summaryrefslogtreecommitdiffstats
path: root/net/sched/sch_cake.c
diff options
context:
space:
mode:
Diffstat (limited to 'net/sched/sch_cake.c')
-rw-r--r--net/sched/sch_cake.c3034
1 files changed, 3034 insertions, 0 deletions
diff --git a/net/sched/sch_cake.c b/net/sched/sch_cake.c
new file mode 100644
index 000000000000..b910cd5c56f7
--- /dev/null
+++ b/net/sched/sch_cake.c
@@ -0,0 +1,3034 @@
+// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
+
+/* COMMON Applications Kept Enhanced (CAKE) discipline
+ *
+ * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
+ * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
+ * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
+ * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
+ * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
+ * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
+ *
+ * The CAKE Principles:
+ * (or, how to have your cake and eat it too)
+ *
+ * This is a combination of several shaping, AQM and FQ techniques into one
+ * easy-to-use package:
+ *
+ * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
+ * equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
+ * eliminating the need for any sort of burst parameter (eg. token bucket
+ * depth). Burst support is limited to that necessary to overcome scheduling
+ * latency.
+ *
+ * - A Diffserv-aware priority queue, giving more priority to certain classes,
+ * up to a specified fraction of bandwidth. Above that bandwidth threshold,
+ * the priority is reduced to avoid starving other tins.
+ *
+ * - Each priority tin has a separate Flow Queue system, to isolate traffic
+ * flows from each other. This prevents a burst on one flow from increasing
+ * the delay to another. Flows are distributed to queues using a
+ * set-associative hash function.
+ *
+ * - Each queue is actively managed by Cobalt, which is a combination of the
+ * Codel and Blue AQM algorithms. This serves flows fairly, and signals
+ * congestion early via ECN (if available) and/or packet drops, to keep
+ * latency low. The codel parameters are auto-tuned based on the bandwidth
+ * setting, as is necessary at low bandwidths.
+ *
+ * The configuration parameters are kept deliberately simple for ease of use.
+ * Everything has sane defaults. Complete generality of configuration is *not*
+ * a goal.
+ *
+ * The priority queue operates according to a weighted DRR scheme, combined with
+ * a bandwidth tracker which reuses the shaper logic to detect which side of the
+ * bandwidth sharing threshold the tin is operating. This determines whether a
+ * priority-based weight (high) or a bandwidth-based weight (low) is used for
+ * that tin in the current pass.
+ *
+ * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
+ * granted us permission to leverage.
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/jiffies.h>
+#include <linux/string.h>
+#include <linux/in.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/skbuff.h>
+#include <linux/jhash.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/reciprocal_div.h>
+#include <net/netlink.h>
+#include <linux/if_vlan.h>
+#include <net/pkt_sched.h>
+#include <net/pkt_cls.h>
+#include <net/tcp.h>
+#include <net/flow_dissector.h>
+
+#if IS_ENABLED(CONFIG_NF_CONNTRACK)
+#include <net/netfilter/nf_conntrack_core.h>
+#endif
+
+#define CAKE_SET_WAYS (8)
+#define CAKE_MAX_TINS (8)
+#define CAKE_QUEUES (1024)
+#define CAKE_FLOW_MASK 63
+#define CAKE_FLOW_NAT_FLAG 64
+
+/* struct cobalt_params - contains codel and blue parameters
+ * @interval: codel initial drop rate
+ * @target: maximum persistent sojourn time & blue update rate
+ * @mtu_time: serialisation delay of maximum-size packet
+ * @p_inc: increment of blue drop probability (0.32 fxp)
+ * @p_dec: decrement of blue drop probability (0.32 fxp)
+ */
+struct cobalt_params {
+ u64 interval;
+ u64 target;
+ u64 mtu_time;
+ u32 p_inc;
+ u32 p_dec;
+};
+
+/* struct cobalt_vars - contains codel and blue variables
+ * @count: codel dropping frequency
+ * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
+ * @drop_next: time to drop next packet, or when we dropped last
+ * @blue_timer: Blue time to next drop
+ * @p_drop: BLUE drop probability (0.32 fxp)
+ * @dropping: set if in dropping state
+ * @ecn_marked: set if marked
+ */
+struct cobalt_vars {
+ u32 count;
+ u32 rec_inv_sqrt;
+ ktime_t drop_next;
+ ktime_t blue_timer;
+ u32 p_drop;
+ bool dropping;
+ bool ecn_marked;
+};
+
+enum {
+ CAKE_SET_NONE = 0,
+ CAKE_SET_SPARSE,
+ CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
+ CAKE_SET_BULK,
+ CAKE_SET_DECAYING
+};
+
+struct cake_flow {
+ /* this stuff is all needed per-flow at dequeue time */
+ struct sk_buff *head;
+ struct sk_buff *tail;
+ struct list_head flowchain;
+ s32 deficit;
+ u32 dropped;
+ struct cobalt_vars cvars;
+ u16 srchost; /* index into cake_host table */
+ u16 dsthost;
+ u8 set;
+}; /* please try to keep this structure <= 64 bytes */
+
+struct cake_host {
+ u32 srchost_tag;
+ u32 dsthost_tag;
+ u16 srchost_refcnt;
+ u16 dsthost_refcnt;
+};
+
+struct cake_heap_entry {
+ u16 t:3, b:10;
+};
+
+struct cake_tin_data {
+ struct cake_flow flows[CAKE_QUEUES];
+ u32 backlogs[CAKE_QUEUES];
+ u32 tags[CAKE_QUEUES]; /* for set association */
+ u16 overflow_idx[CAKE_QUEUES];
+ struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
+ u16 flow_quantum;
+
+ struct cobalt_params cparams;
+ u32 drop_overlimit;
+ u16 bulk_flow_count;
+ u16 sparse_flow_count;
+ u16 decaying_flow_count;
+ u16 unresponsive_flow_count;
+
+ u32 max_skblen;
+
+ struct list_head new_flows;
+ struct list_head old_flows;
+ struct list_head decaying_flows;
+
+ /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
+ ktime_t time_next_packet;
+ u64 tin_rate_ns;
+ u64 tin_rate_bps;
+ u16 tin_rate_shft;
+
+ u16 tin_quantum_prio;
+ u16 tin_quantum_band;
+ s32 tin_deficit;
+ u32 tin_backlog;
+ u32 tin_dropped;
+ u32 tin_ecn_mark;
+
+ u32 packets;
+ u64 bytes;
+
+ u32 ack_drops;
+
+ /* moving averages */
+ u64 avge_delay;
+ u64 peak_delay;
+ u64 base_delay;
+
+ /* hash function stats */
+ u32 way_directs;
+ u32 way_hits;
+ u32 way_misses;
+ u32 way_collisions;
+}; /* number of tins is small, so size of this struct doesn't matter much */
+
+struct cake_sched_data {
+ struct tcf_proto __rcu *filter_list; /* optional external classifier */
+ struct tcf_block *block;
+ struct cake_tin_data *tins;
+
+ struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
+ u16 overflow_timeout;
+
+ u16 tin_cnt;
+ u8 tin_mode;
+ u8 flow_mode;
+ u8 ack_filter;
+ u8 atm_mode;
+
+ /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
+ u16 rate_shft;
+ ktime_t time_next_packet;
+ ktime_t failsafe_next_packet;
+ u64 rate_ns;
+ u64 rate_bps;
+ u16 rate_flags;
+ s16 rate_overhead;
+ u16 rate_mpu;
+ u64 interval;
+ u64 target;
+
+ /* resource tracking */
+ u32 buffer_used;
+ u32 buffer_max_used;
+ u32 buffer_limit;
+ u32 buffer_config_limit;
+
+ /* indices for dequeue */
+ u16 cur_tin;
+ u16 cur_flow;
+
+ struct qdisc_watchdog watchdog;
+ const u8 *tin_index;
+ const u8 *tin_order;
+
+ /* bandwidth capacity estimate */
+ ktime_t last_packet_time;
+ ktime_t avg_window_begin;
+ u64 avg_packet_interval;
+ u64 avg_window_bytes;
+ u64 avg_peak_bandwidth;
+ ktime_t last_reconfig_time;
+
+ /* packet length stats */
+ u32 avg_netoff;
+ u16 max_netlen;
+ u16 max_adjlen;
+ u16 min_netlen;
+ u16 min_adjlen;
+};
+
+enum {
+ CAKE_FLAG_OVERHEAD = BIT(0),
+ CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
+ CAKE_FLAG_INGRESS = BIT(2),
+ CAKE_FLAG_WASH = BIT(3),
+ CAKE_FLAG_SPLIT_GSO = BIT(4)
+};
+
+/* COBALT operates the Codel and BLUE algorithms in parallel, in order to
+ * obtain the best features of each. Codel is excellent on flows which
+ * respond to congestion signals in a TCP-like way. BLUE is more effective on
+ * unresponsive flows.
+ */
+
+struct cobalt_skb_cb {
+ ktime_t enqueue_time;
+ u32 adjusted_len;
+};
+
+static u64 us_to_ns(u64 us)
+{
+ return us * NSEC_PER_USEC;
+}
+
+static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
+{
+ qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
+ return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
+}
+
+static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
+{
+ return get_cobalt_cb(skb)->enqueue_time;
+}
+
+static void cobalt_set_enqueue_time(struct sk_buff *skb,
+ ktime_t now)
+{
+ get_cobalt_cb(skb)->enqueue_time = now;
+}
+
+static u16 quantum_div[CAKE_QUEUES + 1] = {0};
+
+/* Diffserv lookup tables */
+
+static const u8 precedence[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 2, 2, 2, 2, 2, 2, 2, 2,
+ 3, 3, 3, 3, 3, 3, 3, 3,
+ 4, 4, 4, 4, 4, 4, 4, 4,
+ 5, 5, 5, 5, 5, 5, 5, 5,
+ 6, 6, 6, 6, 6, 6, 6, 6,
+ 7, 7, 7, 7, 7, 7, 7, 7,
+};
+
+static const u8 diffserv8[] = {
+ 2, 5, 1, 2, 4, 2, 2, 2,
+ 0, 2, 1, 2, 1, 2, 1, 2,
+ 5, 2, 4, 2, 4, 2, 4, 2,
+ 3, 2, 3, 2, 3, 2, 3, 2,
+ 6, 2, 3, 2, 3, 2, 3, 2,
+ 6, 2, 2, 2, 6, 2, 6, 2,
+ 7, 2, 2, 2, 2, 2, 2, 2,
+ 7, 2, 2, 2, 2, 2, 2, 2,
+};
+
+static const u8 diffserv4[] = {
+ 0, 2, 0, 0, 2, 0, 0, 0,
+ 1, 0, 0, 0, 0, 0, 0, 0,
+ 2, 0, 2, 0, 2, 0, 2, 0,
+ 2, 0, 2, 0, 2, 0, 2, 0,
+ 3, 0, 2, 0, 2, 0, 2, 0,
+ 3, 0, 0, 0, 3, 0, 3, 0,
+ 3, 0, 0, 0, 0, 0, 0, 0,
+ 3, 0, 0, 0, 0, 0, 0, 0,
+};
+
+static const u8 diffserv3[] = {
+ 0, 0, 0, 0, 2, 0, 0, 0,
+ 1, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 2, 0, 2, 0,
+ 2, 0, 0, 0, 0, 0, 0, 0,
+ 2, 0, 0, 0, 0, 0, 0, 0,
+};
+
+static const u8 besteffort[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+};
+
+/* tin priority order for stats dumping */
+
+static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
+static const u8 bulk_order[] = {1, 0, 2, 3};
+
+#define REC_INV_SQRT_CACHE (16)
+static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
+
+/* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
+ * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
+ *
+ * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
+ */
+
+static void cobalt_newton_step(struct cobalt_vars *vars)
+{
+ u32 invsqrt, invsqrt2;
+ u64 val;
+
+ invsqrt = vars->rec_inv_sqrt;
+ invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
+ val = (3LL << 32) - ((u64)vars->count * invsqrt2);
+
+ val >>= 2; /* avoid overflow in following multiply */
+ val = (val * invsqrt) >> (32 - 2 + 1);
+
+ vars->rec_inv_sqrt = val;
+}
+
+static void cobalt_invsqrt(struct cobalt_vars *vars)
+{
+ if (vars->count < REC_INV_SQRT_CACHE)
+ vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
+ else
+ cobalt_newton_step(vars);
+}
+
+/* There is a big difference in timing between the accurate values placed in
+ * the cache and the approximations given by a single Newton step for small
+ * count values, particularly when stepping from count 1 to 2 or vice versa.
+ * Above 16, a single Newton step gives sufficient accuracy in either
+ * direction, given the precision stored.
+ *
+ * The magnitude of the error when stepping up to count 2 is such as to give
+ * the value that *should* have been produced at count 4.
+ */
+
+static void cobalt_cache_init(void)
+{
+ struct cobalt_vars v;
+
+ memset(&v, 0, sizeof(v));
+ v.rec_inv_sqrt = ~0U;
+ cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
+
+ for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
+ cobalt_newton_step(&v);
+ cobalt_newton_step(&v);
+ cobalt_newton_step(&v);
+ cobalt_newton_step(&v);
+
+ cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
+ }
+}
+
+static void cobalt_vars_init(struct cobalt_vars *vars)
+{
+ memset(vars, 0, sizeof(*vars));
+
+ if (!cobalt_rec_inv_sqrt_cache[0]) {
+ cobalt_cache_init();
+ cobalt_rec_inv_sqrt_cache[0] = ~0;
+ }
+}
+
+/* CoDel control_law is t + interval/sqrt(count)
+ * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
+ * both sqrt() and divide operation.
+ */
+static ktime_t cobalt_control(ktime_t t,
+ u64 interval,
+ u32 rec_inv_sqrt)
+{
+ return ktime_add_ns(t, reciprocal_scale(interval,
+ rec_inv_sqrt));
+}
+
+/* Call this when a packet had to be dropped due to queue overflow. Returns
+ * true if the BLUE state was quiescent before but active after this call.
+ */
+static bool cobalt_queue_full(struct cobalt_vars *vars,
+ struct cobalt_params *p,
+ ktime_t now)
+{
+ bool up = false;
+
+ if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
+ up = !vars->p_drop;
+ vars->p_drop += p->p_inc;
+ if (vars->p_drop < p->p_inc)
+ vars->p_drop = ~0;
+ vars->blue_timer = now;
+ }
+ vars->dropping = true;
+ vars->drop_next = now;
+ if (!vars->count)
+ vars->count = 1;
+
+ return up;
+}
+
+/* Call this when the queue was serviced but turned out to be empty. Returns
+ * true if the BLUE state was active before but quiescent after this call.
+ */
+static bool cobalt_queue_empty(struct cobalt_vars *vars,
+ struct cobalt_params *p,
+ ktime_t now)
+{
+ bool down = false;
+
+ if (vars->p_drop &&
+ ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
+ if (vars->p_drop < p->p_dec)
+ vars->p_drop = 0;
+ else
+ vars->p_drop -= p->p_dec;
+ vars->blue_timer = now;
+ down = !vars->p_drop;
+ }
+ vars->dropping = false;
+
+ if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
+ vars->count--;
+ cobalt_invsqrt(vars);
+ vars->drop_next = cobalt_control(vars->drop_next,
+ p->interval,
+ vars->rec_inv_sqrt);
+ }
+
+ return down;
+}
+
+/* Call this with a freshly dequeued packet for possible congestion marking.
+ * Returns true as an instruction to drop the packet, false for delivery.
+ */
+static bool cobalt_should_drop(struct cobalt_vars *vars,
+ struct cobalt_params *p,
+ ktime_t now,
+ struct sk_buff *skb,
+ u32 bulk_flows)
+{
+ bool next_due, over_target, drop = false;
+ ktime_t schedule;
+ u64 sojourn;
+
+/* The 'schedule' variable records, in its sign, whether 'now' is before or
+ * after 'drop_next'. This allows 'drop_next' to be updated before the next
+ * scheduling decision is actually branched, without destroying that
+ * information. Similarly, the first 'schedule' value calculated is preserved
+ * in the boolean 'next_due'.
+ *
+ * As for 'drop_next', we take advantage of the fact that 'interval' is both
+ * the delay between first exceeding 'target' and the first signalling event,
+ * *and* the scaling factor for the signalling frequency. It's therefore very
+ * natural to use a single mechanism for both purposes, and eliminates a
+ * significant amount of reference Codel's spaghetti code. To help with this,
+ * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
+ * as possible to 1.0 in fixed-point.
+ */
+
+ sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
+ schedule = ktime_sub(now, vars->drop_next);
+ over_target = sojourn > p->target &&
+ sojourn > p->mtu_time * bulk_flows * 2 &&
+ sojourn > p->mtu_time * 4;
+ next_due = vars->count && ktime_to_ns(schedule) >= 0;
+
+ vars->ecn_marked = false;
+
+ if (over_target) {
+ if (!vars->dropping) {
+ vars->dropping = true;
+ vars->drop_next = cobalt_control(now,
+ p->interval,
+ vars->rec_inv_sqrt);
+ }
+ if (!vars->count)
+ vars->count = 1;
+ } else if (vars->dropping) {
+ vars->dropping = false;
+ }
+
+ if (next_due && vars->dropping) {
+ /* Use ECN mark if possible, otherwise drop */
+ drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
+
+ vars->count++;
+ if (!vars->count)
+ vars->count--;
+ cobalt_invsqrt(vars);
+ vars->drop_next = cobalt_control(vars->drop_next,
+ p->interval,
+ vars->rec_inv_sqrt);
+ schedule = ktime_sub(now, vars->drop_next);
+ } else {
+ while (next_due) {
+ vars->count--;
+ cobalt_invsqrt(vars);
+ vars->drop_next = cobalt_control(vars->drop_next,
+ p->interval,
+ vars->rec_inv_sqrt);
+ schedule = ktime_sub(now, vars->drop_next);
+ next_due = vars->count && ktime_to_ns(schedule) >= 0;
+ }
+ }
+
+ /* Simple BLUE implementation. Lack of ECN is deliberate. */
+ if (vars->p_drop)
+ drop |= (prandom_u32() < vars->p_drop);
+
+ /* Overload the drop_next field as an activity timeout */
+ if (!vars->count)
+ vars->drop_next = ktime_add_ns(now, p->interval);
+ else if (ktime_to_ns(schedule) > 0 && !drop)
+ vars->drop_next = now;
+
+ return drop;
+}
+
+static void cake_update_flowkeys(struct flow_keys *keys,
+ const struct sk_buff *skb)
+{
+#if IS_ENABLED(CONFIG_NF_CONNTRACK)
+ struct nf_conntrack_tuple tuple = {};
+ bool rev = !skb->_nfct;
+
+ if (tc_skb_protocol(skb) != htons(ETH_P_IP))
+ return;
+
+ if (!nf_ct_get_tuple_skb(&tuple, skb))
+ return;
+
+ keys->addrs.v4addrs.src = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
+ keys->addrs.v4addrs.dst = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
+
+ if (keys->ports.ports) {
+ keys->ports.src = rev ? tuple.dst.u.all : tuple.src.u.all;
+ keys->ports.dst = rev ? tuple.src.u.all : tuple.dst.u.all;
+ }
+#endif
+}
+
+/* Cake has several subtle multiple bit settings. In these cases you
+ * would be matching triple isolate mode as well.
+ */
+
+static bool cake_dsrc(int flow_mode)
+{
+ return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
+}
+
+static bool cake_ddst(int flow_mode)
+{
+ return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
+}
+
+static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
+ int flow_mode, u16 flow_override, u16 host_override)
+{
+ u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
+ u16 reduced_hash, srchost_idx, dsthost_idx;
+ struct flow_keys keys, host_keys;
+
+ if (unlikely(flow_mode == CAKE_FLOW_NONE))
+ return 0;
+
+ /* If both overrides are set we can skip packet dissection entirely */
+ if ((flow_override || !(flow_mode & CAKE_FLOW_FLOWS)) &&
+ (host_override || !(flow_mode & CAKE_FLOW_HOSTS)))
+ goto skip_hash;
+
+ skb_flow_dissect_flow_keys(skb, &keys,
+ FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
+
+ if (flow_mode & CAKE_FLOW_NAT_FLAG)
+ cake_update_flowkeys(&keys, skb);
+
+ /* flow_hash_from_keys() sorts the addresses by value, so we have
+ * to preserve their order in a separate data structure to treat
+ * src and dst host addresses as independently selectable.
+ */
+ host_keys = keys;
+ host_keys.ports.ports = 0;
+ host_keys.basic.ip_proto = 0;
+ host_keys.keyid.keyid = 0;
+ host_keys.tags.flow_label = 0;
+
+ switch (host_keys.control.addr_type) {
+ case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
+ host_keys.addrs.v4addrs.src = 0;
+ dsthost_hash = flow_hash_from_keys(&host_keys);
+ host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
+ host_keys.addrs.v4addrs.dst = 0;
+ srchost_hash = flow_hash_from_keys(&host_keys);
+ break;
+
+ case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
+ memset(&host_keys.addrs.v6addrs.src, 0,
+ sizeof(host_keys.addrs.v6addrs.src));
+ dsthost_hash = flow_hash_from_keys(&host_keys);
+ host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
+ memset(&host_keys.addrs.v6addrs.dst, 0,
+ sizeof(host_keys.addrs.v6addrs.dst));
+ srchost_hash = flow_hash_from_keys(&host_keys);
+ break;
+
+ default:
+ dsthost_hash = 0;
+ srchost_hash = 0;
+ }
+
+ /* This *must* be after the above switch, since as a
+ * side-effect it sorts the src and dst addresses.
+ */
+ if (flow_mode & CAKE_FLOW_FLOWS)
+ flow_hash = flow_hash_from_keys(&keys);
+
+skip_hash:
+ if (flow_override)
+ flow_hash = flow_override - 1;
+ if (host_override) {
+ dsthost_hash = host_override - 1;
+ srchost_hash = host_override - 1;
+ }
+
+ if (!(flow_mode & CAKE_FLOW_FLOWS)) {
+ if (flow_mode & CAKE_FLOW_SRC_IP)
+ flow_hash ^= srchost_hash;
+
+ if (flow_mode & CAKE_FLOW_DST_IP)
+ flow_hash ^= dsthost_hash;
+ }
+
+ reduced_hash = flow_hash % CAKE_QUEUES;
+
+ /* set-associative hashing */
+ /* fast path if no hash collision (direct lookup succeeds) */
+ if (likely(q->tags[reduced_hash] == flow_hash &&
+ q->flows[reduced_hash].set)) {
+ q->way_directs++;
+ } else {
+ u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
+ u32 outer_hash = reduced_hash - inner_hash;
+ bool allocate_src = false;
+ bool allocate_dst = false;
+ u32 i, k;
+
+ /* check if any active queue in the set is reserved for
+ * this flow.
+ */
+ for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
+ i++, k = (k + 1) % CAKE_SET_WAYS) {
+ if (q->tags[outer_hash + k] == flow_hash) {
+ if (i)
+ q->way_hits++;
+
+ if (!q->flows[outer_hash + k].set) {
+ /* need to increment host refcnts */
+ allocate_src = cake_dsrc(flow_mode);
+ allocate_dst = cake_ddst(flow_mode);
+ }
+
+ goto found;
+ }
+ }
+
+ /* no queue is reserved for this flow, look for an
+ * empty one.
+ */
+ for (i = 0; i < CAKE_SET_WAYS;
+ i++, k = (k + 1) % CAKE_SET_WAYS) {
+ if (!q->flows[outer_hash + k].set) {
+ q->way_misses++;
+ allocate_src = cake_dsrc(flow_mode);
+ allocate_dst = cake_ddst(flow_mode);
+ goto found;
+ }
+ }
+
+ /* With no empty queues, default to the original
+ * queue, accept the collision, update the host tags.
+ */
+ q->way_collisions++;
+ q->hosts[q->flows[reduced_hash].srchost].srchost_refcnt--;
+ q->hosts[q->flows[reduced_hash].dsthost].dsthost_refcnt--;
+ allocate_src = cake_dsrc(flow_mode);
+ allocate_dst = cake_ddst(flow_mode);
+found:
+ /* reserve queue for future packets in same flow */
+ reduced_hash = outer_hash + k;
+ q->tags[reduced_hash] = flow_hash;
+
+ if (allocate_src) {
+ srchost_idx = srchost_hash % CAKE_QUEUES;
+ inner_hash = srchost_idx % CAKE_SET_WAYS;
+ outer_hash = srchost_idx - inner_hash;
+ for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
+ i++, k = (k + 1) % CAKE_SET_WAYS) {
+ if (q->hosts[outer_hash + k].srchost_tag ==
+ srchost_hash)
+ goto found_src;
+ }
+ for (i = 0; i < CAKE_SET_WAYS;
+ i++, k = (k + 1) % CAKE_SET_WAYS) {
+ if (!q->hosts[outer_hash + k].srchost_refcnt)
+ break;
+ }
+ q->hosts[outer_hash + k].srchost_tag = srchost_hash;
+found_src:
+ srchost_idx = outer_hash + k;
+ q->hosts[srchost_idx].srchost_refcnt++;
+ q->flows[reduced_hash].srchost = srchost_idx;
+ }
+
+ if (allocate_dst) {
+ dsthost_idx = dsthost_hash % CAKE_QUEUES;
+ inner_hash = dsthost_idx % CAKE_SET_WAYS;
+ outer_hash = dsthost_idx - inner_hash;
+ for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
+ i++, k = (k + 1) % CAKE_SET_WAYS) {
+ if (q->hosts[outer_hash + k].dsthost_tag ==
+ dsthost_hash)
+ goto found_dst;
+ }
+ for (i = 0; i < CAKE_SET_WAYS;
+ i++, k = (k + 1) % CAKE_SET_WAYS) {
+ if (!q->hosts[outer_hash + k].dsthost_refcnt)
+ break;
+ }
+ q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
+found_dst:
+ dsthost_idx = outer_hash + k;
+ q->hosts[dsthost_idx].dsthost_refcnt++;
+ q->flows[reduced_hash].dsthost = dsthost_idx;
+ }
+ }
+
+ return reduced_hash;
+}
+
+/* helper functions : might be changed when/if skb use a standard list_head */
+/* remove one skb from head of slot queue */
+
+static struct sk_buff *dequeue_head(struct cake_flow *flow)
+{
+ struct sk_buff *skb = flow->head;
+
+ if (skb) {
+ flow->head = skb->next;
+ skb_mark_not_on_list(skb);
+ }
+
+ return skb;
+}
+
+/* add skb to flow queue (tail add) */
+
+static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
+{
+ if (!flow->head)
+ flow->head = skb;
+ else
+ flow->tail->next = skb;
+ flow->tail = skb;
+ skb->next = NULL;
+}
+
+static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
+ struct ipv6hdr *buf)
+{
+ unsigned int offset = skb_network_offset(skb);
+ struct iphdr *iph;
+
+ iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
+
+ if (!iph)
+ return NULL;
+
+ if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
+ return skb_header_pointer(skb, offset + iph->ihl * 4,
+ sizeof(struct ipv6hdr), buf);
+
+ else if (iph->version == 4)
+ return iph;
+
+ else if (iph->version == 6)
+ return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
+ buf);
+
+ return NULL;
+}
+
+static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
+ void *buf, unsigned int bufsize)
+{
+ unsigned int offset = skb_network_offset(skb);
+ const struct ipv6hdr *ipv6h;
+ const struct tcphdr *tcph;
+ const struct iphdr *iph;
+ struct ipv6hdr _ipv6h;
+ struct tcphdr _tcph;
+
+ ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
+
+ if (!ipv6h)
+ return NULL;
+
+ if (ipv6h->version == 4) {
+ iph = (struct iphdr *)ipv6h;
+ offset += iph->ihl * 4;
+
+ /* special-case 6in4 tunnelling, as that is a common way to get
+ * v6 connectivity in the home
+ */
+ if (iph->protocol == IPPROTO_IPV6) {
+ ipv6h = skb_header_pointer(skb, offset,
+ sizeof(_ipv6h), &_ipv6h);
+
+ if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
+ return NULL;
+
+ offset += sizeof(struct ipv6hdr);
+
+ } else if (iph->protocol != IPPROTO_TCP) {
+ return NULL;
+ }
+
+ } else if (ipv6h->version == 6) {
+ if (ipv6h->nexthdr != IPPROTO_TCP)
+ return NULL;
+
+ offset += sizeof(struct ipv6hdr);
+ } else {
+ return NULL;
+ }
+
+ tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
+ if (!tcph)
+ return NULL;
+
+ return skb_header_pointer(skb, offset,
+ min(__tcp_hdrlen(tcph), bufsize), buf);
+}
+
+static const void *cake_get_tcpopt(const struct tcphdr *tcph,
+ int code, int *oplen)
+{
+ /* inspired by tcp_parse_options in tcp_input.c */
+ int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
+ const u8 *ptr = (const u8 *)(tcph + 1);
+
+ while (length > 0) {
+ int opcode = *ptr++;
+ int opsize;
+
+ if (opcode == TCPOPT_EOL)
+ break;
+ if (opcode == TCPOPT_NOP) {
+ length--;
+ continue;
+ }
+ opsize = *ptr++;
+ if (opsize < 2 || opsize > length)
+ break;
+
+ if (opcode == code) {
+ *oplen = opsize;
+ return ptr;
+ }
+
+ ptr += opsize - 2;
+ length -= opsize;
+ }
+
+ return NULL;
+}
+
+/* Compare two SACK sequences. A sequence is considered greater if it SACKs more
+ * bytes than the other. In the case where both sequences ACKs bytes that the
+ * other doesn't, A is considered greater. DSACKs in A also makes A be
+ * considered greater.
+ *
+ * @return -1, 0 or 1 as normal compare functions
+ */
+static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
+ const struct tcphdr *tcph_b)
+{
+ const struct tcp_sack_block_wire *sack_a, *sack_b;
+ u32 ack_seq_a = ntohl(tcph_a->ack_seq);
+ u32 bytes_a = 0, bytes_b = 0;
+ int oplen_a, oplen_b;
+ bool first = true;
+
+ sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
+ sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
+
+ /* pointers point to option contents */
+ oplen_a -= TCPOLEN_SACK_BASE;
+ oplen_b -= TCPOLEN_SACK_BASE;
+
+ if (sack_a && oplen_a >= sizeof(*sack_a) &&
+ (!sack_b || oplen_b < sizeof(*sack_b)))
+ return -1;
+ else if (sack_b && oplen_b >= sizeof(*sack_b) &&
+ (!sack_a || oplen_a < sizeof(*sack_a)))
+ return 1;
+ else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
+ (!sack_b || oplen_b < sizeof(*sack_b)))
+ return 0;
+
+ while (oplen_a >= sizeof(*sack_a)) {
+ const struct tcp_sack_block_wire *sack_tmp = sack_b;
+ u32 start_a = get_unaligned_be32(&sack_a->start_seq);
+ u32 end_a = get_unaligned_be32(&sack_a->end_seq);
+ int oplen_tmp = oplen_b;
+ bool found = false;
+
+ /* DSACK; always considered greater to prevent dropping */
+ if (before(start_a, ack_seq_a))
+ return -1;
+
+ bytes_a += end_a - start_a;
+
+ while (oplen_tmp >= sizeof(*sack_tmp)) {
+ u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
+ u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
+
+ /* first time through we count the total size */
+ if (first)
+ bytes_b += end_b - start_b;
+
+ if (!after(start_b, start_a) && !before(end_b, end_a)) {
+ found = true;
+ if (!first)
+ break;
+ }
+ oplen_tmp -= sizeof(*sack_tmp);
+ sack_tmp++;
+ }
+
+ if (!found)
+ return -1;
+
+ oplen_a -= sizeof(*sack_a);
+ sack_a++;
+ first = false;
+ }
+
+ /* If we made it this far, all ranges SACKed by A are covered by B, so
+ * either the SACKs are equal, or B SACKs more bytes.
+ */
+ return bytes_b > bytes_a ? 1 : 0;
+}
+
+static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
+ u32 *tsval, u32 *tsecr)
+{
+ const u8 *ptr;
+ int opsize;
+
+ ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
+
+ if (ptr && opsize == TCPOLEN_TIMESTAMP) {
+ *tsval = get_unaligned_be32(ptr);
+ *tsecr = get_unaligned_be32(ptr + 4);
+ }
+}
+
+static bool cake_tcph_may_drop(const struct tcphdr *tcph,
+ u32 tstamp_new, u32 tsecr_new)
+{
+ /* inspired by tcp_parse_options in tcp_input.c */
+ int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
+ const u8 *ptr = (const u8 *)(tcph + 1);
+ u32 tstamp, tsecr;
+
+ /* 3 reserved flags must be unset to avoid future breakage
+ * ACK must be set
+ * ECE/CWR are handled separately
+ * All other flags URG/PSH/RST/SYN/FIN must be unset
+ * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
+ * 0x00C00000 = CWR/ECE (handled separately)
+ * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
+ */
+ if (((tcp_flag_word(tcph) &
+ cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
+ return false;
+
+ while (length > 0) {
+ int opcode = *ptr++;
+ int opsize;
+
+ if (opcode == TCPOPT_EOL)
+ break;
+ if (opcode == TCPOPT_NOP) {
+ length--;
+ continue;
+ }
+ opsize = *ptr++;
+ if (opsize < 2 || opsize > length)
+ break;
+
+ switch (opcode) {
+ case TCPOPT_MD5SIG: /* doesn't influence state */
+ break;
+
+ case TCPOPT_SACK: /* stricter checking performed later */
+ if (opsize % 8 != 2)
+ return false;
+ break;
+
+ case TCPOPT_TIMESTAMP:
+ /* only drop timestamps lower than new */
+ if (opsize != TCPOLEN_TIMESTAMP)
+ return false;
+ tstamp = get_unaligned_be32(ptr);
+ tsecr = get_unaligned_be32(ptr + 4);
+ if (after(tstamp, tstamp_new) ||
+ after(tsecr, tsecr_new))
+ return false;
+ break;
+
+ case TCPOPT_MSS: /* these should only be set on SYN */
+ case TCPOPT_WINDOW:
+ case TCPOPT_SACK_PERM:
+ case TCPOPT_FASTOPEN:
+ case TCPOPT_EXP:
+ default: /* don't drop if any unknown options are present */
+ return false;
+ }
+
+ ptr += opsize - 2;
+ length -= opsize;
+ }
+
+ return true;
+}
+
+static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
+ struct cake_flow *flow)
+{
+ bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
+ struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
+ struct sk_buff *skb_check, *skb_prev = NULL;
+ const struct ipv6hdr *ipv6h, *ipv6h_check;
+ unsigned char _tcph[64], _tcph_check[64];
+ const struct tcphdr *tcph, *tcph_check;
+ const struct iphdr *iph, *iph_check;
+ struct ipv6hdr _iph, _iph_check;
+ const struct sk_buff *skb;
+ int seglen, num_found = 0;
+ u32 tstamp = 0, tsecr = 0;
+ __be32 elig_flags = 0;
+ int sack_comp;
+
+ /* no other possible ACKs to filter */
+ if (flow->head == flow->tail)
+ return NULL;
+
+ skb = flow->tail;
+ tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
+ iph = cake_get_iphdr(skb, &_iph);
+ if (!tcph)
+ return NULL;
+
+ cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
+
+ /* the 'triggering' packet need only have the ACK flag set.
+ * also check that SYN is not set, as there won't be any previous ACKs.
+ */
+ if ((tcp_flag_word(tcph) &
+ (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
+ return NULL;
+
+ /* the 'triggering' ACK is at the tail of the queue, we have already
+ * returned if it is the only packet in the flow. loop through the rest
+ * of the queue looking for pure ACKs with the same 5-tuple as the
+ * triggering one.
+ */
+ for (skb_check = flow->head;
+ skb_check && skb_check != skb;
+ skb_prev = skb_check, skb_check = skb_check->next) {
+ iph_check = cake_get_iphdr(skb_check, &_iph_check);
+ tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
+ sizeof(_tcph_check));
+
+ /* only TCP packets with matching 5-tuple are eligible, and only
+ * drop safe headers
+ */
+ if (!tcph_check || iph->version != iph_check->version ||
+ tcph_check->source != tcph->source ||
+ tcph_check->dest != tcph->dest)
+ continue;
+
+ if (iph_check->version == 4) {
+ if (iph_check->saddr != iph->saddr ||
+ iph_check->daddr != iph->daddr)
+ continue;
+
+ seglen = ntohs(iph_check->tot_len) -
+ (4 * iph_check->ihl);
+ } else if (iph_check->version == 6) {
+ ipv6h = (struct ipv6hdr *)iph;
+ ipv6h_check = (struct ipv6hdr *)iph_check;
+
+ if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
+ ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
+ continue;
+
+ seglen = ntohs(ipv6h_check->payload_len);
+ } else {
+ WARN_ON(1); /* shouldn't happen */
+ continue;
+ }
+
+ /* If the ECE/CWR flags changed from the previous eligible
+ * packet in the same flow, we should no longer be dropping that
+ * previous packet as this would lose information.
+ */
+ if (elig_ack && (tcp_flag_word(tcph_check) &
+ (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
+ elig_ack = NULL;
+ elig_ack_prev = NULL;
+ num_found--;
+ }
+
+ /* Check TCP options and flags, don't drop ACKs with segment
+ * data, and don't drop ACKs with a higher cumulative ACK
+ * counter than the triggering packet. Check ACK seqno here to
+ * avoid parsing SACK options of packets we are going to exclude
+ * anyway.
+ */
+ if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
+ (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
+ after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
+ continue;
+
+ /* Check SACK options. The triggering packet must SACK more data
+ * than the ACK under consideration, or SACK the same range but
+ * have a larger cumulative ACK counter. The latter is a
+ * pathological case, but is contained in the following check
+ * anyway, just to be safe.
+ */
+ sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
+
+ if (sack_comp < 0 ||
+ (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
+ sack_comp == 0))
+ continue;
+
+ /* At this point we have found an eligible pure ACK to drop; if
+ * we are in aggressive mode, we are done. Otherwise, keep
+ * searching unless this is the second eligible ACK we
+ * found.
+ *
+ * Since we want to drop ACK closest to the head of the queue,
+ * save the first eligible ACK we find, even if we need to loop
+ * again.
+ */
+ if (!elig_ack) {
+ elig_ack = skb_check;
+ elig_ack_prev = skb_prev;
+ elig_flags = (tcp_flag_word(tcph_check)
+ & (TCP_FLAG_ECE | TCP_FLAG_CWR));
+ }
+
+ if (num_found++ > 0)
+ goto found;
+ }
+
+ /* We made it through the queue without finding two eligible ACKs . If
+ * we found a single eligible ACK we can drop it in aggressive mode if
+ * we can guarantee that this does not interfere with ECN flag
+ * information. We ensure this by dropping it only if the enqueued
+ * packet is consecutive with the eligible ACK, and their flags match.
+ */
+ if (elig_ack && aggressive && elig_ack->next == skb &&
+ (elig_flags == (tcp_flag_word(tcph) &
+ (TCP_FLAG_ECE | TCP_FLAG_CWR))))
+ goto found;
+
+ return NULL;
+
+found:
+ if (elig_ack_prev)
+ elig_ack_prev->next = elig_ack->next;
+ else
+ flow->head = elig_ack->next;
+
+ skb_mark_not_on_list(elig_ack);
+
+ return elig_ack;
+}
+
+static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
+{
+ avg -= avg >> shift;
+ avg += sample >> shift;
+ return avg;
+}
+
+static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
+{
+ if (q->rate_flags & CAKE_FLAG_OVERHEAD)
+ len -= off;
+
+ if (q->max_netlen < len)
+ q->max_netlen = len;
+ if (q->min_netlen > len)
+ q->min_netlen = len;
+
+ len += q->rate_overhead;
+
+ if (len < q->rate_mpu)
+ len = q->rate_mpu;
+
+ if (q->atm_mode == CAKE_ATM_ATM) {
+ len += 47;
+ len /= 48;
+ len *= 53;
+ } else if (q->atm_mode == CAKE_ATM_PTM) {
+ /* Add one byte per 64 bytes or part thereof.
+ * This is conservative and easier to calculate than the
+ * precise value.
+ */
+ len += (len + 63) / 64;
+ }
+
+ if (q->max_adjlen < len)
+ q->max_adjlen = len;
+ if (q->min_adjlen > len)
+ q->min_adjlen = len;
+
+ return len;
+}
+
+static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
+{
+ const struct skb_shared_info *shinfo = skb_shinfo(skb);
+ unsigned int hdr_len, last_len = 0;
+ u32 off = skb_network_offset(skb);
+ u32 len = qdisc_pkt_len(skb);
+ u16 segs = 1;
+
+ q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
+
+ if (!shinfo->gso_size)
+ return cake_calc_overhead(q, len, off);
+
+ /* borrowed from qdisc_pkt_len_init() */
+ hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
+
+ /* + transport layer */
+ if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
+ SKB_GSO_TCPV6))) {
+ const struct tcphdr *th;
+ struct tcphdr _tcphdr;
+
+ th = skb_header_pointer(skb, skb_transport_offset(skb),
+ sizeof(_tcphdr), &_tcphdr);
+ if (likely(th))
+ hdr_len += __tcp_hdrlen(th);
+ } else {
+ struct udphdr _udphdr;
+
+ if (skb_header_pointer(skb, skb_transport_offset(skb),
+ sizeof(_udphdr), &_udphdr))
+ hdr_len += sizeof(struct udphdr);
+ }
+
+ if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
+ segs = DIV_ROUND_UP(skb->len - hdr_len,
+ shinfo->gso_size);
+ else
+ segs = shinfo->gso_segs;
+
+ len = shinfo->gso_size + hdr_len;
+ last_len = skb->len - shinfo->gso_size * (segs - 1);
+
+ return (cake_calc_overhead(q, len, off) * (segs - 1) +
+ cake_calc_overhead(q, last_len, off));
+}
+
+static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
+{
+ struct cake_heap_entry ii = q->overflow_heap[i];
+ struct cake_heap_entry jj = q->overflow_heap[j];
+
+ q->overflow_heap[i] = jj;
+ q->overflow_heap[j] = ii;
+
+ q->tins[ii.t].overflow_idx[ii.b] = j;
+ q->tins[jj.t].overflow_idx[jj.b] = i;
+}
+
+static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
+{
+ struct cake_heap_entry ii = q->overflow_heap[i];
+
+ return q->tins[ii.t].backlogs[ii.b];
+}
+
+static void cake_heapify(struct cake_sched_data *q, u16 i)
+{
+ static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
+ u32 mb = cake_heap_get_backlog(q, i);
+ u32 m = i;
+
+ while (m < a) {
+ u32 l = m + m + 1;
+ u32 r = l + 1;
+
+ if (l < a) {
+ u32 lb = cake_heap_get_backlog(q, l);
+
+ if (lb > mb) {
+ m = l;
+ mb = lb;
+ }
+ }
+
+ if (r < a) {
+ u32 rb = cake_heap_get_backlog(q, r);
+
+ if (rb > mb) {
+ m = r;
+ mb = rb;
+ }
+ }
+
+ if (m != i) {
+ cake_heap_swap(q, i, m);
+ i = m;
+ } else {
+ break;
+ }
+ }
+}
+
+static void cake_heapify_up(struct cake_sched_data *q, u16 i)
+{
+ while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
+ u16 p = (i - 1) >> 1;
+ u32 ib = cake_heap_get_backlog(q, i);
+ u32 pb = cake_heap_get_backlog(q, p);
+
+ if (ib > pb) {
+ cake_heap_swap(q, i, p);
+ i = p;
+ } else {
+ break;
+ }
+ }
+}
+
+static int cake_advance_shaper(struct cake_sched_data *q,
+ struct cake_tin_data *b,
+ struct sk_buff *skb,
+ ktime_t now, bool drop)
+{
+ u32 len = get_cobalt_cb(skb)->adjusted_len;
+
+ /* charge packet bandwidth to this tin
+ * and to the global shaper.
+ */
+ if (q->rate_ns) {
+ u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
+ u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
+ u64 failsafe_dur = global_dur + (global_dur >> 1);
+
+ if (ktime_before(b->time_next_packet, now))
+ b->time_next_packet = ktime_add_ns(b->time_next_packet,
+ tin_dur);
+
+ else if (ktime_before(b->time_next_packet,
+ ktime_add_ns(now, tin_dur)))
+ b->time_next_packet = ktime_add_ns(now, tin_dur);
+
+ q->time_next_packet = ktime_add_ns(q->time_next_packet,
+ global_dur);
+ if (!drop)
+ q->failsafe_next_packet = \
+ ktime_add_ns(q->failsafe_next_packet,
+ failsafe_dur);
+ }
+ return len;
+}
+
+static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ ktime_t now = ktime_get();
+ u32 idx = 0, tin = 0, len;
+ struct cake_heap_entry qq;
+ struct cake_tin_data *b;
+ struct cake_flow *flow;
+ struct sk_buff *skb;
+
+ if (!q->overflow_timeout) {
+ int i;
+ /* Build fresh max-heap */
+ for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
+ cake_heapify(q, i);
+ }
+ q->overflow_timeout = 65535;
+
+ /* select longest queue for pruning */
+ qq = q->overflow_heap[0];
+ tin = qq.t;
+ idx = qq.b;
+
+ b = &q->tins[tin];
+ flow = &b->flows[idx];
+ skb = dequeue_head(flow);
+ if (unlikely(!skb)) {
+ /* heap has gone wrong, rebuild it next time */
+ q->overflow_timeout = 0;
+ return idx + (tin << 16);
+ }
+
+ if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
+ b->unresponsive_flow_count++;
+
+ len = qdisc_pkt_len(skb);
+ q->buffer_used -= skb->truesize;
+ b->backlogs[idx] -= len;
+ b->tin_backlog -= len;
+ sch->qstats.backlog -= len;
+ qdisc_tree_reduce_backlog(sch, 1, len);
+
+ flow->dropped++;
+ b->tin_dropped++;
+ sch->qstats.drops++;
+
+ if (q->rate_flags & CAKE_FLAG_INGRESS)
+ cake_advance_shaper(q, b, skb, now, true);
+
+ __qdisc_drop(skb, to_free);
+ sch->q.qlen--;
+
+ cake_heapify(q, 0);
+
+ return idx + (tin << 16);
+}
+
+static void cake_wash_diffserv(struct sk_buff *skb)
+{
+ switch (skb->protocol) {
+ case htons(ETH_P_IP):
+ ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
+ break;
+ case htons(ETH_P_IPV6):
+ ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
+ break;
+ default:
+ break;
+ }
+}
+
+static u8 cake_handle_diffserv(struct sk_buff *skb, u16 wash)
+{
+ u8 dscp;
+
+ switch (skb->protocol) {
+ case htons(ETH_P_IP):
+ dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
+ if (wash && dscp)
+ ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
+ return dscp;
+
+ case htons(ETH_P_IPV6):
+ dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
+ if (wash && dscp)
+ ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
+ return dscp;
+
+ case htons(ETH_P_ARP):
+ return 0x38; /* CS7 - Net Control */
+
+ default:
+ /* If there is no Diffserv field, treat as best-effort */
+ return 0;
+ }
+}
+
+static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
+ struct sk_buff *skb)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ u32 tin;
+
+ if (TC_H_MAJ(skb->priority) == sch->handle &&
+ TC_H_MIN(skb->priority) > 0 &&
+ TC_H_MIN(skb->priority) <= q->tin_cnt) {
+ tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
+
+ if (q->rate_flags & CAKE_FLAG_WASH)
+ cake_wash_diffserv(skb);
+ } else if (q->tin_mode != CAKE_DIFFSERV_BESTEFFORT) {
+ /* extract the Diffserv Precedence field, if it exists */
+ /* and clear DSCP bits if washing */
+ tin = q->tin_index[cake_handle_diffserv(skb,
+ q->rate_flags & CAKE_FLAG_WASH)];
+ if (unlikely(tin >= q->tin_cnt))
+ tin = 0;
+ } else {
+ tin = 0;
+ if (q->rate_flags & CAKE_FLAG_WASH)
+ cake_wash_diffserv(skb);
+ }
+
+ return &q->tins[tin];
+}
+
+static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
+ struct sk_buff *skb, int flow_mode, int *qerr)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ struct tcf_proto *filter;
+ struct tcf_result res;
+ u16 flow = 0, host = 0;
+ int result;
+
+ filter = rcu_dereference_bh(q->filter_list);
+ if (!filter)
+ goto hash;
+
+ *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
+ result = tcf_classify(skb, filter, &res, false);
+
+ if (result >= 0) {
+#ifdef CONFIG_NET_CLS_ACT
+ switch (result) {
+ case TC_ACT_STOLEN:
+ case TC_ACT_QUEUED:
+ case TC_ACT_TRAP:
+ *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
+ /* fall through */
+ case TC_ACT_SHOT:
+ return 0;
+ }
+#endif
+ if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
+ flow = TC_H_MIN(res.classid);
+ if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
+ host = TC_H_MAJ(res.classid) >> 16;
+ }
+hash:
+ *t = cake_select_tin(sch, skb);
+ return cake_hash(*t, skb, flow_mode, flow, host) + 1;
+}
+
+static void cake_reconfigure(struct Qdisc *sch);
+
+static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
+ struct sk_buff **to_free)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ int len = qdisc_pkt_len(skb);
+ int uninitialized_var(ret);
+ struct sk_buff *ack = NULL;
+ ktime_t now = ktime_get();
+ struct cake_tin_data *b;
+ struct cake_flow *flow;
+ u32 idx;
+
+ /* choose flow to insert into */
+ idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
+ if (idx == 0) {
+ if (ret & __NET_XMIT_BYPASS)
+ qdisc_qstats_drop(sch);
+ __qdisc_drop(skb, to_free);
+ return ret;
+ }
+ idx--;
+ flow = &b->flows[idx];
+
+ /* ensure shaper state isn't stale */
+ if (!b->tin_backlog) {
+ if (ktime_before(b->time_next_packet, now))
+ b->time_next_packet = now;
+
+ if (!sch->q.qlen) {
+ if (ktime_before(q->time_next_packet, now)) {
+ q->failsafe_next_packet = now;
+ q->time_next_packet = now;
+ } else if (ktime_after(q->time_next_packet, now) &&
+ ktime_after(q->failsafe_next_packet, now)) {
+ u64 next = \
+ min(ktime_to_ns(q->time_next_packet),
+ ktime_to_ns(
+ q->failsafe_next_packet));
+ sch->qstats.overlimits++;
+ qdisc_watchdog_schedule_ns(&q->watchdog, next);
+ }
+ }
+ }
+
+ if (unlikely(len > b->max_skblen))
+ b->max_skblen = len;
+
+ if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
+ struct sk_buff *segs, *nskb;
+ netdev_features_t features = netif_skb_features(skb);
+ unsigned int slen = 0;
+
+ segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
+ if (IS_ERR_OR_NULL(segs))
+ return qdisc_drop(skb, sch, to_free);
+
+ while (segs) {
+ nskb = segs->next;
+ skb_mark_not_on_list(segs);
+ qdisc_skb_cb(segs)->pkt_len = segs->len;
+ cobalt_set_enqueue_time(segs, now);
+ get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
+ segs);
+ flow_queue_add(flow, segs);
+
+ sch->q.qlen++;
+ slen += segs->len;
+ q->buffer_used += segs->truesize;
+ b->packets++;
+ segs = nskb;
+ }
+
+ /* stats */
+ b->bytes += slen;
+ b->backlogs[idx] += slen;
+ b->tin_backlog += slen;
+ sch->qstats.backlog += slen;
+ q->avg_window_bytes += slen;
+
+ qdisc_tree_reduce_backlog(sch, 1, len);
+ consume_skb(skb);
+ } else {
+ /* not splitting */
+ cobalt_set_enqueue_time(skb, now);
+ get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
+ flow_queue_add(flow, skb);
+
+ if (q->ack_filter)
+ ack = cake_ack_filter(q, flow);
+
+ if (ack) {
+ b->ack_drops++;
+ sch->qstats.drops++;
+ b->bytes += qdisc_pkt_len(ack);
+ len -= qdisc_pkt_len(ack);
+ q->buffer_used += skb->truesize - ack->truesize;
+ if (q->rate_flags & CAKE_FLAG_INGRESS)
+ cake_advance_shaper(q, b, ack, now, true);
+
+ qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
+ consume_skb(ack);
+ } else {
+ sch->q.qlen++;
+ q->buffer_used += skb->truesize;
+ }
+
+ /* stats */
+ b->packets++;
+ b->bytes += len;
+ b->backlogs[idx] += len;
+ b->tin_backlog += len;
+ sch->qstats.backlog += len;
+ q->avg_window_bytes += len;
+ }
+
+ if (q->overflow_timeout)
+ cake_heapify_up(q, b->overflow_idx[idx]);
+
+ /* incoming bandwidth capacity estimate */
+ if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
+ u64 packet_interval = \
+ ktime_to_ns(ktime_sub(now, q->last_packet_time));
+
+ if (packet_interval > NSEC_PER_SEC)
+ packet_interval = NSEC_PER_SEC;
+
+ /* filter out short-term bursts, eg. wifi aggregation */
+ q->avg_packet_interval = \
+ cake_ewma(q->avg_packet_interval,
+ packet_interval,
+ (packet_interval > q->avg_packet_interval ?
+ 2 : 8));
+
+ q->last_packet_time = now;
+
+ if (packet_interval > q->avg_packet_interval) {
+ u64 window_interval = \
+ ktime_to_ns(ktime_sub(now,
+ q->avg_window_begin));
+ u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
+
+ do_div(b, window_interval);
+ q->avg_peak_bandwidth =
+ cake_ewma(q->avg_peak_bandwidth, b,
+ b > q->avg_peak_bandwidth ? 2 : 8);
+ q->avg_window_bytes = 0;
+ q->avg_window_begin = now;
+
+ if (ktime_after(now,
+ ktime_add_ms(q->last_reconfig_time,
+ 250))) {
+ q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
+ cake_reconfigure(sch);
+ }
+ }
+ } else {
+ q->avg_window_bytes = 0;
+ q->last_packet_time = now;
+ }
+
+ /* flowchain */
+ if (!flow->set || flow->set == CAKE_SET_DECAYING) {
+ struct cake_host *srchost = &b->hosts[flow->srchost];
+ struct cake_host *dsthost = &b->hosts[flow->dsthost];
+ u16 host_load = 1;
+
+ if (!flow->set) {
+ list_add_tail(&flow->flowchain, &b->new_flows);
+ } else {
+ b->decaying_flow_count--;
+ list_move_tail(&flow->flowchain, &b->new_flows);
+ }
+ flow->set = CAKE_SET_SPARSE;
+ b->sparse_flow_count++;
+
+ if (cake_dsrc(q->flow_mode))
+ host_load = max(host_load, srchost->srchost_refcnt);
+
+ if (cake_ddst(q->flow_mode))
+ host_load = max(host_load, dsthost->dsthost_refcnt);
+
+ flow->deficit = (b->flow_quantum *
+ quantum_div[host_load]) >> 16;
+ } else if (flow->set == CAKE_SET_SPARSE_WAIT) {
+ /* this flow was empty, accounted as a sparse flow, but actually
+ * in the bulk rotation.
+ */
+ flow->set = CAKE_SET_BULK;
+ b->sparse_flow_count--;
+ b->bulk_flow_count++;
+ }
+
+ if (q->buffer_used > q->buffer_max_used)
+ q->buffer_max_used = q->buffer_used;
+
+ if (q->buffer_used > q->buffer_limit) {
+ u32 dropped = 0;
+
+ while (q->buffer_used > q->buffer_limit) {
+ dropped++;
+ cake_drop(sch, to_free);
+ }
+ b->drop_overlimit += dropped;
+ }
+ return NET_XMIT_SUCCESS;
+}
+
+static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ struct cake_tin_data *b = &q->tins[q->cur_tin];
+ struct cake_flow *flow = &b->flows[q->cur_flow];
+ struct sk_buff *skb = NULL;
+ u32 len;
+
+ if (flow->head) {
+ skb = dequeue_head(flow);
+ len = qdisc_pkt_len(skb);
+ b->backlogs[q->cur_flow] -= len;
+ b->tin_backlog -= len;
+ sch->qstats.backlog -= len;
+ q->buffer_used -= skb->truesize;
+ sch->q.qlen--;
+
+ if (q->overflow_timeout)
+ cake_heapify(q, b->overflow_idx[q->cur_flow]);
+ }
+ return skb;
+}
+
+/* Discard leftover packets from a tin no longer in use. */
+static void cake_clear_tin(struct Qdisc *sch, u16 tin)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ struct sk_buff *skb;
+
+ q->cur_tin = tin;
+ for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
+ while (!!(skb = cake_dequeue_one(sch)))
+ kfree_skb(skb);
+}
+
+static struct sk_buff *cake_dequeue(struct Qdisc *sch)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ struct cake_tin_data *b = &q->tins[q->cur_tin];
+ struct cake_host *srchost, *dsthost;
+ ktime_t now = ktime_get();
+ struct cake_flow *flow;
+ struct list_head *head;
+ bool first_flow = true;
+ struct sk_buff *skb;
+ u16 host_load;
+ u64 delay;
+ u32 len;
+
+begin:
+ if (!sch->q.qlen)
+ return NULL;
+
+ /* global hard shaper */
+ if (ktime_after(q->time_next_packet, now) &&
+ ktime_after(q->failsafe_next_packet, now)) {
+ u64 next = min(ktime_to_ns(q->time_next_packet),
+ ktime_to_ns(q->failsafe_next_packet));
+
+ sch->qstats.overlimits++;
+ qdisc_watchdog_schedule_ns(&q->watchdog, next);
+ return NULL;
+ }
+
+ /* Choose a class to work on. */
+ if (!q->rate_ns) {
+ /* In unlimited mode, can't rely on shaper timings, just balance
+ * with DRR
+ */
+ bool wrapped = false, empty = true;
+
+ while (b->tin_deficit < 0 ||
+ !(b->sparse_flow_count + b->bulk_flow_count)) {
+ if (b->tin_deficit <= 0)
+ b->tin_deficit += b->tin_quantum_band;
+ if (b->sparse_flow_count + b->bulk_flow_count)
+ empty = false;
+
+ q->cur_tin++;
+ b++;
+ if (q->cur_tin >= q->tin_cnt) {
+ q->cur_tin = 0;
+ b = q->tins;
+
+ if (wrapped) {
+ /* It's possible for q->qlen to be
+ * nonzero when we actually have no
+ * packets anywhere.
+ */
+ if (empty)
+ return NULL;
+ } else {
+ wrapped = true;
+ }
+ }
+ }
+ } else {
+ /* In shaped mode, choose:
+ * - Highest-priority tin with queue and meeting schedule, or
+ * - The earliest-scheduled tin with queue.
+ */
+ ktime_t best_time = KTIME_MAX;
+ int tin, best_tin = 0;
+
+ for (tin = 0; tin < q->tin_cnt; tin++) {
+ b = q->tins + tin;
+ if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
+ ktime_t time_to_pkt = \
+ ktime_sub(b->time_next_packet, now);
+
+ if (ktime_to_ns(time_to_pkt) <= 0 ||
+ ktime_compare(time_to_pkt,
+ best_time) <= 0) {
+ best_time = time_to_pkt;
+ best_tin = tin;
+ }
+ }
+ }
+
+ q->cur_tin = best_tin;
+ b = q->tins + best_tin;
+
+ /* No point in going further if no packets to deliver. */
+ if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
+ return NULL;
+ }
+
+retry:
+ /* service this class */
+ head = &b->decaying_flows;
+ if (!first_flow || list_empty(head)) {
+ head = &b->new_flows;
+ if (list_empty(head)) {
+ head = &b->old_flows;
+ if (unlikely(list_empty(head))) {
+ head = &b->decaying_flows;
+ if (unlikely(list_empty(head)))
+ goto begin;
+ }
+ }
+ }
+ flow = list_first_entry(head, struct cake_flow, flowchain);
+ q->cur_flow = flow - b->flows;
+ first_flow = false;
+
+ /* triple isolation (modified DRR++) */
+ srchost = &b->hosts[flow->srchost];
+ dsthost = &b->hosts[flow->dsthost];
+ host_load = 1;
+
+ if (cake_dsrc(q->flow_mode))
+ host_load = max(host_load, srchost->srchost_refcnt);
+
+ if (cake_ddst(q->flow_mode))
+ host_load = max(host_load, dsthost->dsthost_refcnt);
+
+ WARN_ON(host_load > CAKE_QUEUES);
+
+ /* flow isolation (DRR++) */
+ if (flow->deficit <= 0) {
+ /* The shifted prandom_u32() is a way to apply dithering to
+ * avoid accumulating roundoff errors
+ */
+ flow->deficit += (b->flow_quantum * quantum_div[host_load] +
+ (prandom_u32() >> 16)) >> 16;
+ list_move_tail(&flow->flowchain, &b->old_flows);
+
+ /* Keep all flows with deficits out of the sparse and decaying
+ * rotations. No non-empty flow can go into the decaying
+ * rotation, so they can't get deficits
+ */
+ if (flow->set == CAKE_SET_SPARSE) {
+ if (flow->head) {
+ b->sparse_flow_count--;
+ b->bulk_flow_count++;
+ flow->set = CAKE_SET_BULK;
+ } else {
+ /* we've moved it to the bulk rotation for
+ * correct deficit accounting but we still want
+ * to count it as a sparse flow, not a bulk one.
+ */
+ flow->set = CAKE_SET_SPARSE_WAIT;
+ }
+ }
+ goto retry;
+ }
+
+ /* Retrieve a packet via the AQM */
+ while (1) {
+ skb = cake_dequeue_one(sch);
+ if (!skb) {
+ /* this queue was actually empty */
+ if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
+ b->unresponsive_flow_count--;
+
+ if (flow->cvars.p_drop || flow->cvars.count ||
+ ktime_before(now, flow->cvars.drop_next)) {
+ /* keep in the flowchain until the state has
+ * decayed to rest
+ */
+ list_move_tail(&flow->flowchain,
+ &b->decaying_flows);
+ if (flow->set == CAKE_SET_BULK) {
+ b->bulk_flow_count--;
+ b->decaying_flow_count++;
+ } else if (flow->set == CAKE_SET_SPARSE ||
+ flow->set == CAKE_SET_SPARSE_WAIT) {
+ b->sparse_flow_count--;
+ b->decaying_flow_count++;
+ }
+ flow->set = CAKE_SET_DECAYING;
+ } else {
+ /* remove empty queue from the flowchain */
+ list_del_init(&flow->flowchain);
+ if (flow->set == CAKE_SET_SPARSE ||
+ flow->set == CAKE_SET_SPARSE_WAIT)
+ b->sparse_flow_count--;
+ else if (flow->set == CAKE_SET_BULK)
+ b->bulk_flow_count--;
+ else
+ b->decaying_flow_count--;
+
+ flow->set = CAKE_SET_NONE;
+ srchost->srchost_refcnt--;
+ dsthost->dsthost_refcnt--;
+ }
+ goto begin;
+ }
+
+ /* Last packet in queue may be marked, shouldn't be dropped */
+ if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
+ (b->bulk_flow_count *
+ !!(q->rate_flags &
+ CAKE_FLAG_INGRESS))) ||
+ !flow->head)
+ break;
+
+ /* drop this packet, get another one */
+ if (q->rate_flags & CAKE_FLAG_INGRESS) {
+ len = cake_advance_shaper(q, b, skb,
+ now, true);
+ flow->deficit -= len;
+ b->tin_deficit -= len;
+ }
+ flow->dropped++;
+ b->tin_dropped++;
+ qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
+ qdisc_qstats_drop(sch);
+ kfree_skb(skb);
+ if (q->rate_flags & CAKE_FLAG_INGRESS)
+ goto retry;
+ }
+
+ b->tin_ecn_mark += !!flow->cvars.ecn_marked;
+ qdisc_bstats_update(sch, skb);
+
+ /* collect delay stats */
+ delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
+ b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
+ b->peak_delay = cake_ewma(b->peak_delay, delay,
+ delay > b->peak_delay ? 2 : 8);
+ b->base_delay = cake_ewma(b->base_delay, delay,
+ delay < b->base_delay ? 2 : 8);
+
+ len = cake_advance_shaper(q, b, skb, now, false);
+ flow->deficit -= len;
+ b->tin_deficit -= len;
+
+ if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
+ u64 next = min(ktime_to_ns(q->time_next_packet),
+ ktime_to_ns(q->failsafe_next_packet));
+
+ qdisc_watchdog_schedule_ns(&q->watchdog, next);
+ } else if (!sch->q.qlen) {
+ int i;
+
+ for (i = 0; i < q->tin_cnt; i++) {
+ if (q->tins[i].decaying_flow_count) {
+ ktime_t next = \
+ ktime_add_ns(now,
+ q->tins[i].cparams.target);
+
+ qdisc_watchdog_schedule_ns(&q->watchdog,
+ ktime_to_ns(next));
+ break;
+ }
+ }
+ }
+
+ if (q->overflow_timeout)
+ q->overflow_timeout--;
+
+ return skb;
+}
+
+static void cake_reset(struct Qdisc *sch)
+{
+ u32 c;
+
+ for (c = 0; c < CAKE_MAX_TINS; c++)
+ cake_clear_tin(sch, c);
+}
+
+static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
+ [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 },
+ [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
+ [TCA_CAKE_ATM] = { .type = NLA_U32 },
+ [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
+ [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
+ [TCA_CAKE_RTT] = { .type = NLA_U32 },
+ [TCA_CAKE_TARGET] = { .type = NLA_U32 },
+ [TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
+ [TCA_CAKE_MEMORY] = { .type = NLA_U32 },
+ [TCA_CAKE_NAT] = { .type = NLA_U32 },
+ [TCA_CAKE_RAW] = { .type = NLA_U32 },
+ [TCA_CAKE_WASH] = { .type = NLA_U32 },
+ [TCA_CAKE_MPU] = { .type = NLA_U32 },
+ [TCA_CAKE_INGRESS] = { .type = NLA_U32 },
+ [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
+};
+
+static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
+ u64 target_ns, u64 rtt_est_ns)
+{
+ /* convert byte-rate into time-per-byte
+ * so it will always unwedge in reasonable time.
+ */
+ static const u64 MIN_RATE = 64;
+ u32 byte_target = mtu;
+ u64 byte_target_ns;
+ u8 rate_shft = 0;
+ u64 rate_ns = 0;
+
+ b->flow_quantum = 1514;
+ if (rate) {
+ b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
+ rate_shft = 34;
+ rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
+ rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
+ while (!!(rate_ns >> 34)) {
+ rate_ns >>= 1;
+ rate_shft--;
+ }
+ } /* else unlimited, ie. zero delay */
+
+ b->tin_rate_bps = rate;
+ b->tin_rate_ns = rate_ns;
+ b->tin_rate_shft = rate_shft;
+
+ byte_target_ns = (byte_target * rate_ns) >> rate_shft;
+
+ b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
+ b->cparams.interval = max(rtt_est_ns +
+ b->cparams.target - target_ns,
+ b->cparams.target * 2);
+ b->cparams.mtu_time = byte_target_ns;
+ b->cparams.p_inc = 1 << 24; /* 1/256 */
+ b->cparams.p_dec = 1 << 20; /* 1/4096 */
+}
+
+static int cake_config_besteffort(struct Qdisc *sch)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ struct cake_tin_data *b = &q->tins[0];
+ u32 mtu = psched_mtu(qdisc_dev(sch));
+ u64 rate = q->rate_bps;
+
+ q->tin_cnt = 1;
+
+ q->tin_index = besteffort;
+ q->tin_order = normal_order;
+
+ cake_set_rate(b, rate, mtu,
+ us_to_ns(q->target), us_to_ns(q->interval));
+ b->tin_quantum_band = 65535;
+ b->tin_quantum_prio = 65535;
+
+ return 0;
+}
+
+static int cake_config_precedence(struct Qdisc *sch)
+{
+ /* convert high-level (user visible) parameters into internal format */
+ struct cake_sched_data *q = qdisc_priv(sch);
+ u32 mtu = psched_mtu(qdisc_dev(sch));
+ u64 rate = q->rate_bps;
+ u32 quantum1 = 256;
+ u32 quantum2 = 256;
+ u32 i;
+
+ q->tin_cnt = 8;
+ q->tin_index = precedence;
+ q->tin_order = normal_order;
+
+ for (i = 0; i < q->tin_cnt; i++) {
+ struct cake_tin_data *b = &q->tins[i];
+
+ cake_set_rate(b, rate, mtu, us_to_ns(q->target),
+ us_to_ns(q->interval));
+
+ b->tin_quantum_prio = max_t(u16, 1U, quantum1);
+ b->tin_quantum_band = max_t(u16, 1U, quantum2);
+
+ /* calculate next class's parameters */
+ rate *= 7;
+ rate >>= 3;
+
+ quantum1 *= 3;
+ quantum1 >>= 1;
+
+ quantum2 *= 7;
+ quantum2 >>= 3;
+ }
+
+ return 0;
+}
+
+/* List of known Diffserv codepoints:
+ *
+ * Least Effort (CS1)
+ * Best Effort (CS0)
+ * Max Reliability & LLT "Lo" (TOS1)
+ * Max Throughput (TOS2)
+ * Min Delay (TOS4)
+ * LLT "La" (TOS5)
+ * Assured Forwarding 1 (AF1x) - x3
+ * Assured Forwarding 2 (AF2x) - x3
+ * Assured Forwarding 3 (AF3x) - x3
+ * Assured Forwarding 4 (AF4x) - x3
+ * Precedence Class 2 (CS2)
+ * Precedence Class 3 (CS3)
+ * Precedence Class 4 (CS4)
+ * Precedence Class 5 (CS5)
+ * Precedence Class 6 (CS6)
+ * Precedence Class 7 (CS7)
+ * Voice Admit (VA)
+ * Expedited Forwarding (EF)
+
+ * Total 25 codepoints.
+ */
+
+/* List of traffic classes in RFC 4594:
+ * (roughly descending order of contended priority)
+ * (roughly ascending order of uncontended throughput)
+ *
+ * Network Control (CS6,CS7) - routing traffic
+ * Telephony (EF,VA) - aka. VoIP streams
+ * Signalling (CS5) - VoIP setup
+ * Multimedia Conferencing (AF4x) - aka. video calls
+ * Realtime Interactive (CS4) - eg. games
+ * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
+ * Broadcast Video (CS3)
+ * Low Latency Data (AF2x,TOS4) - eg. database
+ * Ops, Admin, Management (CS2,TOS1) - eg. ssh
+ * Standard Service (CS0 & unrecognised codepoints)
+ * High Throughput Data (AF1x,TOS2) - eg. web traffic
+ * Low Priority Data (CS1) - eg. BitTorrent
+
+ * Total 12 traffic classes.
+ */
+
+static int cake_config_diffserv8(struct Qdisc *sch)
+{
+/* Pruned list of traffic classes for typical applications:
+ *
+ * Network Control (CS6, CS7)
+ * Minimum Latency (EF, VA, CS5, CS4)
+ * Interactive Shell (CS2, TOS1)
+ * Low Latency Transactions (AF2x, TOS4)
+ * Video Streaming (AF4x, AF3x, CS3)
+ * Bog Standard (CS0 etc.)
+ * High Throughput (AF1x, TOS2)
+ * Background Traffic (CS1)
+ *
+ * Total 8 traffic classes.
+ */
+
+ struct cake_sched_data *q = qdisc_priv(sch);
+ u32 mtu = psched_mtu(qdisc_dev(sch));
+ u64 rate = q->rate_bps;
+ u32 quantum1 = 256;
+ u32 quantum2 = 256;
+ u32 i;
+
+ q->tin_cnt = 8;
+
+ /* codepoint to class mapping */
+ q->tin_index = diffserv8;
+ q->tin_order = normal_order;
+
+ /* class characteristics */
+ for (i = 0; i < q->tin_cnt; i++) {
+ struct cake_tin_data *b = &q->tins[i];
+
+ cake_set_rate(b, rate, mtu, us_to_ns(q->target),
+ us_to_ns(q->interval));
+
+ b->tin_quantum_prio = max_t(u16, 1U, quantum1);
+ b->tin_quantum_band = max_t(u16, 1U, quantum2);
+
+ /* calculate next class's parameters */
+ rate *= 7;
+ rate >>= 3;
+
+ quantum1 *= 3;
+ quantum1 >>= 1;
+
+ quantum2 *= 7;
+ quantum2 >>= 3;
+ }
+
+ return 0;
+}
+
+static int cake_config_diffserv4(struct Qdisc *sch)
+{
+/* Further pruned list of traffic classes for four-class system:
+ *
+ * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
+ * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1)
+ * Best Effort (CS0, AF1x, TOS2, and those not specified)
+ * Background Traffic (CS1)
+ *
+ * Total 4 traffic classes.
+ */
+
+ struct cake_sched_data *q = qdisc_priv(sch);
+ u32 mtu = psched_mtu(qdisc_dev(sch));
+ u64 rate = q->rate_bps;
+ u32 quantum = 1024;
+
+ q->tin_cnt = 4;
+
+ /* codepoint to class mapping */
+ q->tin_index = diffserv4;
+ q->tin_order = bulk_order;
+
+ /* class characteristics */
+ cake_set_rate(&q->tins[0], rate, mtu,
+ us_to_ns(q->target), us_to_ns(q->interval));
+ cake_set_rate(&q->tins[1], rate >> 4, mtu,
+ us_to_ns(q->target), us_to_ns(q->interval));
+ cake_set_rate(&q->tins[2], rate >> 1, mtu,
+ us_to_ns(q->target), us_to_ns(q->interval));
+ cake_set_rate(&q->tins[3], rate >> 2, mtu,
+ us_to_ns(q->target), us_to_ns(q->interval));
+
+ /* priority weights */
+ q->tins[0].tin_quantum_prio = quantum;
+ q->tins[1].tin_quantum_prio = quantum >> 4;
+ q->tins[2].tin_quantum_prio = quantum << 2;
+ q->tins[3].tin_quantum_prio = quantum << 4;
+
+ /* bandwidth-sharing weights */
+ q->tins[0].tin_quantum_band = quantum;
+ q->tins[1].tin_quantum_band = quantum >> 4;
+ q->tins[2].tin_quantum_band = quantum >> 1;
+ q->tins[3].tin_quantum_band = quantum >> 2;
+
+ return 0;
+}
+
+static int cake_config_diffserv3(struct Qdisc *sch)
+{
+/* Simplified Diffserv structure with 3 tins.
+ * Low Priority (CS1)
+ * Best Effort
+ * Latency Sensitive (TOS4, VA, EF, CS6, CS7)
+ */
+ struct cake_sched_data *q = qdisc_priv(sch);
+ u32 mtu = psched_mtu(qdisc_dev(sch));
+ u64 rate = q->rate_bps;
+ u32 quantum = 1024;
+
+ q->tin_cnt = 3;
+
+ /* codepoint to class mapping */
+ q->tin_index = diffserv3;
+ q->tin_order = bulk_order;
+
+ /* class characteristics */
+ cake_set_rate(&q->tins[0], rate, mtu,
+ us_to_ns(q->target), us_to_ns(q->interval));
+ cake_set_rate(&q->tins[1], rate >> 4, mtu,
+ us_to_ns(q->target), us_to_ns(q->interval));
+ cake_set_rate(&q->tins[2], rate >> 2, mtu,
+ us_to_ns(q->target), us_to_ns(q->interval));
+
+ /* priority weights */
+ q->tins[0].tin_quantum_prio = quantum;
+ q->tins[1].tin_quantum_prio = quantum >> 4;
+ q->tins[2].tin_quantum_prio = quantum << 4;
+
+ /* bandwidth-sharing weights */
+ q->tins[0].tin_quantum_band = quantum;
+ q->tins[1].tin_quantum_band = quantum >> 4;
+ q->tins[2].tin_quantum_band = quantum >> 2;
+
+ return 0;
+}
+
+static void cake_reconfigure(struct Qdisc *sch)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ int c, ft;
+
+ switch (q->tin_mode) {
+ case CAKE_DIFFSERV_BESTEFFORT:
+ ft = cake_config_besteffort(sch);
+ break;
+
+ case CAKE_DIFFSERV_PRECEDENCE:
+ ft = cake_config_precedence(sch);
+ break;
+
+ case CAKE_DIFFSERV_DIFFSERV8:
+ ft = cake_config_diffserv8(sch);
+ break;
+
+ case CAKE_DIFFSERV_DIFFSERV4:
+ ft = cake_config_diffserv4(sch);
+ break;
+
+ case CAKE_DIFFSERV_DIFFSERV3:
+ default:
+ ft = cake_config_diffserv3(sch);
+ break;
+ }
+
+ for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
+ cake_clear_tin(sch, c);
+ q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
+ }
+
+ q->rate_ns = q->tins[ft].tin_rate_ns;
+ q->rate_shft = q->tins[ft].tin_rate_shft;
+
+ if (q->buffer_config_limit) {
+ q->buffer_limit = q->buffer_config_limit;
+ } else if (q->rate_bps) {
+ u64 t = q->rate_bps * q->interval;
+
+ do_div(t, USEC_PER_SEC / 4);
+ q->buffer_limit = max_t(u32, t, 4U << 20);
+ } else {
+ q->buffer_limit = ~0;
+ }
+
+ sch->flags &= ~TCQ_F_CAN_BYPASS;
+
+ q->buffer_limit = min(q->buffer_limit,
+ max(sch->limit * psched_mtu(qdisc_dev(sch)),
+ q->buffer_config_limit));
+}
+
+static int cake_change(struct Qdisc *sch, struct nlattr *opt,
+ struct netlink_ext_ack *extack)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ struct nlattr *tb[TCA_CAKE_MAX + 1];
+ int err;
+
+ if (!opt)
+ return -EINVAL;
+
+ err = nla_parse_nested(tb, TCA_CAKE_MAX, opt, cake_policy, extack);
+ if (err < 0)
+ return err;
+
+ if (tb[TCA_CAKE_NAT]) {
+#if IS_ENABLED(CONFIG_NF_CONNTRACK)
+ q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
+ q->flow_mode |= CAKE_FLOW_NAT_FLAG *
+ !!nla_get_u32(tb[TCA_CAKE_NAT]);
+#else
+ NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
+ "No conntrack support in kernel");
+ return -EOPNOTSUPP;
+#endif
+ }
+
+ if (tb[TCA_CAKE_BASE_RATE64])
+ q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);
+
+ if (tb[TCA_CAKE_DIFFSERV_MODE])
+ q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
+
+ if (tb[TCA_CAKE_WASH]) {
+ if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
+ q->rate_flags |= CAKE_FLAG_WASH;
+ else
+ q->rate_flags &= ~CAKE_FLAG_WASH;
+ }
+
+ if (tb[TCA_CAKE_FLOW_MODE])
+ q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) |
+ (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
+ CAKE_FLOW_MASK));
+
+ if (tb[TCA_CAKE_ATM])
+ q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]);
+
+ if (tb[TCA_CAKE_OVERHEAD]) {
+ q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
+ q->rate_flags |= CAKE_FLAG_OVERHEAD;
+
+ q->max_netlen = 0;
+ q->max_adjlen = 0;
+ q->min_netlen = ~0;
+ q->min_adjlen = ~0;
+ }
+
+ if (tb[TCA_CAKE_RAW]) {
+ q->rate_flags &= ~CAKE_FLAG_OVERHEAD;
+
+ q->max_netlen = 0;
+ q->max_adjlen = 0;
+ q->min_netlen = ~0;
+ q->min_adjlen = ~0;
+ }
+
+ if (tb[TCA_CAKE_MPU])
+ q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
+
+ if (tb[TCA_CAKE_RTT]) {
+ q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
+
+ if (!q->interval)
+ q->interval = 1;
+ }
+
+ if (tb[TCA_CAKE_TARGET]) {
+ q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
+
+ if (!q->target)
+ q->target = 1;
+ }
+
+ if (tb[TCA_CAKE_AUTORATE]) {
+ if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
+ q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
+ else
+ q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
+ }
+
+ if (tb[TCA_CAKE_INGRESS]) {
+ if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
+ q->rate_flags |= CAKE_FLAG_INGRESS;
+ else
+ q->rate_flags &= ~CAKE_FLAG_INGRESS;
+ }
+
+ if (tb[TCA_CAKE_ACK_FILTER])
+ q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]);
+
+ if (tb[TCA_CAKE_MEMORY])
+ q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);
+
+ if (tb[TCA_CAKE_SPLIT_GSO]) {
+ if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
+ q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
+ else
+ q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
+ }
+
+ if (q->tins) {
+ sch_tree_lock(sch);
+ cake_reconfigure(sch);
+ sch_tree_unlock(sch);
+ }
+
+ return 0;
+}
+
+static void cake_destroy(struct Qdisc *sch)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+
+ qdisc_watchdog_cancel(&q->watchdog);
+ tcf_block_put(q->block);
+ kvfree(q->tins);
+}
+
+static int cake_init(struct Qdisc *sch, struct nlattr *opt,
+ struct netlink_ext_ack *extack)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ int i, j, err;
+
+ sch->limit = 10240;
+ q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
+ q->flow_mode = CAKE_FLOW_TRIPLE;
+
+ q->rate_bps = 0; /* unlimited by default */
+
+ q->interval = 100000; /* 100ms default */
+ q->target = 5000; /* 5ms: codel RFC argues
+ * for 5 to 10% of interval
+ */
+ q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
+ q->cur_tin = 0;
+ q->cur_flow = 0;
+
+ qdisc_watchdog_init(&q->watchdog, sch);
+
+ if (opt) {
+ int err = cake_change(sch, opt, extack);
+
+ if (err)
+ return err;
+ }
+
+ err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
+ if (err)
+ return err;
+
+ quantum_div[0] = ~0;
+ for (i = 1; i <= CAKE_QUEUES; i++)
+ quantum_div[i] = 65535 / i;
+
+ q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
+ GFP_KERNEL);
+ if (!q->tins)
+ goto nomem;
+
+ for (i = 0; i < CAKE_MAX_TINS; i++) {
+ struct cake_tin_data *b = q->tins + i;
+
+ INIT_LIST_HEAD(&b->new_flows);
+ INIT_LIST_HEAD(&b->old_flows);
+ INIT_LIST_HEAD(&b->decaying_flows);
+ b->sparse_flow_count = 0;
+ b->bulk_flow_count = 0;
+ b->decaying_flow_count = 0;
+
+ for (j = 0; j < CAKE_QUEUES; j++) {
+ struct cake_flow *flow = b->flows + j;
+ u32 k = j * CAKE_MAX_TINS + i;
+
+ INIT_LIST_HEAD(&flow->flowchain);
+ cobalt_vars_init(&flow->cvars);
+
+ q->overflow_heap[k].t = i;
+ q->overflow_heap[k].b = j;
+ b->overflow_idx[j] = k;
+ }
+ }
+
+ cake_reconfigure(sch);
+ q->avg_peak_bandwidth = q->rate_bps;
+ q->min_netlen = ~0;
+ q->min_adjlen = ~0;
+ return 0;
+
+nomem:
+ cake_destroy(sch);
+ return -ENOMEM;
+}
+
+static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ struct nlattr *opts;
+
+ opts = nla_nest_start(skb, TCA_OPTIONS);
+ if (!opts)
+ goto nla_put_failure;
+
+ if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
+ TCA_CAKE_PAD))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
+ q->flow_mode & CAKE_FLOW_MASK))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
+ !!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_INGRESS,
+ !!(q->rate_flags & CAKE_FLAG_INGRESS)))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_NAT,
+ !!(q->flow_mode & CAKE_FLOW_NAT_FLAG)))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_WASH,
+ !!(q->rate_flags & CAKE_FLAG_WASH)))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead))
+ goto nla_put_failure;
+
+ if (!(q->rate_flags & CAKE_FLAG_OVERHEAD))
+ if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
+ !!(q->rate_flags & CAKE_FLAG_SPLIT_GSO)))
+ goto nla_put_failure;
+
+ return nla_nest_end(skb, opts);
+
+nla_put_failure:
+ return -1;
+}
+
+static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
+{
+ struct nlattr *stats = nla_nest_start(d->skb, TCA_STATS_APP);
+ struct cake_sched_data *q = qdisc_priv(sch);
+ struct nlattr *tstats, *ts;
+ int i;
+
+ if (!stats)
+ return -1;
+
+#define PUT_STAT_U32(attr, data) do { \
+ if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
+ goto nla_put_failure; \
+ } while (0)
+#define PUT_STAT_U64(attr, data) do { \
+ if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
+ data, TCA_CAKE_STATS_PAD)) \
+ goto nla_put_failure; \
+ } while (0)
+
+ PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
+ PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
+ PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
+ PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
+ PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
+ PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
+ PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
+ PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
+
+#undef PUT_STAT_U32
+#undef PUT_STAT_U64
+
+ tstats = nla_nest_start(d->skb, TCA_CAKE_STATS_TIN_STATS);
+ if (!tstats)
+ goto nla_put_failure;
+
+#define PUT_TSTAT_U32(attr, data) do { \
+ if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
+ goto nla_put_failure; \
+ } while (0)
+#define PUT_TSTAT_U64(attr, data) do { \
+ if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
+ data, TCA_CAKE_TIN_STATS_PAD)) \
+ goto nla_put_failure; \
+ } while (0)
+
+ for (i = 0; i < q->tin_cnt; i++) {
+ struct cake_tin_data *b = &q->tins[q->tin_order[i]];
+
+ ts = nla_nest_start(d->skb, i + 1);
+ if (!ts)
+ goto nla_put_failure;
+
+ PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
+ PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
+ PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
+
+ PUT_TSTAT_U32(TARGET_US,
+ ktime_to_us(ns_to_ktime(b->cparams.target)));
+ PUT_TSTAT_U32(INTERVAL_US,
+ ktime_to_us(ns_to_ktime(b->cparams.interval)));
+
+ PUT_TSTAT_U32(SENT_PACKETS, b->packets);
+ PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
+ PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
+ PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
+
+ PUT_TSTAT_U32(PEAK_DELAY_US,
+ ktime_to_us(ns_to_ktime(b->peak_delay)));
+ PUT_TSTAT_U32(AVG_DELAY_US,
+ ktime_to_us(ns_to_ktime(b->avge_delay)));
+ PUT_TSTAT_U32(BASE_DELAY_US,
+ ktime_to_us(ns_to_ktime(b->base_delay)));
+
+ PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
+ PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
+ PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
+
+ PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
+ b->decaying_flow_count);
+ PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
+ PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
+ PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
+
+ PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
+ nla_nest_end(d->skb, ts);
+ }
+
+#undef PUT_TSTAT_U32
+#undef PUT_TSTAT_U64
+
+ nla_nest_end(d->skb, tstats);
+ return nla_nest_end(d->skb, stats);
+
+nla_put_failure:
+ nla_nest_cancel(d->skb, stats);
+ return -1;
+}
+
+static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
+{
+ return NULL;
+}
+
+static unsigned long cake_find(struct Qdisc *sch, u32 classid)
+{
+ return 0;
+}
+
+static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
+ u32 classid)
+{
+ return 0;
+}
+
+static void cake_unbind(struct Qdisc *q, unsigned long cl)
+{
+}
+
+static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
+ struct netlink_ext_ack *extack)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+
+ if (cl)
+ return NULL;
+ return q->block;
+}
+
+static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
+ struct sk_buff *skb, struct tcmsg *tcm)
+{
+ tcm->tcm_handle |= TC_H_MIN(cl);
+ return 0;
+}
+
+static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
+ struct gnet_dump *d)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ const struct cake_flow *flow = NULL;
+ struct gnet_stats_queue qs = { 0 };
+ struct nlattr *stats;
+ u32 idx = cl - 1;
+
+ if (idx < CAKE_QUEUES * q->tin_cnt) {
+ const struct cake_tin_data *b = \
+ &q->tins[q->tin_order[idx / CAKE_QUEUES]];
+ const struct sk_buff *skb;
+
+ flow = &b->flows[idx % CAKE_QUEUES];
+
+ if (flow->head) {
+ sch_tree_lock(sch);
+ skb = flow->head;
+ while (skb) {
+ qs.qlen++;
+ skb = skb->next;
+ }
+ sch_tree_unlock(sch);
+ }
+ qs.backlog = b->backlogs[idx % CAKE_QUEUES];
+ qs.drops = flow->dropped;
+ }
+ if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
+ return -1;
+ if (flow) {
+ ktime_t now = ktime_get();
+
+ stats = nla_nest_start(d->skb, TCA_STATS_APP);
+ if (!stats)
+ return -1;
+
+#define PUT_STAT_U32(attr, data) do { \
+ if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
+ goto nla_put_failure; \
+ } while (0)
+#define PUT_STAT_S32(attr, data) do { \
+ if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
+ goto nla_put_failure; \
+ } while (0)
+
+ PUT_STAT_S32(DEFICIT, flow->deficit);
+ PUT_STAT_U32(DROPPING, flow->cvars.dropping);
+ PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
+ PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
+ if (flow->cvars.p_drop) {
+ PUT_STAT_S32(BLUE_TIMER_US,
+ ktime_to_us(
+ ktime_sub(now,
+ flow->cvars.blue_timer)));
+ }
+ if (flow->cvars.dropping) {
+ PUT_STAT_S32(DROP_NEXT_US,
+ ktime_to_us(
+ ktime_sub(now,
+ flow->cvars.drop_next)));
+ }
+
+ if (nla_nest_end(d->skb, stats) < 0)
+ return -1;
+ }
+
+ return 0;
+
+nla_put_failure:
+ nla_nest_cancel(d->skb, stats);
+ return -1;
+}
+
+static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ unsigned int i, j;
+
+ if (arg->stop)
+ return;
+
+ for (i = 0; i < q->tin_cnt; i++) {
+ struct cake_tin_data *b = &q->tins[q->tin_order[i]];
+
+ for (j = 0; j < CAKE_QUEUES; j++) {
+ if (list_empty(&b->flows[j].flowchain) ||
+ arg->count < arg->skip) {
+ arg->count++;
+ continue;
+ }
+ if (arg->fn(sch, i * CAKE_QUEUES + j + 1, arg) < 0) {
+ arg->stop = 1;
+ break;
+ }
+ arg->count++;
+ }
+ }
+}
+
+static const struct Qdisc_class_ops cake_class_ops = {
+ .leaf = cake_leaf,
+ .find = cake_find,
+ .tcf_block = cake_tcf_block,
+ .bind_tcf = cake_bind,
+ .unbind_tcf = cake_unbind,
+ .dump = cake_dump_class,
+ .dump_stats = cake_dump_class_stats,
+ .walk = cake_walk,
+};
+
+static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
+ .cl_ops = &cake_class_ops,
+ .id = "cake",
+ .priv_size = sizeof(struct cake_sched_data),
+ .enqueue = cake_enqueue,
+ .dequeue = cake_dequeue,
+ .peek = qdisc_peek_dequeued,
+ .init = cake_init,
+ .reset = cake_reset,
+ .destroy = cake_destroy,
+ .change = cake_change,
+ .dump = cake_dump,
+ .dump_stats = cake_dump_stats,
+ .owner = THIS_MODULE,
+};
+
+static int __init cake_module_init(void)
+{
+ return register_qdisc(&cake_qdisc_ops);
+}
+
+static void __exit cake_module_exit(void)
+{
+ unregister_qdisc(&cake_qdisc_ops);
+}
+
+module_init(cake_module_init)
+module_exit(cake_module_exit)
+MODULE_AUTHOR("Jonathan Morton");
+MODULE_LICENSE("Dual BSD/GPL");
+MODULE_DESCRIPTION("The CAKE shaper.");