struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags
path.mnt = mntget(shm_mnt);
error = -ENOSPC;
- inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags);
+ inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
if (!inode)
goto put_dentry;
diff --git a/mm/slab.c b/mm/slab.c
index 7451bdacaf18..e49f8f46f46d 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -115,6 +115,7 @@
#include <linux/reciprocal_div.h>
#include <linux/debugobjects.h>
#include <linux/kmemcheck.h>
+#include <linux/memory.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
@@ -144,30 +145,6 @@
#define BYTES_PER_WORD sizeof(void *)
#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
-#ifndef ARCH_KMALLOC_MINALIGN
-/*
- * Enforce a minimum alignment for the kmalloc caches.
- * Usually, the kmalloc caches are cache_line_size() aligned, except when
- * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
- * Some archs want to perform DMA into kmalloc caches and need a guaranteed
- * alignment larger than the alignment of a 64-bit integer.
- * ARCH_KMALLOC_MINALIGN allows that.
- * Note that increasing this value may disable some debug features.
- */
-#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
-#endif
-
-#ifndef ARCH_SLAB_MINALIGN
-/*
- * Enforce a minimum alignment for all caches.
- * Intended for archs that get misalignment faults even for BYTES_PER_WORD
- * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
- * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
- * some debug features.
- */
-#define ARCH_SLAB_MINALIGN 0
-#endif
-
#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif
@@ -844,7 +821,7 @@ static void init_reap_node(int cpu)
{
int node;
- node = next_node(cpu_to_node(cpu), node_online_map);
+ node = next_node(cpu_to_mem(cpu), node_online_map);
if (node == MAX_NUMNODES)
node = first_node(node_online_map);
@@ -935,7 +912,6 @@ static int transfer_objects(struct array_cache *to,
from->avail -= nr;
to->avail += nr;
- to->touched = 1;
return nr;
}
@@ -983,13 +959,11 @@ static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
if (limit > 1)
limit = 12;
- ac_ptr = kmalloc_node(memsize, gfp, node);
+ ac_ptr = kzalloc_node(memsize, gfp, node);
if (ac_ptr) {
for_each_node(i) {
- if (i == node || !node_online(i)) {
- ac_ptr[i] = NULL;
+ if (i == node || !node_online(i))
continue;
- }
ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
if (!ac_ptr[i]) {
for (i--; i >= 0; i--)
@@ -1076,7 +1050,7 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
struct array_cache *alien = NULL;
int node;
- node = numa_node_id();
+ node = numa_mem_id();
/*
* Make sure we are not freeing a object from another node to the array
@@ -1105,11 +1079,57 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
}
#endif
+/*
+ * Allocates and initializes nodelists for a node on each slab cache, used for
+ * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
+ * will be allocated off-node since memory is not yet online for the new node.
+ * When hotplugging memory or a cpu, existing nodelists are not replaced if
+ * already in use.
+ *
+ * Must hold cache_chain_mutex.
+ */
+static int init_cache_nodelists_node(int node)
+{
+ struct kmem_cache *cachep;
+ struct kmem_list3 *l3;
+ const int memsize = sizeof(struct kmem_list3);
+
+ list_for_each_entry(cachep, &cache_chain, next) {
+ /*
+ * Set up the size64 kmemlist for cpu before we can
+ * begin anything. Make sure some other cpu on this
+ * node has not already allocated this
+ */
+ if (!cachep->nodelists[node]) {
+ l3 = kmalloc_node(memsize, GFP_KERNEL, node);
+ if (!l3)
+ return -ENOMEM;
+ kmem_list3_init(l3);
+ l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
+ ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
+
+ /*
+ * The l3s don't come and go as CPUs come and
+ * go. cache_chain_mutex is sufficient
+ * protection here.
+ */
+ cachep->nodelists[node] = l3;
+ }
+
+ spin_lock_irq(&cachep->nodelists[node]->list_lock);
+ cachep->nodelists[node]->free_limit =
+ (1 + nr_cpus_node(node)) *
+ cachep->batchcount + cachep->num;
+ spin_unlock_irq(&cachep->nodelists[node]->list_lock);
+ }
+ return 0;
+}
+
static void __cpuinit cpuup_canceled(long cpu)
{
struct kmem_cache *cachep;
struct kmem_list3 *l3 = NULL;
- int node = cpu_to_node(cpu);
+ int node = cpu_to_mem(cpu);
const struct cpumask *mask = cpumask_of_node(node);
list_for_each_entry(cachep, &cache_chain, next) {
@@ -1174,8 +1194,8 @@ static int __cpuinit cpuup_prepare(long cpu)
{
struct kmem_cache *cachep;
struct kmem_list3 *l3 = NULL;
- int node = cpu_to_node(cpu);
- const int memsize = sizeof(struct kmem_list3);
+ int node = cpu_to_mem(cpu);
+ int err;
/*
* We need to do this right in the beginning since
@@ -1183,35 +1203,9 @@ static int __cpuinit cpuup_prepare(long cpu)
* kmalloc_node allows us to add the slab to the right
* kmem_list3 and not this cpu's kmem_list3
*/
-
- list_for_each_entry(cachep, &cache_chain, next) {
- /*
- * Set up the size64 kmemlist for cpu before we can
- * begin anything. Make sure some other cpu on this
- * node has not already allocated this
- */
- if (!cachep->nodelists[node]) {
- l3 = kmalloc_node(memsize, GFP_KERNEL, node);
- if (!l3)
- goto bad;
- kmem_list3_init(l3);
- l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
-
- /*
- * The l3s don't come and go as CPUs come and
- * go. cache_chain_mutex is sufficient
- * protection here.
- */
- cachep->nodelists[node] = l3;
- }
-
- spin_lock_irq(&cachep->nodelists[node]->list_lock);
- cachep->nodelists[node]->free_limit =
- (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
- spin_unlock_irq(&cachep->nodelists[node]->list_lock);
- }
+ err = init_cache_nodelists_node(node);
+ if (err < 0)
+ goto bad;
/*
* Now we can go ahead with allocating the shared arrays and
@@ -1327,18 +1321,82 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb,
mutex_unlock(&cache_chain_mutex);
break;
}
- return err ? NOTIFY_BAD : NOTIFY_OK;
+ return notifier_from_errno(err);
}
static struct notifier_block __cpuinitdata cpucache_notifier = {
&cpuup_callback, NULL, 0
};
+#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
+/*
+ * Drains freelist for a node on each slab cache, used for memory hot-remove.
+ * Returns -EBUSY if all objects cannot be drained so that the node is not
+ * removed.
+ *
+ * Must hold cache_chain_mutex.
+ */
+static int __meminit drain_cache_nodelists_node(int node)
+{
+ struct kmem_cache *cachep;
+ int ret = 0;
+
+ list_for_each_entry(cachep, &cache_chain, next) {
+ struct kmem_list3 *l3;
+
+ l3 = cachep->nodelists[node];
+ if (!l3)
+ continue;
+
+ drain_freelist(cachep, l3, l3->free_objects);
+
+ if (!list_empty(&l3->slabs_full) ||
+ !list_empty(&l3->slabs_partial)) {
+ ret = -EBUSY;
+ break;
+ }
+ }
+ return ret;
+}
+
+static int __meminit slab_memory_callback(struct notifier_block *self,
+ unsigned long action, void *arg)
+{
+ struct memory_notify *mnb = arg;
+ int ret = 0;
+ int nid;
+
+ nid = mnb->status_change_nid;
+ if (nid < 0)
+ goto out;
+
+ switch (action) {
+ case MEM_GOING_ONLINE:
+ mutex_lock(&cache_chain_mutex);
+ ret = init_cache_nodelists_node(nid);
+ mutex_unlock(&cache_chain_mutex);
+ break;
+ case MEM_GOING_OFFLINE:
+ mutex_lock(&cache_chain_mutex);
+ ret = drain_cache_nodelists_node(nid);
+ mutex_unlock(&cache_chain_mutex);
+ break;
+ case MEM_ONLINE:
+ case MEM_OFFLINE:
+ case MEM_CANCEL_ONLINE:
+ case MEM_CANCEL_OFFLINE:
+ break;
+ }
+out:
+ return ret ? notifier_from_errno(ret) : NOTIFY_OK;
+}
+#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
+
/*
* swap the static kmem_list3 with kmalloced memory
*/
-static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
- int nodeid)
+static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
+ int nodeid)
{
struct kmem_list3 *ptr;
@@ -1421,7 +1479,7 @@ void __init kmem_cache_init(void)
* 6) Resize the head arrays of the kmalloc caches to their final sizes.
*/
- node = numa_node_id();
+ node = numa_mem_id();
/* 1) create the cache_cache */
INIT_LIST_HEAD(&cache_chain);
@@ -1583,6 +1641,14 @@ void __init kmem_cache_init_late(void)
*/
register_cpu_notifier(&cpucache_notifier);
+#ifdef CONFIG_NUMA
+ /*
+ * Register a memory hotplug callback that initializes and frees
+ * nodelists.
+ */
+ hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
+#endif
+
/*
* The reap timers are started later, with a module init call: That part
* of the kernel is not yet operational.
@@ -2055,7 +2121,7 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
}
}
}
- cachep->nodelists[numa_node_id()]->next_reap =
+ cachep->nodelists[numa_mem_id()]->next_reap =
jiffies + REAPTIMEOUT_LIST3 +
((unsigned long)cachep) % REAPTIMEOUT_LIST3;
@@ -2223,8 +2289,8 @@ kmem_cache_create (const char *name, size_t size, size_t align,
if (ralign < align) {
ralign = align;
}
- /* disable debug if necessary */
- if (ralign > __alignof__(unsigned long long))
+ /* disable debug if not aligning with REDZONE_ALIGN */
+ if (ralign & (__alignof__(unsigned long long) - 1))
flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
/*
* 4) Store it.
@@ -2250,8 +2316,8 @@ kmem_cache_create (const char *name, size_t size, size_t align,
*/
if (flags & SLAB_RED_ZONE) {
/* add space for red zone words */
- cachep->obj_offset += sizeof(unsigned long long);
- size += 2 * sizeof(unsigned long long);
+ cachep->obj_offset += align;
+ size += align + sizeof(unsigned long long);
}
if (flags & SLAB_STORE_USER) {
/* user store requires one word storage behind the end of
@@ -2386,7 +2452,7 @@ static void check_spinlock_acquired(struct kmem_cache *cachep)
{
#ifdef CONFIG_SMP
check_irq_off();
- assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
+ assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
#endif
}
@@ -2413,7 +2479,7 @@ static void do_drain(void *arg)
{
struct kmem_cache *cachep = arg;
struct array_cache *ac;
- int node = numa_node_id();
+ int node = numa_mem_id();
check_irq_off();
ac = cpu_cache_get(cachep);
@@ -2946,7 +3012,7 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
retry:
check_irq_off();
- node = numa_node_id();
+ node = numa_mem_id();
ac = cpu_cache_get(cachep);
batchcount = ac->batchcount;
if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
@@ -2963,8 +3029,10 @@ retry:
spin_lock(&l3->list_lock);
/* See if we can refill from the shared array */
- if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
+ if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
+ l3->shared->touched = 1;
goto alloc_done;
+ }
while (batchcount > 0) {
struct list_head *entry;
@@ -3101,7 +3169,7 @@ static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
if (cachep == &cache_cache)
return false;
- return should_failslab(obj_size(cachep), flags);
+ return should_failslab(obj_size(cachep), flags, cachep->flags);
}
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
@@ -3148,11 +3216,13 @@ static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
if (in_interrupt() || (flags & __GFP_THISNODE))
return NULL;
- nid_alloc = nid_here = numa_node_id();
+ nid_alloc = nid_here = numa_mem_id();
+ get_mems_allowed();
if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
- nid_alloc = cpuset_mem_spread_node();
+ nid_alloc = cpuset_slab_spread_node();
else if (current->mempolicy)
nid_alloc = slab_node(current->mempolicy);
+ put_mems_allowed();
if (nid_alloc != nid_here)
return ____cache_alloc_node(cachep, flags, nid_alloc);
return NULL;
@@ -3179,6 +3249,7 @@ static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
if (flags & __GFP_THISNODE)
return NULL;
+ get_mems_allowed();
zonelist = node_zonelist(slab_node(current->mempolicy), flags);
local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
@@ -3210,7 +3281,7 @@ retry:
if (local_flags & __GFP_WAIT)
local_irq_enable();
kmem_flagcheck(cache, flags);
- obj = kmem_getpages(cache, local_flags, numa_node_id());
+ obj = kmem_getpages(cache, local_flags, numa_mem_id());
if (local_flags & __GFP_WAIT)
local_irq_disable();
if (obj) {
@@ -3234,6 +3305,7 @@ retry:
}
}
}
+ put_mems_allowed();
return obj;
}
@@ -3317,6 +3389,7 @@ __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
{
unsigned long save_flags;
void *ptr;
+ int slab_node = numa_mem_id();
flags &= gfp_allowed_mask;
@@ -3329,7 +3402,7 @@ __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
local_irq_save(save_flags);
if (nodeid == -1)
- nodeid = numa_node_id();
+ nodeid = slab_node;
if (unlikely(!cachep->nodelists[nodeid])) {
/* Node not bootstrapped yet */
@@ -3337,7 +3410,7 @@ __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
goto out;
}
- if (nodeid == numa_node_id()) {
+ if (nodeid == slab_node) {
/*
* Use the locally cached objects if possible.
* However ____cache_alloc does not allow fallback
@@ -3381,8 +3454,8 @@ __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
* We may just have run out of memory on the local node.
* ____cache_alloc_node() knows how to locate memory on other nodes
*/
- if (!objp)
- objp = ____cache_alloc_node(cache, flags, numa_node_id());
+ if (!objp)
+ objp = ____cache_alloc_node(cache, flags, numa_mem_id());
out:
return objp;
@@ -3479,7 +3552,7 @@ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
{
int batchcount;
struct kmem_list3 *l3;
- int node = numa_node_id();
+ int node = numa_mem_id();
batchcount = ac->batchcount;
#if DEBUG
@@ -3603,21 +3676,10 @@ EXPORT_SYMBOL(kmem_cache_alloc_notrace);
*/
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
{
- unsigned long addr = (unsigned long)ptr;
- unsigned long min_addr = PAGE_OFFSET;
- unsigned long align_mask = BYTES_PER_WORD - 1;
unsigned long size = cachep->buffer_size;
struct page *page;
- if (unlikely(addr < min_addr))
- goto out;
- if (unlikely(addr > (unsigned long)high_memory - size))
- goto out;
- if (unlikely(addr & align_mask))
- goto out;
- if (unlikely(!kern_addr_valid(addr)))
- goto out;
- if (unlikely(!kern_addr_valid(addr + size - 1)))
+ if (unlikely(!kern_ptr_validate(ptr, size)))
goto out;
page = virt_to_page(ptr);
if (unlikely(!PageSlab(page)))
@@ -3924,7 +3986,7 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
return -ENOMEM;
for_each_online_cpu(i) {
- new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
+ new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
batchcount, gfp);
if (!new->new[i]) {
for (i--; i >= 0; i--)
@@ -3946,9 +4008,9 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
struct array_cache *ccold = new->new[i];
if (!ccold)
continue;
- spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
- free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
- spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
+ spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
+ free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
+ spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
kfree(ccold);
}
kfree(new);
@@ -4054,7 +4116,7 @@ static void cache_reap(struct work_struct *w)
{
struct kmem_cache *searchp;
struct kmem_list3 *l3;
- int node = numa_node_id();
+ int node = numa_mem_id();
struct delayed_work *work = to_delayed_work(w);
if (!mutex_trylock(&cache_chain_mutex))
@@ -4228,10 +4290,11 @@ static int s_show(struct seq_file *m, void *p)
unsigned long node_frees = cachep->node_frees;
unsigned long overflows = cachep->node_overflow;
- seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
- %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
- reaped, errors, max_freeable, node_allocs,
- node_frees, overflows);
+ seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
+ "%4lu %4lu %4lu %4lu %4lu",
+ allocs, high, grown,
+ reaped, errors, max_freeable, node_allocs,
+ node_frees, overflows);
}
/* cpu stats */
{
diff --git a/mm/slob.c b/mm/slob.c
index 837ebd64cc34..23631e2bb57a 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -467,14 +467,6 @@ out:
* End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
*/
-#ifndef ARCH_KMALLOC_MINALIGN
-#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long)
-#endif
-
-#ifndef ARCH_SLAB_MINALIGN
-#define ARCH_SLAB_MINALIGN __alignof__(unsigned long)
-#endif
-
void *__kmalloc_node(size_t size, gfp_t gfp, int node)
{
unsigned int *m;
diff --git a/mm/slub.c b/mm/slub.c
index 8d71aaf888d7..578f68f3c51f 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -151,19 +151,12 @@
* Set of flags that will prevent slab merging
*/
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
- SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
+ SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
+ SLAB_FAILSLAB)
#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
SLAB_CACHE_DMA | SLAB_NOTRACK)
-#ifndef ARCH_KMALLOC_MINALIGN
-#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
-#endif
-
-#ifndef ARCH_SLAB_MINALIGN
-#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
-#endif
-
#define OO_SHIFT 16
#define OO_MASK ((1 << OO_SHIFT) - 1)
#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
@@ -217,10 +210,10 @@ static inline void sysfs_slab_remove(struct kmem_cache *s)
#endif
-static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
+static inline void stat(struct kmem_cache *s, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
- c->stat[si]++;
+ __this_cpu_inc(s->cpu_slab->stat[si]);
#endif
}
@@ -242,15 +235,6 @@ static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
#endif
}
-static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
-{
-#ifdef CONFIG_SMP
- return s->cpu_slab[cpu];
-#else
- return &s->cpu_slab;
-#endif
-}
-
/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
struct page *page, const void *object)
@@ -269,13 +253,6 @@ static inline int check_valid_pointer(struct kmem_cache *s,
return 1;
}
-/*
- * Slow version of get and set free pointer.
- *
- * This version requires touching the cache lines of kmem_cache which
- * we avoid to do in the fast alloc free paths. There we obtain the offset
- * from the page struct.
- */
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
return *(void **)(object + s->offset);
@@ -1020,6 +997,9 @@ static int __init setup_slub_debug(char *str)
case 't':
slub_debug |= SLAB_TRACE;
break;
+ case 'a':
+ slub_debug |= SLAB_FAILSLAB;
+ break;
default:
printk(KERN_ERR "slub_debug option '%c' "
"unknown. skipped\n", *str);
@@ -1096,7 +1076,7 @@ static inline struct page *alloc_slab_page(gfp_t flags, int node,
if (node == -1)
return alloc_pages(flags, order);
else
- return alloc_pages_node(node, flags, order);
+ return alloc_pages_exact_node(node, flags, order);
}
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
@@ -1124,7 +1104,7 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
if (!page)
return NULL;
- stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
+ stat(s, ORDER_FALLBACK);
}
if (kmemcheck_enabled
@@ -1380,6 +1360,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
get_cycles() % 1024 > s->remote_node_defrag_ratio)
return NULL;
+ get_mems_allowed();
zonelist = node_zonelist(slab_node(current->mempolicy), flags);
for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
struct kmem_cache_node *n;
@@ -1389,10 +1370,13 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
n->nr_partial > s->min_partial) {
page = get_partial_node(n);
- if (page)
+ if (page) {
+ put_mems_allowed();
return page;
+ }
}
}
+ put_mems_allowed();
#endif
return NULL;
}
@@ -1422,23 +1406,22 @@ static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
{
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
- struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
__ClearPageSlubFrozen(page);
if (page->inuse) {
if (page->freelist) {
add_partial(n, page, tail);
- stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
+ stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
} else {
- stat(c, DEACTIVATE_FULL);
+ stat(s, DEACTIVATE_FULL);
if (SLABDEBUG && PageSlubDebug(page) &&
(s->flags & SLAB_STORE_USER))
add_full(n, page);
}
slab_unlock(page);
} else {
- stat(c, DEACTIVATE_EMPTY);
+ stat(s, DEACTIVATE_EMPTY);
if (n->nr_partial < s->min_partial) {
/*
* Adding an empty slab to the partial slabs in order
@@ -1454,7 +1437,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
slab_unlock(page);
} else {
slab_unlock(page);
- stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
+ stat(s, FREE_SLAB);
discard_slab(s, page);
}
}
@@ -1469,7 +1452,7 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
int tail = 1;
if (page->freelist)
- stat(c, DEACTIVATE_REMOTE_FREES);
+ stat(s, DEACTIVATE_REMOTE_FREES);
/*
* Merge cpu freelist into slab freelist. Typically we get here
* because both freelists are empty. So this is unlikely
@@ -1482,10 +1465,10 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
/* Retrieve object from cpu_freelist */
object = c->freelist;
- c->freelist = c->freelist[c->offset];
+ c->freelist = get_freepointer(s, c->freelist);
/* And put onto the regular freelist */
- object[c->offset] = page->freelist;
+ set_freepointer(s, object, page->freelist);
page->freelist = object;
page->inuse--;
}
@@ -1495,7 +1478,7 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
{
- stat(c, CPUSLAB_FLUSH);
+ stat(s, CPUSLAB_FLUSH);
slab_lock(c->page);
deactivate_slab(s, c);
}
@@ -1507,7 +1490,7 @@ static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
*/
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
{
- struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+ struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
if (likely(c && c->page))
flush_slab(s, c);
@@ -1635,7 +1618,7 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
if (unlikely(!node_match(c, node)))
goto another_slab;
- stat(c, ALLOC_REFILL);
+ stat(s, ALLOC_REFILL);
load_freelist:
object = c->page->freelist;
@@ -1644,13 +1627,13 @@ load_freelist:
if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
goto debug;
- c->freelist = object[c->offset];
+ c->freelist = get_freepointer(s, object);
c->page->inuse = c->page->objects;
c->page->freelist = NULL;
c->node = page_to_nid(c->page);
unlock_out:
slab_unlock(c->page);
- stat(c, ALLOC_SLOWPATH);
+ stat(s, ALLOC_SLOWPATH);
return object;
another_slab:
@@ -1660,7 +1643,7 @@ new_slab:
new = get_partial(s, gfpflags, node);
if (new) {
c->page = new;
- stat(c, ALLOC_FROM_PARTIAL);
+ stat(s, ALLOC_FROM_PARTIAL);
goto load_freelist;
}
@@ -1673,8 +1656,8 @@ new_slab:
local_irq_disable();
if (new) {
- c = get_cpu_slab(s, smp_processor_id());
- stat(c, ALLOC_SLAB);
+ c = __this_cpu_ptr(s->cpu_slab);
+ stat(s, ALLOC_SLAB);
if (c->page)
flush_slab(s, c);
slab_lock(new);
@@ -1690,7 +1673,7 @@ debug:
goto another_slab;
c->page->inuse++;
- c->page->freelist = object[c->offset];
+ c->page->freelist = get_freepointer(s, object);
c->node = -1;
goto unlock_out;
}
@@ -1711,35 +1694,33 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
void **object;
struct kmem_cache_cpu *c;
unsigned long flags;
- unsigned int objsize;
gfpflags &= gfp_allowed_mask;
lockdep_trace_alloc(gfpflags);
might_sleep_if(gfpflags & __GFP_WAIT);
- if (should_failslab(s->objsize, gfpflags))
+ if (should_failslab(s->objsize, gfpflags, s->flags))
return NULL;
local_irq_save(flags);
- c = get_cpu_slab(s, smp_processor_id());
- objsize = c->objsize;
- if (unlikely(!c->freelist || !node_match(c, node)))
+ c = __this_cpu_ptr(s->cpu_slab);
+ object = c->freelist;
+ if (unlikely(!object || !node_match(c, node)))
object = __slab_alloc(s, gfpflags, node, addr, c);
else {
- object = c->freelist;
- c->freelist = object[c->offset];
- stat(c, ALLOC_FASTPATH);
+ c->freelist = get_freepointer(s, object);
+ stat(s, ALLOC_FASTPATH);
}
local_irq_restore(flags);
if (unlikely(gfpflags & __GFP_ZERO) && object)
- memset(object, 0, objsize);
+ memset(object, 0, s->objsize);
- kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
- kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
+ kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
+ kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
return object;
}
@@ -1794,26 +1775,25 @@ EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
* handling required then we can return immediately.
*/
static void __slab_free(struct kmem_cache *s, struct page *page,
- void *x, unsigned long addr, unsigned int offset)
+ void *x, unsigned long addr)
{
void *prior;
void **object = (void *)x;
- struct kmem_cache_cpu *c;
- c = get_cpu_slab(s, raw_smp_processor_id());
- stat(c, FREE_SLOWPATH);
+ stat(s, FREE_SLOWPATH);
slab_lock(page);
if (unlikely(SLABDEBUG && PageSlubDebug(page)))
goto debug;
checks_ok:
- prior = object[offset] = page->freelist;
+ prior = page->freelist;
+ set_freepointer(s, object, prior);
page->freelist = object;
page->inuse--;
if (unlikely(PageSlubFrozen(page))) {
- stat(c, FREE_FROZEN);
+ stat(s, FREE_FROZEN);
goto out_unlock;
}
@@ -1826,7 +1806,7 @@ checks_ok:
*/
if (unlikely(!prior)) {
add_partial(get_node(s, page_to_nid(page)), page, 1);
- stat(c, FREE_ADD_PARTIAL);
+ stat(s, FREE_ADD_PARTIAL);
}
out_unlock:
@@ -1839,10 +1819,10 @@ slab_empty:
* Slab still on the partial list.
*/
remove_partial(s, page);
- stat(c, FREE_REMOVE_PARTIAL);
+ stat(s, FREE_REMOVE_PARTIAL);
}
slab_unlock(page);
- stat(c, FREE_SLAB);
+ stat(s, FREE_SLAB);
discard_slab(s, page);
return;
@@ -1872,17 +1852,17 @@ static __always_inline void slab_free(struct kmem_cache *s,
kmemleak_free_recursive(x, s->flags);
local_irq_save(flags);
- c = get_cpu_slab(s, smp_processor_id());
- kmemcheck_slab_free(s, object, c->objsize);
- debug_check_no_locks_freed(object, c->objsize);
+ c = __this_cpu_ptr(s->cpu_slab);
+ kmemcheck_slab_free(s, object, s->objsize);
+ debug_check_no_locks_freed(object, s->objsize);
if (!(s->flags & SLAB_DEBUG_OBJECTS))
- debug_check_no_obj_freed(object, c->objsize);
+ debug_check_no_obj_freed(object, s->objsize);
if (likely(page == c->page && c->node >= 0)) {
- object[c->offset] = c->freelist;
+ set_freepointer(s, object, c->freelist);
c->freelist = object;
- stat(c, FREE_FASTPATH);
+ stat(s, FREE_FASTPATH);
} else
- __slab_free(s, page, x, addr, c->offset);
+ __slab_free(s, page, x, addr);
local_irq_restore(flags);
}
@@ -2069,19 +2049,6 @@ static unsigned long calculate_alignment(unsigned long flags,
return ALIGN(align, sizeof(void *));
}
-static void init_kmem_cache_cpu(struct kmem_cache *s,
- struct kmem_cache_cpu *c)
-{
- c->page = NULL;
- c->freelist = NULL;
- c->node = 0;
- c->offset = s->offset / sizeof(void *);
- c->objsize = s->objsize;
-#ifdef CONFIG_SLUB_STATS
- memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
-#endif
-}
-
static void
init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
{
@@ -2095,130 +2062,24 @@ init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
#endif
}
-#ifdef CONFIG_SMP
-/*
- * Per cpu array for per cpu structures.
- *
- * The per cpu array places all kmem_cache_cpu structures from one processor
- * close together meaning that it becomes possible that multiple per cpu
- * structures are contained in one cacheline. This may be particularly
- * beneficial for the kmalloc caches.
- *
- * A desktop system typically has around 60-80 slabs. With 100 here we are
- * likely able to get per cpu structures for all caches from the array defined
- * here. We must be able to cover all kmalloc caches during bootstrap.
- *
- * If the per cpu array is exhausted then fall back to kmalloc
- * of individual cachelines. No sharing is possible then.
- */
-#define NR_KMEM_CACHE_CPU 100
-
-static DEFINE_PER_CPU(struct kmem_cache_cpu [NR_KMEM_CACHE_CPU],
- kmem_cache_cpu);
-
-static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
-static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
-
-static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
- int cpu, gfp_t flags)
-{
- struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
-
- if (c)
- per_cpu(kmem_cache_cpu_free, cpu) =
- (void *)c->freelist;
- else {
- /* Table overflow: So allocate ourselves */
- c = kmalloc_node(
- ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
- flags, cpu_to_node(cpu));
- if (!c)
- return NULL;
- }
-
- init_kmem_cache_cpu(s, c);
- return c;
-}
-
-static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
-{
- if (c < per_cpu(kmem_cache_cpu, cpu) ||
- c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
- kfree(c);
- return;
- }
- c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
- per_cpu(kmem_cache_cpu_free, cpu) = c;
-}
-
-static void free_kmem_cache_cpus(struct kmem_cache *s)
-{
- int cpu;
-
- for_each_online_cpu(cpu) {
- struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
-
- if (c) {
- s->cpu_slab[cpu] = NULL;
- free_kmem_cache_cpu(c, cpu);
- }
- }
-}
-
-static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
-{
- int cpu;
-
- for_each_online_cpu(cpu) {
- struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
-
- if (c)
- continue;
-
- c = alloc_kmem_cache_cpu(s, cpu, flags);
- if (!c) {
- free_kmem_cache_cpus(s);
- return 0;
- }
- s->cpu_slab[cpu] = c;
- }
- return 1;
-}
-
-/*
- * Initialize the per cpu array.
- */
-static void init_alloc_cpu_cpu(int cpu)
-{
- int i;
-
- if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
- return;
-
- for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
- free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
-
- cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
-}
+static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
-static void __init init_alloc_cpu(void)
+static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
- int cpu;
-
- for_each_online_cpu(cpu)
- init_alloc_cpu_cpu(cpu);
- }
+ if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
+ /*
+ * Boot time creation of the kmalloc array. Use static per cpu data
+ * since the per cpu allocator is not available yet.
+ */
+ s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
+ else
+ s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
-#else
-static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
-static inline void init_alloc_cpu(void) {}
+ if (!s->cpu_slab)
+ return 0;
-static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
-{
- init_kmem_cache_cpu(s, &s->cpu_slab);
return 1;
}
-#endif
#ifdef CONFIG_NUMA
/*
@@ -2276,7 +2137,7 @@ static void free_kmem_cache_nodes(struct kmem_cache *s)
for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = s->node[node];
- if (n && n != &s->local_node)
+ if (n)
kmem_cache_free(kmalloc_caches, n);
s->node[node] = NULL;
}
@@ -2285,32 +2146,22 @@ static void free_kmem_cache_nodes(struct kmem_cache *s)
static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
int node;
- int local_node;
-
- if (slab_state >= UP)
- local_node = page_to_nid(virt_to_page(s));
- else
- local_node = 0;
for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n;
- if (local_node == node)
- n = &s->local_node;
- else {
- if (slab_state == DOWN) {
- early_kmem_cache_node_alloc(gfpflags, node);
- continue;
- }
- n = kmem_cache_alloc_node(kmalloc_caches,
- gfpflags, node);
-
- if (!n) {
- free_kmem_cache_nodes(s);
- return 0;
- }
+ if (slab_state == DOWN) {
+ early_kmem_cache_node_alloc(gfpflags, node);
+ continue;
+ }
+ n = kmem_cache_alloc_node(kmalloc_caches,
+ gfpflags, node);
+ if (!n) {
+ free_kmem_cache_nodes(s);
+ return 0;
}
+
s->node[node] = n;
init_kmem_cache_node(n, s);
}
@@ -2502,6 +2353,7 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
return 1;
+
free_kmem_cache_nodes(s);
error:
if (flags & SLAB_PANIC)
@@ -2519,6 +2371,9 @@ int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
struct page *page;
+ if (!kern_ptr_validate(object, s->size))
+ return 0;
+
page = get_object_page(object);
if (!page || s != page->slab)
@@ -2559,9 +2414,11 @@ static void list_slab_objects(struct kmem_cache *s, struct page *page,
#ifdef CONFIG_SLUB_DEBUG
void *addr = page_address(page);
void *p;
- DECLARE_BITMAP(map, page->objects);
+ long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
+ GFP_ATOMIC);
- bitmap_zero(map, page->objects);
+ if (!map)
+ return;
slab_err(s, page, "%s", text);
slab_lock(page);
for_each_free_object(p, s, page->freelist)
@@ -2576,6 +2433,7 @@ static void list_slab_objects(struct kmem_cache *s, struct page *page,
}
}
slab_unlock(page);
+ kfree(map);
#endif
}
@@ -2609,9 +2467,8 @@ static inline int kmem_cache_close(struct kmem_cache *s)
int node;
flush_all(s);
-
+ free_percpu(s->cpu_slab);
/* Attempt to free all objects */
- free_kmem_cache_cpus(s);
for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = get_node(s, node);
@@ -2651,7 +2508,7 @@ EXPORT_SYMBOL(kmem_cache_destroy);
* Kmalloc subsystem
*******************************************************************/
-struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
+struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
EXPORT_SYMBOL(kmalloc_caches);
static int __init setup_slub_min_order(char *str)
@@ -2741,6 +2598,7 @@ static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
char *text;
size_t realsize;
unsigned long slabflags;
+ int i;
s = kmalloc_caches_dma[index];
if (s)
@@ -2760,7 +2618,14 @@ static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
realsize = kmalloc_caches[index].objsize;
text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
(unsigned int)realsize);
- s = kmalloc(kmem_size, flags & ~SLUB_DMA);
+
+ s = NULL;
+ for (i = 0; i < KMALLOC_CACHES; i++)
+ if (!kmalloc_caches[i].size)
+ break;
+
+ BUG_ON(i >= KMALLOC_CACHES);
+ s = kmalloc_caches + i;
/*
* Must defer sysfs creation to a workqueue because we don't know
@@ -2772,9 +2637,9 @@ static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
if (slab_state >= SYSFS)
slabflags |= __SYSFS_ADD_DEFERRED;
- if (!s || !text || !kmem_cache_open(s, flags, text,
+ if (!text || !kmem_cache_open(s, flags, text,
realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
- kfree(s);
+ s->size = 0;
kfree(text);
goto unlock_out;
}
@@ -3086,7 +2951,7 @@ static void slab_mem_offline_callback(void *arg)
/*
* if n->nr_slabs > 0, slabs still exist on the node
* that is going down. We were unable to free them,
- * and offline_pages() function shoudn't call this
+ * and offline_pages() function shouldn't call this
* callback. So, we must fail.
*/
BUG_ON(slabs_node(s, offline_node));
@@ -3176,8 +3041,6 @@ void __init kmem_cache_init(void)
int i;
int caches = 0;
- init_alloc_cpu();
-
#ifdef CONFIG_NUMA
/*
* Must first have the slab cache available for the allocations of the
@@ -3261,8 +3124,10 @@ void __init kmem_cache_init(void)
#ifdef CONFIG_SMP
register_cpu_notifier(&slab_notifier);
- kmem_size = offsetof(struct kmem_cache, cpu_slab) +
- nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
+#endif
+#ifdef CONFIG_NUMA
+ kmem_size = offsetof(struct kmem_cache, node) +
+ nr_node_ids * sizeof(struct kmem_cache_node *);
#else
kmem_size = sizeof(struct kmem_cache);
#endif
@@ -3351,22 +3216,12 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
down_write(&slub_lock);
s = find_mergeable(size, align, flags, name, ctor);
if (s) {
- int cpu;
-
s->refcount++;
/*
* Adjust the object sizes so that we clear
* the complete object on kzalloc.
*/
s->objsize = max(s->objsize, (int)size);
-
- /*
- * And then we need to update the object size in the
- * per cpu structures
- */
- for_each_online_cpu(cpu)
- get_cpu_slab(s, cpu)->objsize = s->objsize;
-
s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
up_write(&slub_lock);
@@ -3420,29 +3275,15 @@ static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
unsigned long flags;
switch (action) {
- case CPU_UP_PREPARE:
- case CPU_UP_PREPARE_FROZEN:
- init_alloc_cpu_cpu(cpu);
- down_read(&slub_lock);
- list_for_each_entry(s, &slab_caches, list)
- s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
- GFP_KERNEL);
- up_read(&slub_lock);
- break;
-
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
case CPU_DEAD:
case CPU_DEAD_FROZEN:
down_read(&slub_lock);
list_for_each_entry(s, &slab_caches, list) {
- struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
-
local_irq_save(flags);
__flush_cpu_slab(s, cpu);
local_irq_restore(flags);
- free_kmem_cache_cpu(c, cpu);
- s->cpu_slab[cpu] = NULL;
}
up_read(&slub_lock);
break;
@@ -3485,8 +3326,15 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
struct kmem_cache *s;
void *ret;
- if (unlikely(size > SLUB_MAX_SIZE))
- return kmalloc_large_node(size, gfpflags, node);
+ if (unlikely(size > SLUB_MAX_SIZE)) {
+ ret = kmalloc_large_node(size, gfpflags, node);
+
+ trace_kmalloc_node(caller, ret,
+ size, PAGE_SIZE << get_order(size),
+ gfpflags, node);
+
+ return ret;
+ }
s = get_slab(size, gfpflags);
@@ -3798,10 +3646,10 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
}
static void process_slab(struct loc_track *t, struct kmem_cache *s,
- struct page *page, enum track_item alloc)
+ struct page *page, enum track_item alloc,
+ long *map)
{
void *addr = page_address(page);
- DECLARE_BITMAP(map, page->objects);
void *p;
bitmap_zero(map, page->objects);
@@ -3820,11 +3668,14 @@ static int list_locations(struct kmem_cache *s, char *buf,
unsigned long i;
struct loc_track t = { 0, 0, NULL };
int node;
+ unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
+ sizeof(unsigned long), GFP_KERNEL);
- if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
- GFP_TEMPORARY))
+ if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
+ GFP_TEMPORARY)) {
+ kfree(map);
return sprintf(buf, "Out of memory\n");
-
+ }
/* Push back cpu slabs */
flush_all(s);
@@ -3838,9 +3689,9 @@ static int list_locations(struct kmem_cache *s, char *buf,
spin_lock_irqsave(&n->list_lock, flags);
list_for_each_entry(page, &n->partial, lru)
- process_slab(&t, s, page, alloc);
+ process_slab(&t, s, page, alloc, map);
list_for_each_entry(page, &n->full, lru)
- process_slab(&t, s, page, alloc);
+ process_slab(&t, s, page, alloc, map);
spin_unlock_irqrestore(&n->list_lock, flags);
}
@@ -3891,6 +3742,7 @@ static int list_locations(struct kmem_cache *s, char *buf,
}
free_loc_track(&t);
+ kfree(map);
if (!t.count)
len += sprintf(buf, "No data\n");
return len;
@@ -3928,7 +3780,7 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
int cpu;
for_each_possible_cpu(cpu) {
- struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+ struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
if (!c || c->node < 0)
continue;
@@ -4171,6 +4023,23 @@ static ssize_t trace_store(struct kmem_cache *s, const char *buf,
}
SLAB_ATTR(trace);
+#ifdef CONFIG_FAILSLAB
+static ssize_t failslab_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
+}
+
+static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
+ size_t length)
+{
+ s->flags &= ~SLAB_FAILSLAB;
+ if (buf[0] == '1')
+ s->flags |= SLAB_FAILSLAB;
+ return length;
+}
+SLAB_ATTR(failslab);
+#endif
+
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
@@ -4353,7 +4222,7 @@ static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
return -ENOMEM;
for_each_online_cpu(cpu) {
- unsigned x = get_cpu_slab(s, cpu)->stat[si];
+ unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
data[cpu] = x;
sum += x;
@@ -4376,7 +4245,7 @@ static void clear_stat(struct kmem_cache *s, enum stat_item si)
int cpu;
for_each_online_cpu(cpu)
- get_cpu_slab(s, cpu)->stat[si] = 0;
+ per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
}
#define STAT_ATTR(si, text) \
@@ -4467,6 +4336,10 @@ static struct attribute *slab_attrs[] = {
&deactivate_remote_frees_attr.attr,
&order_fallback_attr.attr,
#endif
+#ifdef CONFIG_FAILSLAB
+ &failslab_attr.attr,
+#endif
+
NULL
};
@@ -4519,7 +4392,7 @@ static void kmem_cache_release(struct kobject *kobj)
kfree(s);
}
-static struct sysfs_ops slab_sysfs_ops = {
+static const struct sysfs_ops slab_sysfs_ops = {
.show = slab_attr_show,
.store = slab_attr_store,
};
@@ -4538,7 +4411,7 @@ static int uevent_filter(struct kset *kset, struct kobject *kobj)
return 0;
}
-static struct kset_uevent_ops slab_uevent_ops = {
+static const struct kset_uevent_ops slab_uevent_ops = {
.filter = uevent_filter,
};
diff --git a/mm/sparse-vmemmap.c b/mm/sparse-vmemmap.c
index d9714bdcb4a3..aa33fd67fa41 100644
--- a/mm/sparse-vmemmap.c
+++ b/mm/sparse-vmemmap.c
@@ -22,6 +22,7 @@
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/module.h>
+#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <linux/sched.h>
@@ -40,9 +41,11 @@ static void * __init_refok __earlyonly_bootmem_alloc(int node,
unsigned long align,
unsigned long goal)
{
- return __alloc_bootmem_node(NODE_DATA(node), size, align, goal);
+ return __alloc_bootmem_node_high(NODE_DATA(node), size, align, goal);
}
+static void *vmemmap_buf;
+static void *vmemmap_buf_end;
void * __meminit vmemmap_alloc_block(unsigned long size, int node)
{
@@ -64,6 +67,24 @@ void * __meminit vmemmap_alloc_block(unsigned long size, int node)
__pa(MAX_DMA_ADDRESS));
}
+/* need to make sure size is all the same during early stage */
+void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
+{
+ void *ptr;
+
+ if (!vmemmap_buf)
+ return vmemmap_alloc_block(size, node);
+
+ /* take the from buf */
+ ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
+ if (ptr + size > vmemmap_buf_end)
+ return vmemmap_alloc_block(size, node);
+
+ vmemmap_buf = ptr + size;
+
+ return ptr;
+}
+
void __meminit vmemmap_verify(pte_t *pte, int node,
unsigned long start, unsigned long end)
{
@@ -80,7 +101,7 @@ pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
pte_t *pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte)) {
pte_t entry;
- void *p = vmemmap_alloc_block(PAGE_SIZE, node);
+ void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
if (!p)
return NULL;
entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
@@ -163,3 +184,55 @@ struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
return map;
}
+
+void __init sparse_mem_maps_populate_node(struct page **map_map,
+ unsigned long pnum_begin,
+ unsigned long pnum_end,
+ unsigned long map_count, int nodeid)
+{
+ unsigned long pnum;
+ unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
+ void *vmemmap_buf_start;
+
+ size = ALIGN(size, PMD_SIZE);
+ vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
+ PMD_SIZE, __pa(MAX_DMA_ADDRESS));
+
+ if (vmemmap_buf_start) {
+ vmemmap_buf = vmemmap_buf_start;
+ vmemmap_buf_end = vmemmap_buf_start + size * map_count;
+ }
+
+ for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
+ struct mem_section *ms;
+
+ if (!present_section_nr(pnum))
+ continue;
+
+ map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
+ if (map_map[pnum])
+ continue;
+ ms = __nr_to_section(pnum);
+ printk(KERN_ERR "%s: sparsemem memory map backing failed "
+ "some memory will not be available.\n", __func__);
+ ms->section_mem_map = 0;
+ }
+
+ if (vmemmap_buf_start) {
+ /* need to free left buf */
+#ifdef CONFIG_NO_BOOTMEM
+ free_early(__pa(vmemmap_buf_start), __pa(vmemmap_buf_end));
+ if (vmemmap_buf_start < vmemmap_buf) {
+ char name[15];
+
+ snprintf(name, sizeof(name), "MEMMAP %d", nodeid);
+ reserve_early_without_check(__pa(vmemmap_buf_start),
+ __pa(vmemmap_buf), name);
+ }
+#else
+ free_bootmem(__pa(vmemmap_buf), vmemmap_buf_end - vmemmap_buf);
+#endif
+ vmemmap_buf = NULL;
+ vmemmap_buf_end = NULL;
+ }
+}
diff --git a/mm/sparse.c b/mm/sparse.c
index 6ce4aab69e99..95ac219af379 100644
--- a/mm/sparse.c
+++ b/mm/sparse.c
@@ -2,6 +2,7 @@
* sparse memory mappings.
*/
#include <linux/mm.h>
+#include <linux/slab.h>
#include <linux/mmzone.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
@@ -271,7 +272,8 @@ static unsigned long *__kmalloc_section_usemap(void)
#ifdef CONFIG_MEMORY_HOTREMOVE
static unsigned long * __init
-sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
+sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
+ unsigned long count)
{
unsigned long section_nr;
@@ -286,7 +288,7 @@ sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
* this problem.
*/
section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
- return alloc_bootmem_section(usemap_size(), section_nr);
+ return alloc_bootmem_section(usemap_size() * count, section_nr);
}
static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
@@ -329,7 +331,8 @@ static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
}
#else
static unsigned long * __init
-sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
+sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
+ unsigned long count)
{
return NULL;
}
@@ -339,44 +342,117 @@ static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
-static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
+static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
+ unsigned long pnum_begin,
+ unsigned long pnum_end,
+ unsigned long usemap_count, int nodeid)
{
- unsigned long *usemap;
- struct mem_section *ms = __nr_to_section(pnum);
- int nid = sparse_early_nid(ms);
-
- usemap = sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid));
- if (usemap)
- return usemap;
+ void *usemap;
+ unsigned long pnum;
+ int size = usemap_size();
- usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
+ usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
+ usemap_count);
if (usemap) {
- check_usemap_section_nr(nid, usemap);
- return usemap;
+ for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
+ if (!present_section_nr(pnum))
+ continue;
+ usemap_map[pnum] = usemap;
+ usemap += size;
+ }
+ return;
}
- /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
- nid = 0;
+ usemap = alloc_bootmem_node(NODE_DATA(nodeid), size * usemap_count);
+ if (usemap) {
+ for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
+ if (!present_section_nr(pnum))
+ continue;
+ usemap_map[pnum] = usemap;
+ usemap += size;
+ check_usemap_section_nr(nodeid, usemap_map[pnum]);
+ }
+ return;
+ }
printk(KERN_WARNING "%s: allocation failed\n", __func__);
- return NULL;
}
#ifndef CONFIG_SPARSEMEM_VMEMMAP
struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
{
struct page *map;
+ unsigned long size;
map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
if (map)
return map;
- map = alloc_bootmem_pages_node(NODE_DATA(nid),
- PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
+ size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
+ map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
+ PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
return map;
}
+void __init sparse_mem_maps_populate_node(struct page **map_map,
+ unsigned long pnum_begin,
+ unsigned long pnum_end,
+ unsigned long map_count, int nodeid)
+{
+ void *map;
+ unsigned long pnum;
+ unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
+
+ map = alloc_remap(nodeid, size * map_count);
+ if (map) {
+ for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
+ if (!present_section_nr(pnum))
+ continue;
+ map_map[pnum] = map;
+ map += size;
+ }
+ return;
+ }
+
+ size = PAGE_ALIGN(size);
+ map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
+ PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
+ if (map) {
+ for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
+ if (!present_section_nr(pnum))
+ continue;
+ map_map[pnum] = map;
+ map += size;
+ }
+ return;
+ }
+
+ /* fallback */
+ for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
+ struct mem_section *ms;
+
+ if (!present_section_nr(pnum))
+ continue;
+ map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
+ if (map_map[pnum])
+ continue;
+ ms = __nr_to_section(pnum);
+ printk(KERN_ERR "%s: sparsemem memory map backing failed "
+ "some memory will not be available.\n", __func__);
+ ms->section_mem_map = 0;
+ }
+}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
+#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
+static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
+ unsigned long pnum_begin,
+ unsigned long pnum_end,
+ unsigned long map_count, int nodeid)
+{
+ sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
+ map_count, nodeid);
+}
+#else
static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
{
struct page *map;
@@ -392,10 +468,12 @@ static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
ms->section_mem_map = 0;
return NULL;
}
+#endif
void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
{
}
+
/*
* Allocate the accumulated non-linear sections, allocate a mem_map
* for each and record the physical to section mapping.
@@ -407,6 +485,14 @@ void __init sparse_init(void)
unsigned long *usemap;
unsigned long **usemap_map;
int size;
+ int nodeid_begin = 0;
+ unsigned long pnum_begin = 0;
+ unsigned long usemap_count;
+#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
+ unsigned long map_count;
+ int size2;
+ struct page **map_map;
+#endif
/*
* map is using big page (aka 2M in x86 64 bit)
@@ -425,10 +511,81 @@ void __init sparse_init(void)
panic("can not allocate usemap_map\n");
for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
+ struct mem_section *ms;
+
if (!present_section_nr(pnum))
continue;
- usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
+ ms = __nr_to_section(pnum);
+ nodeid_begin = sparse_early_nid(ms);
+ pnum_begin = pnum;
+ break;
}
+ usemap_count = 1;
+ for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
+ struct mem_section *ms;
+ int nodeid;
+
+ if (!present_section_nr(pnum))
+ continue;
+ ms = __nr_to_section(pnum);
+ nodeid = sparse_early_nid(ms);
+ if (nodeid == nodeid_begin) {
+ usemap_count++;
+ continue;
+ }
+ /* ok, we need to take cake of from pnum_begin to pnum - 1*/
+ sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
+ usemap_count, nodeid_begin);
+ /* new start, update count etc*/
+ nodeid_begin = nodeid;
+ pnum_begin = pnum;
+ usemap_count = 1;
+ }
+ /* ok, last chunk */
+ sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
+ usemap_count, nodeid_begin);
+
+#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
+ size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
+ map_map = alloc_bootmem(size2);
+ if (!map_map)
+ panic("can not allocate map_map\n");
+
+ for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
+ struct mem_section *ms;
+
+ if (!present_section_nr(pnum))
+ continue;
+ ms = __nr_to_section(pnum);
+ nodeid_begin = sparse_early_nid(ms);
+ pnum_begin = pnum;
+ break;
+ }
+ map_count = 1;
+ for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
+ struct mem_section *ms;
+ int nodeid;
+
+ if (!present_section_nr(pnum))
+ continue;
+ ms = __nr_to_section(pnum);
+ nodeid = sparse_early_nid(ms);
+ if (nodeid == nodeid_begin) {
+ map_count++;
+ continue;
+ }
+ /* ok, we need to take cake of from pnum_begin to pnum - 1*/
+ sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
+ map_count, nodeid_begin);
+ /* new start, update count etc*/
+ nodeid_begin = nodeid;
+ pnum_begin = pnum;
+ map_count = 1;
+ }
+ /* ok, last chunk */
+ sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
+ map_count, nodeid_begin);
+#endif
for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
if (!present_section_nr(pnum))
@@ -438,7 +595,11 @@ void __init sparse_init(void)
if (!usemap)
continue;
+#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
+ map = map_map[pnum];
+#else
map = sparse_early_mem_map_alloc(pnum);
+#endif
if (!map)
continue;
@@ -448,6 +609,9 @@ void __init sparse_init(void)
vmemmap_populate_print_last();
+#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
+ free_bootmem(__pa(map_map), size2);
+#endif
free_bootmem(__pa(usemap_map), size);
}
diff --git a/mm/swap.c b/mm/swap.c
index 308e57d8d7ed..3ce7bc373a52 100644
--- a/mm/swap.c
+++ b/mm/swap.c
@@ -30,6 +30,7 @@
#include <linux/notifier.h>
#include <linux/backing-dev.h>
#include <linux/memcontrol.h>
+#include <linux/gfp.h>
#include "internal.h"
@@ -55,7 +56,7 @@ static void __page_cache_release(struct page *page)
del_page_from_lru(zone, page);
spin_unlock_irqrestore(&zone->lru_lock, flags);
}
- free_hot_page(page);
+ free_hot_cold_page(page, 0);
}
static void put_compound_page(struct page *page)
@@ -223,6 +224,7 @@ void __lru_cache_add(struct page *page, enum lru_list lru)
____pagevec_lru_add(pvec, lru);
put_cpu_var(lru_add_pvecs);
}
+EXPORT_SYMBOL(__lru_cache_add);
/**
* lru_cache_add_lru - add a page to a page list
diff --git a/mm/swap_state.c b/mm/swap_state.c
index 6d1daeb1cb4a..e10f5833167f 100644
--- a/mm/swap_state.c
+++ b/mm/swap_state.c
@@ -8,6 +8,7 @@
*/
#include <linux/module.h>
#include <linux/mm.h>
+#include <linux/gfp.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/swapops.h>
diff --git a/mm/swapfile.c b/mm/swapfile.c
index 6c0585b16418..03aa2d55f1a2 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -139,7 +139,8 @@ static int discard_swap(struct swap_info_struct *si)
nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
if (nr_blocks) {
err = blkdev_issue_discard(si->bdev, start_block,
- nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
+ nr_blocks, GFP_KERNEL,
+ BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
if (err)
return err;
cond_resched();
@@ -150,7 +151,8 @@ static int discard_swap(struct swap_info_struct *si)
nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
err = blkdev_issue_discard(si->bdev, start_block,
- nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
+ nr_blocks, GFP_KERNEL,
+ BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
if (err)
break;
@@ -189,7 +191,8 @@ static void discard_swap_cluster(struct swap_info_struct *si,
start_block <<= PAGE_SHIFT - 9;
nr_blocks <<= PAGE_SHIFT - 9;
if (blkdev_issue_discard(si->bdev, start_block,
- nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
+ nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT |
+ BLKDEV_IFL_BARRIER))
break;
}
@@ -574,6 +577,7 @@ static unsigned char swap_entry_free(struct swap_info_struct *p,
/* free if no reference */
if (!usage) {
+ struct gendisk *disk = p->bdev->bd_disk;
if (offset < p->lowest_bit)
p->lowest_bit = offset;
if (offset > p->highest_bit)
@@ -583,6 +587,9 @@ static unsigned char swap_entry_free(struct swap_info_struct *p,
swap_list.next = p->type;
nr_swap_pages++;
p->inuse_pages--;
+ if ((p->flags & SWP_BLKDEV) &&
+ disk->fops->swap_slot_free_notify)
+ disk->fops->swap_slot_free_notify(p->bdev, offset);
}
return usage;
@@ -723,6 +730,37 @@ int free_swap_and_cache(swp_entry_t entry)
return p != NULL;
}
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR
+/**
+ * mem_cgroup_count_swap_user - count the user of a swap entry
+ * @ent: the swap entry to be checked
+ * @pagep: the pointer for the swap cache page of the entry to be stored
+ *
+ * Returns the number of the user of the swap entry. The number is valid only
+ * for swaps of anonymous pages.
+ * If the entry is found on swap cache, the page is stored to pagep with
+ * refcount of it being incremented.
+ */
+int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
+{
+ struct page *page;
+ struct swap_info_struct *p;
+ int count = 0;
+
+ page = find_get_page(&swapper_space, ent.val);
+ if (page)
+ count += page_mapcount(page);
+ p = swap_info_get(ent);
+ if (p) {
+ count += swap_count(p->swap_map[swp_offset(ent)]);
+ spin_unlock(&swap_lock);
+ }
+
+ *pagep = page;
+ return count;
+}
+#endif
+
#ifdef CONFIG_HIBERNATION
/*
* Find the swap type that corresponds to given device (if any).
@@ -840,7 +878,8 @@ static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
goto out;
}
- inc_mm_counter(vma->vm_mm, anon_rss);
+ dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
+ inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
get_page(page);
set_pte_at(vma->vm_mm, addr, pte,
pte_mkold(mk_pte(page, vma->vm_page_prot)));
@@ -1759,11 +1798,11 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
unsigned int type;
int i, prev;
int error;
- union swap_header *swap_header = NULL;
- unsigned int nr_good_pages = 0;
+ union swap_header *swap_header;
+ unsigned int nr_good_pages;
int nr_extents = 0;
sector_t span;
- unsigned long maxpages = 1;
+ unsigned long maxpages;
unsigned long swapfilepages;
unsigned char *swap_map = NULL;
struct page *page = NULL;
@@ -1852,6 +1891,7 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
if (error < 0)
goto bad_swap;
p->bdev = bdev;
+ p->flags |= SWP_BLKDEV;
} else if (S_ISREG(inode->i_mode)) {
p->bdev = inode->i_sb->s_bdev;
mutex_lock(&inode->i_mutex);
@@ -1922,9 +1962,13 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
* swap pte.
*/
maxpages = swp_offset(pte_to_swp_entry(
- swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
- if (maxpages > swap_header->info.last_page)
- maxpages = swap_header->info.last_page;
+ swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
+ if (maxpages > swap_header->info.last_page) {
+ maxpages = swap_header->info.last_page + 1;
+ /* p->max is an unsigned int: don't overflow it */
+ if ((unsigned int)maxpages == 0)
+ maxpages = UINT_MAX;
+ }
p->highest_bit = maxpages - 1;
error = -EINVAL;
@@ -1948,23 +1992,24 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
}
memset(swap_map, 0, maxpages);
+ nr_good_pages = maxpages - 1; /* omit header page */
+
for (i = 0; i < swap_header->info.nr_badpages; i++) {
- int page_nr = swap_header->info.badpages[i];
- if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
+ unsigned int page_nr = swap_header->info.badpages[i];
+ if (page_nr == 0 || page_nr > swap_header->info.last_page) {
error = -EINVAL;
goto bad_swap;
}
- swap_map[page_nr] = SWAP_MAP_BAD;
+ if (page_nr < maxpages) {
+ swap_map[page_nr] = SWAP_MAP_BAD;
+ nr_good_pages--;
+ }
}
error = swap_cgroup_swapon(type, maxpages);
if (error)
goto bad_swap;
- nr_good_pages = swap_header->info.last_page -
- swap_header->info.nr_badpages -
- 1 /* header page */;
-
if (nr_good_pages) {
swap_map[0] = SWAP_MAP_BAD;
p->max = maxpages;
@@ -2155,7 +2200,11 @@ void swap_shmem_alloc(swp_entry_t entry)
}
/*
- * increase reference count of swap entry by 1.
+ * Increase reference count of swap entry by 1.
+ * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
+ * but could not be atomically allocated. Returns 0, just as if it succeeded,
+ * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
+ * might occur if a page table entry has got corrupted.
*/
int swap_duplicate(swp_entry_t entry)
{
diff --git a/mm/truncate.c b/mm/truncate.c
index e87e37244829..937571b8b233 100644
--- a/mm/truncate.c
+++ b/mm/truncate.c
@@ -9,6 +9,7 @@
#include <linux/kernel.h>
#include <linux/backing-dev.h>
+#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/module.h>
@@ -547,18 +548,18 @@ EXPORT_SYMBOL(truncate_pagecache);
* NOTE! We have to be ready to update the memory sharing
* between the file and the memory map for a potential last
* incomplete page. Ugly, but necessary.
+ *
+ * This function is deprecated and simple_setsize or truncate_pagecache
+ * should be used instead.
*/
int vmtruncate(struct inode *inode, loff_t offset)
{
- loff_t oldsize;
int error;
- error = inode_newsize_ok(inode, offset);
+ error = simple_setsize(inode, offset);
if (error)
return error;
- oldsize = inode->i_size;
- i_size_write(inode, offset);
- truncate_pagecache(inode, oldsize, offset);
+
if (inode->i_op->truncate)
inode->i_op->truncate(inode);
diff --git a/mm/util.c b/mm/util.c
index 834db7be240f..f5712e8964be 100644
--- a/mm/util.c
+++ b/mm/util.c
@@ -186,6 +186,27 @@ void kzfree(const void *p)
}
EXPORT_SYMBOL(kzfree);
+int kern_ptr_validate(const void *ptr, unsigned long size)
+{
+ unsigned long addr = (unsigned long)ptr;
+ unsigned long min_addr = PAGE_OFFSET;
+ unsigned long align_mask = sizeof(void *) - 1;
+
+ if (unlikely(addr < min_addr))
+ goto out;
+ if (unlikely(addr > (unsigned long)high_memory - size))
+ goto out;
+ if (unlikely(addr & align_mask))
+ goto out;
+ if (unlikely(!kern_addr_valid(addr)))
+ goto out;
+ if (unlikely(!kern_addr_valid(addr + size - 1)))
+ goto out;
+ return 1;
+out:
+ return 0;
+}
+
/*
* strndup_user - duplicate an existing string from user space
* @s: The string to duplicate
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
index d55d905463eb..ae007462b7f6 100644
--- a/mm/vmalloc.c
+++ b/mm/vmalloc.c
@@ -509,6 +509,9 @@ static unsigned long lazy_max_pages(void)
static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
+/* for per-CPU blocks */
+static void purge_fragmented_blocks_allcpus(void);
+
/*
* Purges all lazily-freed vmap areas.
*
@@ -539,6 +542,9 @@ static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
} else
spin_lock(&purge_lock);
+ if (sync)
+ purge_fragmented_blocks_allcpus();
+
rcu_read_lock();
list_for_each_entry_rcu(va, &vmap_area_list, list) {
if (va->flags & VM_LAZY_FREE) {
@@ -667,8 +673,6 @@ static bool vmap_initialized __read_mostly = false;
struct vmap_block_queue {
spinlock_t lock;
struct list_head free;
- struct list_head dirty;
- unsigned int nr_dirty;
};
struct vmap_block {
@@ -678,10 +682,9 @@ struct vmap_block {
unsigned long free, dirty;
DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
- union {
- struct list_head free_list;
- struct rcu_head rcu_head;
- };
+ struct list_head free_list;
+ struct rcu_head rcu_head;
+ struct list_head purge;
};
/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
@@ -757,7 +760,7 @@ static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
vbq = &get_cpu_var(vmap_block_queue);
vb->vbq = vbq;
spin_lock(&vbq->lock);
- list_add(&vb->free_list, &vbq->free);
+ list_add_rcu(&vb->free_list, &vbq->free);
spin_unlock(&vbq->lock);
put_cpu_var(vmap_block_queue);
@@ -776,8 +779,6 @@ static void free_vmap_block(struct vmap_block *vb)
struct vmap_block *tmp;
unsigned long vb_idx;
- BUG_ON(!list_empty(&vb->free_list));
-
vb_idx = addr_to_vb_idx(vb->va->va_start);
spin_lock(&vmap_block_tree_lock);
tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
@@ -788,12 +789,61 @@ static void free_vmap_block(struct vmap_block *vb)
call_rcu(&vb->rcu_head, rcu_free_vb);
}
+static void purge_fragmented_blocks(int cpu)
+{
+ LIST_HEAD(purge);
+ struct vmap_block *vb;
+ struct vmap_block *n_vb;
+ struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(vb, &vbq->free, free_list) {
+
+ if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
+ continue;
+
+ spin_lock(&vb->lock);
+ if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
+ vb->free = 0; /* prevent further allocs after releasing lock */
+ vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
+ bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
+ bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
+ spin_lock(&vbq->lock);
+ list_del_rcu(&vb->free_list);
+ spin_unlock(&vbq->lock);
+ spin_unlock(&vb->lock);
+ list_add_tail(&vb->purge, &purge);
+ } else
+ spin_unlock(&vb->lock);
+ }
+ rcu_read_unlock();
+
+ list_for_each_entry_safe(vb, n_vb, &purge, purge) {
+ list_del(&vb->purge);
+ free_vmap_block(vb);
+ }
+}
+
+static void purge_fragmented_blocks_thiscpu(void)
+{
+ purge_fragmented_blocks(smp_processor_id());
+}
+
+static void purge_fragmented_blocks_allcpus(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu)
+ purge_fragmented_blocks(cpu);
+}
+
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
struct vmap_block_queue *vbq;
struct vmap_block *vb;
unsigned long addr = 0;
unsigned int order;
+ int purge = 0;
BUG_ON(size & ~PAGE_MASK);
BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
@@ -806,24 +856,38 @@ again:
int i;
spin_lock(&vb->lock);
+ if (vb->free < 1UL << order)
+ goto next;
+
i = bitmap_find_free_region(vb->alloc_map,
VMAP_BBMAP_BITS, order);
- if (i >= 0) {
- addr = vb->va->va_start + (i << PAGE_SHIFT);
- BUG_ON(addr_to_vb_idx(addr) !=
- addr_to_vb_idx(vb->va->va_start));
- vb->free -= 1UL << order;
- if (vb->free == 0) {
- spin_lock(&vbq->lock);
- list_del_init(&vb->free_list);
- spin_unlock(&vbq->lock);
+ if (i < 0) {
+ if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
+ /* fragmented and no outstanding allocations */
+ BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
+ purge = 1;
}
- spin_unlock(&vb->lock);
- break;
+ goto next;
}
+ addr = vb->va->va_start + (i << PAGE_SHIFT);
+ BUG_ON(addr_to_vb_idx(addr) !=
+ addr_to_vb_idx(vb->va->va_start));
+ vb->free -= 1UL << order;
+ if (vb->free == 0) {
+ spin_lock(&vbq->lock);
+ list_del_rcu(&vb->free_list);
+ spin_unlock(&vbq->lock);
+ }
+ spin_unlock(&vb->lock);
+ break;
+next:
spin_unlock(&vb->lock);
}
+
+ if (purge)
+ purge_fragmented_blocks_thiscpu();
+
put_cpu_var(vmap_block_queue);
rcu_read_unlock();
@@ -860,11 +924,11 @@ static void vb_free(const void *addr, unsigned long size)
BUG_ON(!vb);
spin_lock(&vb->lock);
- bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
+ BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
vb->dirty += 1UL << order;
if (vb->dirty == VMAP_BBMAP_BITS) {
- BUG_ON(vb->free || !list_empty(&vb->free_list));
+ BUG_ON(vb->free);
spin_unlock(&vb->lock);
free_vmap_block(vb);
} else
@@ -1033,8 +1097,6 @@ void __init vmalloc_init(void)
vbq = &per_cpu(vmap_block_queue, i);
spin_lock_init(&vbq->lock);
INIT_LIST_HEAD(&vbq->free);
- INIT_LIST_HEAD(&vbq->dirty);
- vbq->nr_dirty = 0;
}
/* Import existing vmlist entries. */
diff --git a/mm/vmscan.c b/mm/vmscan.c
index c26986c85ce0..b94fe1b3da43 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -13,7 +13,7 @@
#include <linux/mm.h>
#include <linux/module.h>
-#include <linux/slab.h>
+#include <linux/gfp.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
@@ -73,10 +73,14 @@ struct scan_control {
int swappiness;
- int all_unreclaimable;
-
int order;
+ /*
+ * Intend to reclaim enough contenious memory rather than to reclaim
+ * enough amount memory. I.e, it's the mode for high order allocation.
+ */
+ bool lumpy_reclaim_mode;
+
/* Which cgroup do we reclaim from */
struct mem_cgroup *mem_cgroup;
@@ -85,12 +89,6 @@ struct scan_control {
* are scanned.
*/
nodemask_t *nodemask;
-
- /* Pluggable isolate pages callback */
- unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
- unsigned long *scanned, int order, int mode,
- struct zone *z, struct mem_cgroup *mem_cont,
- int active, int file);
};
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
@@ -215,8 +213,9 @@ unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
list_for_each_entry(shrinker, &shrinker_list, list) {
unsigned long long delta;
unsigned long total_scan;
- unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
+ unsigned long max_pass;
+ max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
delta = (4 * scanned) / shrinker->seeks;
delta *= max_pass;
do_div(delta, lru_pages + 1);
@@ -244,8 +243,9 @@ unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
int shrink_ret;
int nr_before;
- nr_before = (*shrinker->shrink)(0, gfp_mask);
- shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
+ nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
+ shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
+ gfp_mask);
if (shrink_ret == -1)
break;
if (shrink_ret < nr_before)
@@ -262,27 +262,6 @@ unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
return ret;
}
-/* Called without lock on whether page is mapped, so answer is unstable */
-static inline int page_mapping_inuse(struct page *page)
-{
- struct address_space *mapping;
-
- /* Page is in somebody's page tables. */
- if (page_mapped(page))
- return 1;
-
- /* Be more reluctant to reclaim swapcache than pagecache */
- if (PageSwapCache(page))
- return 1;
-
- mapping = page_mapping(page);
- if (!mapping)
- return 0;
-
- /* File is mmap'd by somebody? */
- return mapping_mapped(mapping);
-}
-
static inline int is_page_cache_freeable(struct page *page)
{
/*
@@ -319,7 +298,7 @@ static int may_write_to_queue(struct backing_dev_info *bdi)
static void handle_write_error(struct address_space *mapping,
struct page *page, int error)
{
- lock_page(page);
+ lock_page_nosync(page);
if (page_mapping(page) == mapping)
mapping_set_error(mapping, error);
unlock_page(page);
@@ -579,6 +558,65 @@ redo:
put_page(page); /* drop ref from isolate */
}
+enum page_references {
+ PAGEREF_RECLAIM,
+ PAGEREF_RECLAIM_CLEAN,
+ PAGEREF_KEEP,
+ PAGEREF_ACTIVATE,
+};
+
+static enum page_references page_check_references(struct page *page,
+ struct scan_control *sc)
+{
+ int referenced_ptes, referenced_page;
+ unsigned long vm_flags;
+
+ referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
+ referenced_page = TestClearPageReferenced(page);
+
+ /* Lumpy reclaim - ignore references */
+ if (sc->lumpy_reclaim_mode)
+ return PAGEREF_RECLAIM;
+
+ /*
+ * Mlock lost the isolation race with us. Let try_to_unmap()
+ * move the page to the unevictable list.
+ */
+ if (vm_flags & VM_LOCKED)
+ return PAGEREF_RECLAIM;
+
+ if (referenced_ptes) {
+ if (PageAnon(page))
+ return PAGEREF_ACTIVATE;
+ /*
+ * All mapped pages start out with page table
+ * references from the instantiating fault, so we need
+ * to look twice if a mapped file page is used more
+ * than once.
+ *
+ * Mark it and spare it for another trip around the
+ * inactive list. Another page table reference will
+ * lead to its activation.
+ *
+ * Note: the mark is set for activated pages as well
+ * so that recently deactivated but used pages are
+ * quickly recovered.
+ */
+ SetPageReferenced(page);
+
+ if (referenced_page)
+ return PAGEREF_ACTIVATE;
+
+ return PAGEREF_KEEP;
+ }
+
+ /* Reclaim if clean, defer dirty pages to writeback */
+ if (referenced_page)
+ return PAGEREF_RECLAIM_CLEAN;
+
+ return PAGEREF_RECLAIM;
+}
+
/*
* shrink_page_list() returns the number of reclaimed pages
*/
@@ -590,16 +628,15 @@ static unsigned long shrink_page_list(struct list_head *page_list,
struct pagevec freed_pvec;
int pgactivate = 0;
unsigned long nr_reclaimed = 0;
- unsigned long vm_flags;
cond_resched();
pagevec_init(&freed_pvec, 1);
while (!list_empty(page_list)) {
+ enum page_references references;
struct address_space *mapping;
struct page *page;
int may_enter_fs;
- int referenced;
cond_resched();
@@ -641,17 +678,16 @@ static unsigned long shrink_page_list(struct list_head *page_list,
goto keep_locked;
}
- referenced = page_referenced(page, 1,
- sc->mem_cgroup, &vm_flags);
- /*
- * In active use or really unfreeable? Activate it.
- * If page which have PG_mlocked lost isoltation race,
- * try_to_unmap moves it to unevictable list
- */
- if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
- referenced && page_mapping_inuse(page)
- && !(vm_flags & VM_LOCKED))
+ references = page_check_references(page, sc);
+ switch (references) {
+ case PAGEREF_ACTIVATE:
goto activate_locked;
+ case PAGEREF_KEEP:
+ goto keep_locked;
+ case PAGEREF_RECLAIM:
+ case PAGEREF_RECLAIM_CLEAN:
+ ; /* try to reclaim the page below */
+ }
/*
* Anonymous process memory has backing store?
@@ -685,7 +721,7 @@ static unsigned long shrink_page_list(struct list_head *page_list,
}
if (PageDirty(page)) {
- if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
+ if (references == PAGEREF_RECLAIM_CLEAN)
goto keep_locked;
if (!may_enter_fs)
goto keep_locked;
@@ -803,11 +839,6 @@ keep:
return nr_reclaimed;
}
-/* LRU Isolation modes. */
-#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
-#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
-#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
-
/*
* Attempt to remove the specified page from its LRU. Only take this page
* if it is of the appropriate PageActive status. Pages which are being
@@ -975,7 +1006,6 @@ static unsigned long isolate_pages_global(unsigned long nr,
struct list_head *dst,
unsigned long *scanned, int order,
int mode, struct zone *z,
- struct mem_cgroup *mem_cont,
int active, int file)
{
int lru = LRU_BASE;
@@ -1094,7 +1124,6 @@ static unsigned long shrink_inactive_list(unsigned long max_scan,
unsigned long nr_scanned = 0;
unsigned long nr_reclaimed = 0;
struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
- int lumpy_reclaim = 0;
while (unlikely(too_many_isolated(zone, file, sc))) {
congestion_wait(BLK_RW_ASYNC, HZ/10);
@@ -1104,17 +1133,6 @@ static unsigned long shrink_inactive_list(unsigned long max_scan,
return SWAP_CLUSTER_MAX;
}
- /*
- * If we need a large contiguous chunk of memory, or have
- * trouble getting a small set of contiguous pages, we
- * will reclaim both active and inactive pages.
- *
- * We use the same threshold as pageout congestion_wait below.
- */
- if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
- lumpy_reclaim = 1;
- else if (sc->order && priority < DEF_PRIORITY - 2)
- lumpy_reclaim = 1;
pagevec_init(&pvec, 1);
@@ -1127,15 +1145,15 @@ static unsigned long shrink_inactive_list(unsigned long max_scan,
unsigned long nr_freed;
unsigned long nr_active;
unsigned int count[NR_LRU_LISTS] = { 0, };
- int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
+ int mode = sc->lumpy_reclaim_mode ? ISOLATE_BOTH : ISOLATE_INACTIVE;
unsigned long nr_anon;
unsigned long nr_file;
- nr_taken = sc->isolate_pages(SWAP_CLUSTER_MAX,
- &page_list, &nr_scan, sc->order, mode,
- zone, sc->mem_cgroup, 0, file);
-
if (scanning_global_lru(sc)) {
+ nr_taken = isolate_pages_global(SWAP_CLUSTER_MAX,
+ &page_list, &nr_scan,
+ sc->order, mode,
+ zone, 0, file);
zone->pages_scanned += nr_scan;
if (current_is_kswapd())
__count_zone_vm_events(PGSCAN_KSWAPD, zone,
@@ -1143,6 +1161,16 @@ static unsigned long shrink_inactive_list(unsigned long max_scan,
else
__count_zone_vm_events(PGSCAN_DIRECT, zone,
nr_scan);
+ } else {
+ nr_taken = mem_cgroup_isolate_pages(SWAP_CLUSTER_MAX,
+ &page_list, &nr_scan,
+ sc->order, mode,
+ zone, sc->mem_cgroup,
+ 0, file);
+ /*
+ * mem_cgroup_isolate_pages() keeps track of
+ * scanned pages on its own.
+ */
}
if (nr_taken == 0)
@@ -1180,7 +1208,7 @@ static unsigned long shrink_inactive_list(unsigned long max_scan,
* but that should be acceptable to the caller
*/
if (nr_freed < nr_taken && !current_is_kswapd() &&
- lumpy_reclaim) {
+ sc->lumpy_reclaim_mode) {
congestion_wait(BLK_RW_ASYNC, HZ/10);
/*
@@ -1320,16 +1348,23 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
lru_add_drain();
spin_lock_irq(&zone->lru_lock);
- nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
- ISOLATE_ACTIVE, zone,
- sc->mem_cgroup, 1, file);
- /*
- * zone->pages_scanned is used for detect zone's oom
- * mem_cgroup remembers nr_scan by itself.
- */
if (scanning_global_lru(sc)) {
+ nr_taken = isolate_pages_global(nr_pages, &l_hold,
+ &pgscanned, sc->order,
+ ISOLATE_ACTIVE, zone,
+ 1, file);
zone->pages_scanned += pgscanned;
+ } else {
+ nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
+ &pgscanned, sc->order,
+ ISOLATE_ACTIVE, zone,
+ sc->mem_cgroup, 1, file);
+ /*
+ * mem_cgroup_isolate_pages() keeps track of
+ * scanned pages on its own.
+ */
}
+
reclaim_stat->recent_scanned[file] += nr_taken;
__count_zone_vm_events(PGREFILL, zone, pgscanned);
@@ -1350,9 +1385,7 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
continue;
}
- /* page_referenced clears PageReferenced */
- if (page_mapping_inuse(page) &&
- page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
+ if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
nr_rotated++;
/*
* Identify referenced, file-backed active pages and
@@ -1485,21 +1518,52 @@ static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
}
/*
+ * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
+ * until we collected @swap_cluster_max pages to scan.
+ */
+static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
+ unsigned long *nr_saved_scan)
+{
+ unsigned long nr;
+
+ *nr_saved_scan += nr_to_scan;
+ nr = *nr_saved_scan;
+
+ if (nr >= SWAP_CLUSTER_MAX)
+ *nr_saved_scan = 0;
+ else
+ nr = 0;
+
+ return nr;
+}
+
+/*
* Determine how aggressively the anon and file LRU lists should be
* scanned. The relative value of each set of LRU lists is determined
* by looking at the fraction of the pages scanned we did rotate back
* onto the active list instead of evict.
*
- * percent[0] specifies how much pressure to put on ram/swap backed
- * memory, while percent[1] determines pressure on the file LRUs.
+ * nr[0] = anon pages to scan; nr[1] = file pages to scan
*/
-static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
- unsigned long *percent)
+static void get_scan_count(struct zone *zone, struct scan_control *sc,
+ unsigned long *nr, int priority)
{
unsigned long anon, file, free;
unsigned long anon_prio, file_prio;
unsigned long ap, fp;
struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
+ u64 fraction[2], denominator;
+ enum lru_list l;
+ int noswap = 0;
+
+ /* If we have no swap space, do not bother scanning anon pages. */
+ if (!sc->may_swap || (nr_swap_pages <= 0)) {
+ noswap = 1;
+ fraction[0] = 0;
+ fraction[1] = 1;
+ denominator = 1;
+ goto out;
+ }
anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
@@ -1511,9 +1575,10 @@ static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
/* If we have very few page cache pages,
force-scan anon pages. */
if (unlikely(file + free <= high_wmark_pages(zone))) {
- percent[0] = 100;
- percent[1] = 0;
- return;
+ fraction[0] = 1;
+ fraction[1] = 0;
+ denominator = 1;
+ goto out;
}
}
@@ -1560,29 +1625,37 @@ static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
fp /= reclaim_stat->recent_rotated[1] + 1;
- /* Normalize to percentages */
- percent[0] = 100 * ap / (ap + fp + 1);
- percent[1] = 100 - percent[0];
+ fraction[0] = ap;
+ fraction[1] = fp;
+ denominator = ap + fp + 1;
+out:
+ for_each_evictable_lru(l) {
+ int file = is_file_lru(l);
+ unsigned long scan;
+
+ scan = zone_nr_lru_pages(zone, sc, l);
+ if (priority || noswap) {
+ scan >>= priority;
+ scan = div64_u64(scan * fraction[file], denominator);
+ }
+ nr[l] = nr_scan_try_batch(scan,
+ &reclaim_stat->nr_saved_scan[l]);
+ }
}
-/*
- * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
- * until we collected @swap_cluster_max pages to scan.
- */
-static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
- unsigned long *nr_saved_scan)
+static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
{
- unsigned long nr;
-
- *nr_saved_scan += nr_to_scan;
- nr = *nr_saved_scan;
-
- if (nr >= SWAP_CLUSTER_MAX)
- *nr_saved_scan = 0;
+ /*
+ * If we need a large contiguous chunk of memory, or have
+ * trouble getting a small set of contiguous pages, we
+ * will reclaim both active and inactive pages.
+ */
+ if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
+ sc->lumpy_reclaim_mode = 1;
+ else if (sc->order && priority < DEF_PRIORITY - 2)
+ sc->lumpy_reclaim_mode = 1;
else
- nr = 0;
-
- return nr;
+ sc->lumpy_reclaim_mode = 0;
}
/*
@@ -1593,33 +1666,13 @@ static void shrink_zone(int priority, struct zone *zone,
{
unsigned long nr[NR_LRU_LISTS];
unsigned long nr_to_scan;
- unsigned long percent[2]; /* anon @ 0; file @ 1 */
enum lru_list l;
unsigned long nr_reclaimed = sc->nr_reclaimed;
unsigned long nr_to_reclaim = sc->nr_to_reclaim;
- struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
- int noswap = 0;
-
- /* If we have no swap space, do not bother scanning anon pages. */
- if (!sc->may_swap || (nr_swap_pages <= 0)) {
- noswap = 1;
- percent[0] = 0;
- percent[1] = 100;
- } else
- get_scan_ratio(zone, sc, percent);
- for_each_evictable_lru(l) {
- int file = is_file_lru(l);
- unsigned long scan;
+ get_scan_count(zone, sc, nr, priority);
- scan = zone_nr_lru_pages(zone, sc, l);
- if (priority || noswap) {
- scan >>= priority;
- scan = (scan * percent[file]) / 100;
- }
- nr[l] = nr_scan_try_batch(scan,
- &reclaim_stat->nr_saved_scan[l]);
- }
+ set_lumpy_reclaim_mode(priority, sc);
while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
nr[LRU_INACTIVE_FILE]) {
@@ -1673,14 +1726,14 @@ static void shrink_zone(int priority, struct zone *zone,
* If a zone is deemed to be full of pinned pages then just give it a light
* scan then give up on it.
*/
-static void shrink_zones(int priority, struct zonelist *zonelist,
+static bool shrink_zones(int priority, struct zonelist *zonelist,
struct scan_control *sc)
{
enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
struct zoneref *z;
struct zone *zone;
+ bool all_unreclaimable = true;
- sc->all_unreclaimable = 1;
for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
sc->nodemask) {
if (!populated_zone(zone))
@@ -1694,22 +1747,21 @@ static void shrink_zones(int priority, struct zonelist *zonelist,
continue;
note_zone_scanning_priority(zone, priority);
- if (zone_is_all_unreclaimable(zone) &&
- priority != DEF_PRIORITY)
+ if (zone->all_unreclaimable && priority != DEF_PRIORITY)
continue; /* Let kswapd poll it */
- sc->all_unreclaimable = 0;
} else {
/*
* Ignore cpuset limitation here. We just want to reduce
* # of used pages by us regardless of memory shortage.
*/
- sc->all_unreclaimable = 0;
mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
priority);
}
shrink_zone(priority, zone, sc);
+ all_unreclaimable = false;
}
+ return all_unreclaimable;
}
/*
@@ -1732,7 +1784,7 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
struct scan_control *sc)
{
int priority;
- unsigned long ret = 0;
+ bool all_unreclaimable;
unsigned long total_scanned = 0;
struct reclaim_state *reclaim_state = current->reclaim_state;
unsigned long lru_pages = 0;
@@ -1741,6 +1793,7 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
unsigned long writeback_threshold;
+ get_mems_allowed();
delayacct_freepages_start();
if (scanning_global_lru(sc))
@@ -1762,7 +1815,7 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
sc->nr_scanned = 0;
if (!priority)
disable_swap_token();
- shrink_zones(priority, zonelist, sc);
+ all_unreclaimable = shrink_zones(priority, zonelist, sc);
/*
* Don't shrink slabs when reclaiming memory from
* over limit cgroups
@@ -1775,10 +1828,8 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
}
}
total_scanned += sc->nr_scanned;
- if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
- ret = sc->nr_reclaimed;
+ if (sc->nr_reclaimed >= sc->nr_to_reclaim)
goto out;
- }
/*
* Try to write back as many pages as we just scanned. This
@@ -1798,9 +1849,7 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
priority < DEF_PRIORITY - 2)
congestion_wait(BLK_RW_ASYNC, HZ/10);
}
- /* top priority shrink_zones still had more to do? don't OOM, then */
- if (!sc->all_unreclaimable && scanning_global_lru(sc))
- ret = sc->nr_reclaimed;
+
out:
/*
* Now that we've scanned all the zones at this priority level, note
@@ -1824,8 +1873,16 @@ out:
mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
delayacct_freepages_end();
+ put_mems_allowed();
- return ret;
+ if (sc->nr_reclaimed)
+ return sc->nr_reclaimed;
+
+ /* top priority shrink_zones still had more to do? don't OOM, then */
+ if (scanning_global_lru(sc) && !all_unreclaimable)
+ return 1;
+
+ return 0;
}
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
@@ -1840,7 +1897,6 @@ unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
.swappiness = vm_swappiness,
.order = order,
.mem_cgroup = NULL,
- .isolate_pages = isolate_pages_global,
.nodemask = nodemask,
};
@@ -1861,7 +1917,6 @@ unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
.swappiness = swappiness,
.order = 0,
.mem_cgroup = mem,
- .isolate_pages = mem_cgroup_isolate_pages,
};
nodemask_t nm = nodemask_of_node(nid);
@@ -1895,7 +1950,6 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
.swappiness = swappiness,
.order = 0,
.mem_cgroup = mem_cont,
- .isolate_pages = mem_cgroup_isolate_pages,
.nodemask = NULL, /* we don't care the placement */
};
@@ -1922,7 +1976,7 @@ static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
if (!populated_zone(zone))
continue;
- if (zone_is_all_unreclaimable(zone))
+ if (zone->all_unreclaimable)
continue;
if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
@@ -1973,7 +2027,6 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
.swappiness = vm_swappiness,
.order = order,
.mem_cgroup = NULL,
- .isolate_pages = isolate_pages_global,
};
/*
* temp_priority is used to remember the scanning priority at which
@@ -2012,8 +2065,7 @@ loop_again:
if (!populated_zone(zone))
continue;
- if (zone_is_all_unreclaimable(zone) &&
- priority != DEF_PRIORITY)
+ if (zone->all_unreclaimable && priority != DEF_PRIORITY)
continue;
/*
@@ -2056,13 +2108,9 @@ loop_again:
if (!populated_zone(zone))
continue;
- if (zone_is_all_unreclaimable(zone) &&
- priority != DEF_PRIORITY)
+ if (zone->all_unreclaimable && priority != DEF_PRIORITY)
continue;
- if (!zone_watermark_ok(zone, order,
- high_wmark_pages(zone), end_zone, 0))
- all_zones_ok = 0;
temp_priority[i] = priority;
sc.nr_scanned = 0;
note_zone_scanning_priority(zone, priority);
@@ -2087,12 +2135,11 @@ loop_again:
lru_pages);
sc.nr_reclaimed += reclaim_state->reclaimed_slab;
total_scanned += sc.nr_scanned;
- if (zone_is_all_unreclaimable(zone))
+ if (zone->all_unreclaimable)
continue;
- if (nr_slab == 0 && zone->pages_scanned >=
- (zone_reclaimable_pages(zone) * 6))
- zone_set_flag(zone,
- ZONE_ALL_UNRECLAIMABLE);
+ if (nr_slab == 0 &&
+ zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
+ zone->all_unreclaimable = 1;
/*
* If we've done a decent amount of scanning and
* the reclaim ratio is low, start doing writepage
@@ -2102,13 +2149,18 @@ loop_again:
total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
sc.may_writepage = 1;
- /*
- * We are still under min water mark. it mean we have
- * GFP_ATOMIC allocation failure risk. Hurry up!
- */
- if (!zone_watermark_ok(zone, order, min_wmark_pages(zone),
- end_zone, 0))
- has_under_min_watermark_zone = 1;
+ if (!zone_watermark_ok(zone, order,
+ high_wmark_pages(zone), end_zone, 0)) {
+ all_zones_ok = 0;
+ /*
+ * We are still under min water mark. This
+ * means that we have a GFP_ATOMIC allocation
+ * failure risk. Hurry up!
+ */
+ if (!zone_watermark_ok(zone, order,
+ min_wmark_pages(zone), end_zone, 0))
+ has_under_min_watermark_zone = 1;
+ }
}
if (all_zones_ok)
@@ -2353,7 +2405,6 @@ unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
.hibernation_mode = 1,
.swappiness = vm_swappiness,
.order = 0,
- .isolate_pages = isolate_pages_global,
};
struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
struct task_struct *p = current;
@@ -2538,7 +2589,6 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
.gfp_mask = gfp_mask,
.swappiness = vm_swappiness,
.order = order,
- .isolate_pages = isolate_pages_global,
};
unsigned long slab_reclaimable;
@@ -2550,6 +2600,7 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
* and RECLAIM_SWAP.
*/
p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
+ lockdep_set_current_reclaim_state(gfp_mask);
reclaim_state.reclaimed_slab = 0;
p->reclaim_state = &reclaim_state;
@@ -2593,6 +2644,7 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
p->reclaim_state = NULL;
current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
+ lockdep_clear_current_reclaim_state();
return sc.nr_reclaimed >= nr_pages;
}
@@ -2615,7 +2667,7 @@ int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
return ZONE_RECLAIM_FULL;
- if (zone_is_all_unreclaimable(zone))
+ if (zone->all_unreclaimable)
return ZONE_RECLAIM_FULL;
/*
diff --git a/mm/vmstat.c b/mm/vmstat.c
index 6051fbab67ba..7759941d4e77 100644
--- a/mm/vmstat.c
+++ b/mm/vmstat.c
@@ -12,9 +12,11 @@
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/module.h>
+#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/vmstat.h>
#include <linux/sched.h>
+#include <linux/math64.h>
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
@@ -139,7 +141,8 @@ static void refresh_zone_stat_thresholds(void)
threshold = calculate_threshold(zone);
for_each_online_cpu(cpu)
- zone_pcp(zone, cpu)->stat_threshold = threshold;
+ per_cpu_ptr(zone->pageset, cpu)->stat_threshold
+ = threshold;
}
}
@@ -149,7 +152,8 @@ static void refresh_zone_stat_thresholds(void)
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
int delta)
{
- struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
+ struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
+
s8 *p = pcp->vm_stat_diff + item;
long x;
@@ -202,7 +206,7 @@ EXPORT_SYMBOL(mod_zone_page_state);
*/
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
- struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
+ struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
s8 *p = pcp->vm_stat_diff + item;
(*p)++;
@@ -223,7 +227,7 @@ EXPORT_SYMBOL(__inc_zone_page_state);
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
{
- struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
+ struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
s8 *p = pcp->vm_stat_diff + item;
(*p)--;
@@ -300,7 +304,7 @@ void refresh_cpu_vm_stats(int cpu)
for_each_populated_zone(zone) {
struct per_cpu_pageset *p;
- p = zone_pcp(zone, cpu);
+ p = per_cpu_ptr(zone->pageset, cpu);
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
if (p->vm_stat_diff[i]) {
@@ -376,7 +380,86 @@ void zone_statistics(struct zone *preferred_zone, struct zone *z)
}
#endif
-#ifdef CONFIG_PROC_FS
+#ifdef CONFIG_COMPACTION
+struct contig_page_info {
+ unsigned long free_pages;
+ unsigned long free_blocks_total;
+ unsigned long free_blocks_suitable;
+};
+
+/*
+ * Calculate the number of free pages in a zone, how many contiguous
+ * pages are free and how many are large enough to satisfy an allocation of
+ * the target size. Note that this function makes no attempt to estimate
+ * how many suitable free blocks there *might* be if MOVABLE pages were
+ * migrated. Calculating that is possible, but expensive and can be
+ * figured out from userspace
+ */
+static void fill_contig_page_info(struct zone *zone,
+ unsigned int suitable_order,
+ struct contig_page_info *info)
+{
+ unsigned int order;
+
+ info->free_pages = 0;
+ info->free_blocks_total = 0;
+ info->free_blocks_suitable = 0;
+
+ for (order = 0; order < MAX_ORDER; order++) {
+ unsigned long blocks;
+
+ /* Count number of free blocks */
+ blocks = zone->free_area[order].nr_free;
+ info->free_blocks_total += blocks;
+
+ /* Count free base pages */
+ info->free_pages += blocks << order;
+
+ /* Count the suitable free blocks */
+ if (order >= suitable_order)
+ info->free_blocks_suitable += blocks <<
+ (order - suitable_order);
+ }
+}
+
+/*
+ * A fragmentation index only makes sense if an allocation of a requested
+ * size would fail. If that is true, the fragmentation index indicates
+ * whether external fragmentation or a lack of memory was the problem.
+ * The value can be used to determine if page reclaim or compaction
+ * should be used
+ */
+static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
+{
+ unsigned long requested = 1UL << order;
+
+ if (!info->free_blocks_total)
+ return 0;
+
+ /* Fragmentation index only makes sense when a request would fail */
+ if (info->free_blocks_suitable)
+ return -1000;
+
+ /*
+ * Index is between 0 and 1 so return within 3 decimal places
+ *
+ * 0 => allocation would fail due to lack of memory
+ * 1 => allocation would fail due to fragmentation
+ */
+ return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
+}
+
+/* Same as __fragmentation index but allocs contig_page_info on stack */
+int fragmentation_index(struct zone *zone, unsigned int order)
+{
+ struct contig_page_info info;
+
+ fill_contig_page_info(zone, order, &info);
+ return __fragmentation_index(order, &info);
+}
+#endif
+
+#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
@@ -429,7 +512,9 @@ static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
spin_unlock_irqrestore(&zone->lock, flags);
}
}
+#endif
+#ifdef CONFIG_PROC_FS
static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
struct zone *zone)
{
@@ -690,6 +775,16 @@ static const char * const vmstat_text[] = {
"allocstall",
"pgrotated",
+
+#ifdef CONFIG_COMPACTION
+ "compact_blocks_moved",
+ "compact_pages_moved",
+ "compact_pagemigrate_failed",
+ "compact_stall",
+ "compact_fail",
+ "compact_success",
+#endif
+
#ifdef CONFIG_HUGETLB_PAGE
"htlb_buddy_alloc_success",
"htlb_buddy_alloc_fail",
@@ -741,7 +836,7 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
for_each_online_cpu(i) {
struct per_cpu_pageset *pageset;
- pageset = zone_pcp(zone, i);
+ pageset = per_cpu_ptr(zone->pageset, i);
seq_printf(m,
"\n cpu: %i"
"\n count: %i"
@@ -761,7 +856,7 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
"\n prev_priority: %i"
"\n start_pfn: %lu"
"\n inactive_ratio: %u",
- zone_is_all_unreclaimable(zone),
+ zone->all_unreclaimable,
zone->prev_priority,
zone->zone_start_pfn,
zone->inactive_ratio);
@@ -906,6 +1001,7 @@ static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
start_cpu_timer(cpu);
+ node_set_state(cpu_to_node(cpu), N_CPU);
break;
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
@@ -950,3 +1046,162 @@ static int __init setup_vmstat(void)
return 0;
}
module_init(setup_vmstat)
+
+#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
+#include <linux/debugfs.h>
+
+static struct dentry *extfrag_debug_root;
+
+/*
+ * Return an index indicating how much of the available free memory is
+ * unusable for an allocation of the requested size.
+ */
+static int unusable_free_index(unsigned int order,
+ struct contig_page_info *info)
+{
+ /* No free memory is interpreted as all free memory is unusable */
+ if (info->free_pages == 0)
+ return 1000;
+
+ /*
+ * Index should be a value between 0 and 1. Return a value to 3
+ * decimal places.
+ *
+ * 0 => no fragmentation
+ * 1 => high fragmentation
+ */
+ return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
+
+}
+
+static void unusable_show_print(struct seq_file *m,
+ pg_data_t *pgdat, struct zone *zone)
+{
+ unsigned int order;
+ int index;
+ struct contig_page_info info;
+
+ seq_printf(m, "Node %d, zone %8s ",
+ pgdat->node_id,
+ zone->name);
+ for (order = 0; order < MAX_ORDER; ++order) {
+ fill_contig_page_info(zone, order, &info);
+ index = unusable_free_index(order, &info);
+ seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
+ }
+
+ seq_putc(m, '\n');
+}
+
+/*
+ * Display unusable free space index
+ *
+ * The unusable free space index measures how much of the available free
+ * memory cannot be used to satisfy an allocation of a given size and is a
+ * value between 0 and 1. The higher the value, the more of free memory is
+ * unusable and by implication, the worse the external fragmentation is. This
+ * can be expressed as a percentage by multiplying by 100.
+ */
+static int unusable_show(struct seq_file *m, void *arg)
+{
+ pg_data_t *pgdat = (pg_data_t *)arg;
+
+ /* check memoryless node */
+ if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
+ return 0;
+
+ walk_zones_in_node(m, pgdat, unusable_show_print);
+
+ return 0;
+}
+
+static const struct seq_operations unusable_op = {
+ .start = frag_start,
+ .next = frag_next,
+ .stop = frag_stop,
+ .show = unusable_show,
+};
+
+static int unusable_open(struct inode *inode, struct file *file)
+{
+ return seq_open(file, &unusable_op);
+}
+
+static const struct file_operations unusable_file_ops = {
+ .open = unusable_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release,
+};
+
+static void extfrag_show_print(struct seq_file *m,
+ pg_data_t *pgdat, struct zone *zone)
+{
+ unsigned int order;
+ int index;
+
+ /* Alloc on stack as interrupts are disabled for zone walk */
+ struct contig_page_info info;
+
+ seq_printf(m, "Node %d, zone %8s ",
+ pgdat->node_id,
+ zone->name);
+ for (order = 0; order < MAX_ORDER; ++order) {
+ fill_contig_page_info(zone, order, &info);
+ index = __fragmentation_index(order, &info);
+ seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
+ }
+
+ seq_putc(m, '\n');
+}
+
+/*
+ * Display fragmentation index for orders that allocations would fail for
+ */
+static int extfrag_show(struct seq_file *m, void *arg)
+{
+ pg_data_t *pgdat = (pg_data_t *)arg;
+
+ walk_zones_in_node(m, pgdat, extfrag_show_print);
+
+ return 0;
+}
+
+static const struct seq_operations extfrag_op = {
+ .start = frag_start,
+ .next = frag_next,
+ .stop = frag_stop,
+ .show = extfrag_show,
+};
+
+static int extfrag_open(struct inode *inode, struct file *file)
+{
+ return seq_open(file, &extfrag_op);
+}
+
+static const struct file_operations extfrag_file_ops = {
+ .open = extfrag_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release,
+};
+
+static int __init extfrag_debug_init(void)
+{
+ extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
+ if (!extfrag_debug_root)
+ return -ENOMEM;
+
+ if (!debugfs_create_file("unusable_index", 0444,
+ extfrag_debug_root, NULL, &unusable_file_ops))
+ return -ENOMEM;
+
+ if (!debugfs_create_file("extfrag_index", 0444,
+ extfrag_debug_root, NULL, &extfrag_file_ops))
+ return -ENOMEM;
+
+ return 0;
+}
+
+module_init(extfrag_debug_init);
+#endif