| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
tj: Folded a fix patch.
http://lkml.kernel.org/g/alpine.DEB.2.11.1408172143020.9652@gentwo.org
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: Paul Mackerras <paulus@samba.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
CC: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Acked-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: linux-ia64@vger.kernel.org
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
| |
Use this_cpu_ptr() instead of &__get_cpu_var()
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
this_cpu_inc(y)
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
CC: linux390@de.ibm.com
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
| |
The use of __this_cpu_inc() requires a fundamental integer type, so
change the type of all the counters to unsigned long, which is the
same width they were before, but not wrapped in local_t.
Signed-off-by: David Daney <david.daney@cavium.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
| |
__this_cpu_ptr is being phased out. So replace with raw_cpu_ptr.
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
| |
Use __this_cpu_read instead.
Cc: Hedi Berriche <hedi@sgi.com>
Cc: Mike Travis <travis@sgi.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ARM specific]
These are generally replaced with raw_cpu_ptr. However, in
gic_get_percpu_base() we immediately dereference the pointer. This is
equivalent to a raw_cpu_read. So use that operation there.
Cc: nicolas.pitre@linaro.org
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
| |
Another case was merged for 3.14-rc1
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
| |
Replace __get_cpu_var uses for address calculation with this_cpu_ptr().
Acked-by: James Hogan <james.hogan@imgtec.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
| |
__this_cpu_ptr is being phased out.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
| |
Replace uses of get_cpu_var for address calculation through this_cpu_ptr.
Cc: netdev@vger.kernel.org
Cc: Eric Dumazet <edumazet@google.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Most of these are the uses of &__raw_get_cpu_var for address calculation.
touch_softlockup_watchdog_sync() uses __raw_get_cpu_var to write to
per cpu variables. Use __this_cpu_write instead.
Cc: Wim Van Sebroeck <wim@iguana.be>
Cc: linux-watchdog@vger.kernel.org
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
| |
Replace with this_cpu_ptr.
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
| |
Replace __get_cpu_var used for address calculation with this_cpu_ptr.
Acked-by: James Hogan <james.hogan@imgtec.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
| |
Replace the uses of __get_cpu_var for address calculation with this_cpu_ptr.
Cc: Robert Richter <rric@kernel.org>
Cc: oprofile-list@lists.sf.net
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
All of these are for address calculation. Replace with
this_cpu_ptr().
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: linux-pm@vger.kernel.org
Acked-by: Rafael J. Wysocki <rjw@sisk.pl>
[cpufreq changes]
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
| |
A single case of using __get_cpu_var for address calculation.
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
| |
__this_cpu_ptr is being phased out use raw_cpu_ptr instead which was
introduced in 3.15-rc1.
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Convert all uses of __get_cpu_var for address calculation to use
this_cpu_ptr instead.
[Uses of __get_cpu_var with cpumask_var_t are no longer
handled by this patch]
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
| |
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Convert uses of __get_cpu_var for creating a address from a percpu
offset to this_cpu_ptr.
The two cases where get_cpu_var is used to actually access a percpu
variable are changed to use this_cpu_read/raw_cpu_read.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
| |
Replace uses of __get_cpu_var for address calculation with this_cpu_ptr.
Cc: akpm@linux-foundation.org
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| |
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull x86 platform driver updates from Matthew Garrett:
"A moderate number of changes, but nothing awfully significant.
A lot of const cleanups, some reworking and additions to the rfkill
quirks in the asus driver, a new driver for generating falling laptop
events on Toshibas and some misc fixes.
Maybe vendors have stopped inventing things"
* 'for_linus' of git://cavan.codon.org.uk/platform-drivers-x86: (41 commits)
platform/x86: Enable build support for toshiba_haps
Documentation: Add file about toshiba_haps module
platform/x86: Toshiba HDD Active Protection Sensor
asus-nb-wmi: Add wapf4 quirk for the U32U
alienware-wmi: make hdmi_mux enabled on case-by-case basis
ideapad-laptop: Constify DMI table and other r/o variables
asus-nb-wmi.c: Rename x401u quirk to wapf4
compal-laptop: correct invalid hwmon name
toshiba_acpi: Add Qosmio X75-A to the alt keymap dmi list
toshiba_acpi: Add extra check to backlight code
Fix log message about future removal of interface
ideapad-laptop: Disable touchpad interface on Yoga models
asus-nb-wmi: Add wapf4 quirk for the X550CC
intel_ips: Make ips_mcp_limits variables static
thinkpad_acpi: Mark volume_alsa_control_{vol,mute} as __initdata
fujitsu-laptop: Mark fujitsu_dmi_table[] DMI table as __initconst
hp-wmi: Add missing __init annotations to initialization code
hp_accel: Constify ACPI and DMI tables
fujitsu-tablet: Mark DMI callbacks as __init code
dell-laptop: Mark dell_quirks[] DMI table as __initconst
...
|
| |
| |
| |
| |
| |
| |
| |
| | |
Makefile and Kconfig build support patch for the newly introduced
kernel module toshiba_haps.
Signed-off-by: Azael Avalos <coproscefalo@gmail.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
This patch provides information about the Toshiba HDD
Active Protection Sensor driver module toshiba_haps.
Signed-off-by: Azael Avalos <coproscefalo@gmail.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This driver adds support for the built-in accelereometer found
on recent Toshiba laptops with HID TOS620A.
This driver receives ACPI notify events 0x80 when the sensor
detects a sudden move or a harsh vibration, as well as an
ACPI notify event 0x81 whenever the movement or vibration has
been stabilized.
Also provides sysfs entries to get/set the desired protection
level and reseting the HDD protection interface.
Signed-off-by: Azael Avalos <coproscefalo@gmail.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
As reported here: https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1173681
the U32U needs wapf=4 too.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Not all HW supporting WMAX method will support the HDMI mux feature.
Explicitly quirk the HW that does support it.
Signed-off-by: Mario Limonciello <mario_limonciello@dell.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Constify the rfkill_blacklist[] DMI table, the ideapad_rfk_data[] table
and the ideapad_attribute_group attribute group. There's no need to have
them writeable during runtime.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Ike Panhc <ike.pan@canonical.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The actual x401u does not use the so named x401u quirk but the x55u quirk.
All that the x401u quirk does it setting wapf to 4, so rename it to wapf4 to
stop the confusion.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Change the name of the hwmon interface from "compal-laptop" to "compal".
A dash is an invalid character for a hwmon name and caused the call to
hwmon_device_register_with_groups() to fail.
Signed-off-by: Roald Frederickx <roald.frederickx@gmail.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The Toshiba Qosmio X75-A series models also come with
the new keymap layout.
This patch adds this model to the alt_keymap_dmi list,
along with an extra key found on these models.
Signed-off-by: Azael Avalos <coproscefalo@gmail.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Some Toshiba models (most notably Qosmios) come with an
incomplete backlight method where the AML code doesn't
check for write or read commands and always returns
HCI_SUCCESS and the actual brightness (and in some
cases the max brightness), thus allowing the backlight
interface to be registered without write support.
This patch changes the set_lcd_brightness function,
checking the returned values for values greater than
zero to avoid registering a broken backlight interface.
Signed-off-by: Azael Avalos <coproscefalo@gmail.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| | |
If this is going away, it won't be in 2012.
Signed-off-by: Martin Kepplinger <martink@posteo.de>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Yoga models don't offer touchpad ctrl through the ideapad interface, causing
ideapad_sync_touchpad_state to send wrong touchpad enable/disable events.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
As reported here: https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1173681
the X550CC needs wapf=4 too.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
These variables don't need to be visible outside of this compilation
unit, make them static.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Mark volume_alsa_control_vol and volume_alsa_control_mute as __initdata,
as snd_ctl_new1() will copy the relevant parts, so there is no need to
keep the master copies around after initialization.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Henrique de Moraes Holschuh <ibm-acpi@hmh.eng.br>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The DMI table is only ever used during initialization. Mark it as
__initconst so its memory can be released afterwards -- roughly 1.5 kB.
In turn, the callback functions can be marked with __init, too.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Jonathan Woithe <jwoithe@just42.net>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
These functions are only called from other initialization routines, so
can be marked __init, too.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Constify the lis3lv02d_device_ids[] ACPI and the lis3lv02d_dmi_ids[] DMI
tables. There's no need to have them writeable during runtime.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Eric Piel <eric.piel@tremplin-utc.net>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The DMI table is already marked as __initconst, so can be the callback
functions as they're only used in that context.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Robert Gerlach <khnz@gmx.de>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The dell_quirks[] DMI table is only ever used during initialization.
Mark it as __initconst so its memory can be released afterwards --
roughly 5.7 kB. In turn, the callback function can be marked with
__init, too.
Also the touchpad_led_init() function can be marked __init as it's only
referenced from dell_init() -- an __init function.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Constify the asus_quirks[] DMI table. There's no need to have it
writeable during runtime.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Corentin Chary <corentin.chary@gmail.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Quite a lot of code and data of acer-wmi.c is only ever used during
initialization. Mark those accordingly -- and constify, where
appropriate -- so the memory can be released afterwards.
All in all those changes move ~10 kB of code and data to the .init
sections, marking them for release after initialization has finished.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: "Lee, Chun-Yi" <jlee@suse.com>
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
|