| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
| |
The last (only?) user of this was removed in commit ba364fc752da ("ARM:
Kirkwood: Remove mach-kirkwood"), back in v3.17.
Link: https://lore.kernel.org/r/20210210235243.398810-1-joel@jms.id.au
Signed-off-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Giancarlo Ferrari reports the following oops while trying to use kexec:
Unable to handle kernel paging request at virtual address 80112f38
pgd = fd7ef03e
[80112f38] *pgd=0001141e(bad)
Internal error: Oops: 80d [#1] PREEMPT SMP ARM
...
This is caused by machine_kexec() trying to set the kernel text to be
read/write, so it can poke values into the relocation code before
copying it - and an interrupt occuring which changes the page tables.
The subsequent writes then hit read-only sections that trigger a
data abort resulting in the above oops.
Fix this by copying the relocation code, and then writing the variables
into the destination, thereby avoiding the need to make the kernel text
read/write.
Reported-by: Giancarlo Ferrari <giancarlo.ferrari89@gmail.com>
Tested-by: Giancarlo Ferrari <giancarlo.ferrari89@gmail.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "mm: cleanup usage of <asm/pgalloc.h>"
Most architectures have very similar versions of pXd_alloc_one() and
pXd_free_one() for intermediate levels of page table. These patches add
generic versions of these functions in <asm-generic/pgalloc.h> and enable
use of the generic functions where appropriate.
In addition, functions declared and defined in <asm/pgalloc.h> headers are
used mostly by core mm and early mm initialization in arch and there is no
actual reason to have the <asm/pgalloc.h> included all over the place.
The first patch in this series removes unneeded includes of
<asm/pgalloc.h>
In the end it didn't work out as neatly as I hoped and moving
pXd_alloc_track() definitions to <asm-generic/pgalloc.h> would require
unnecessary changes to arches that have custom page table allocations, so
I've decided to move lib/ioremap.c to mm/ and make pgalloc-track.h local
to mm/.
This patch (of 8):
In most cases <asm/pgalloc.h> header is required only for allocations of
page table memory. Most of the .c files that include that header do not
use symbols declared in <asm/pgalloc.h> and do not require that header.
As for the other header files that used to include <asm/pgalloc.h>, it is
possible to move that include into the .c file that actually uses symbols
from <asm/pgalloc.h> and drop the include from the header file.
The process was somewhat automated using
sed -i -E '/[<"]asm\/pgalloc\.h/d' \
$(grep -L -w -f /tmp/xx \
$(git grep -E -l '[<"]asm/pgalloc\.h'))
where /tmp/xx contains all the symbols defined in
arch/*/include/asm/pgalloc.h.
[rppt@linux.ibm.com: fix powerpc warning]
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Link: http://lkml.kernel.org/r/20200627143453.31835-1-rppt@kernel.org
Link: http://lkml.kernel.org/r/20200627143453.31835-2-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "mm: consolidate definitions of page table accessors", v2.
The low level page table accessors (pXY_index(), pXY_offset()) are
duplicated across all architectures and sometimes more than once. For
instance, we have 31 definition of pgd_offset() for 25 supported
architectures.
Most of these definitions are actually identical and typically it boils
down to, e.g.
static inline unsigned long pmd_index(unsigned long address)
{
return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
}
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
}
These definitions can be shared among 90% of the arches provided
XYZ_SHIFT, PTRS_PER_XYZ and xyz_page_vaddr() are defined.
For architectures that really need a custom version there is always
possibility to override the generic version with the usual ifdefs magic.
These patches introduce include/linux/pgtable.h that replaces
include/asm-generic/pgtable.h and add the definitions of the page table
accessors to the new header.
This patch (of 12):
The linux/mm.h header includes <asm/pgtable.h> to allow inlining of the
functions involving page table manipulations, e.g. pte_alloc() and
pmd_alloc(). So, there is no point to explicitly include <asm/pgtable.h>
in the files that include <linux/mm.h>.
The include statements in such cases are remove with a simple loop:
for f in $(git grep -l "include <linux/mm.h>") ; do
sed -i -e '/include <asm\/pgtable.h>/ d' $f
done
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-1-rppt@kernel.org
Link: http://lkml.kernel.org/r/20200514170327.31389-2-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
machine_crash_nonpanic_core() does this:
while (1)
cpu_relax();
because the kernel has crashed, and we have no known safe way to deal
with the CPU. So, we place the CPU into an infinite loop which we
expect it to never exit - at least not until the system as a whole is
reset by some method.
In the absence of erratum 754327, this code assembles to:
b .
In other words, an infinite loop. When erratum 754327 is enabled,
this becomes:
1: dmb
b 1b
It has been observed that on some systems (eg, OMAP4) where, if a
crash is triggered, the system tries to kexec into the panic kernel,
but fails after taking the secondary CPU down - placing it into one
of these loops. This causes the system to livelock, and the most
noticable effect is the system stops after issuing:
Loading crashdump kernel...
to the system console.
The tested as working solution I came up with was to add wfe() to
these infinite loops thusly:
while (1) {
cpu_relax();
wfe();
}
which, without 754327 builds to:
1: wfe
b 1b
or with 754327 is enabled:
1: dmb
wfe
b 1b
Adding "wfe" does two things depending on the environment we're running
under:
- where we're running on bare metal, and the processor implements
"wfe", it stops us spinning endlessly in a loop where we're never
going to do any useful work.
- if we're running in a VM, it allows the CPU to be given back to the
hypervisor and rescheduled for other purposes (maybe a different VM)
rather than wasting CPU cycles inside a crashed VM.
However, in light of erratum 794072, Will Deacon wanted to see 10 nops
as well - which is reasonable to cover the case where we have erratum
754327 enabled _and_ we have a processor that doesn't implement the
wfe hint.
So, we now end up with:
1: wfe
b 1b
when erratum 754327 is disabled, or:
1: dmb
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
wfe
b 1b
when erratum 754327 is enabled. We also get the dmb + 10 nop
sequence elsewhere in the kernel, in terminating loops.
This is reasonable - it means we get the workaround for erratum
794072 when erratum 754327 is enabled, but still relinquish the dead
processor - either by placing it in a lower power mode when wfe is
implemented as such or by returning it to the hypervisior, or in the
case where wfe is a no-op, we use the workaround specified in erratum
794072 to avoid the problem.
These as two entirely orthogonal problems - the 10 nops addresses
erratum 794072, and the wfe is an optimisation that makes the system
more efficient when crashed either in terms of power consumption or
by allowing the host/other VMs to make use of the CPU.
I don't see any reason not to use kexec() inside a VM - it has the
potential to provide automated recovery from a failure of the VMs
kernel with the opportunity for saving a crashdump of the failure.
A panic() with a reboot timeout won't do that, and reading the
libvirt documentation, setting on_reboot to "preserve" won't either
(the documentation states "The preserve action for an on_reboot event
is treated as a destroy".) Surely it has to be a good thing to
avoiding having CPUs spinning inside a VM that is doing no useful
work.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
| |
How we got to machine_crash_nonpanic_core() (iow, from an IPI, etc) is
not interesting for debugging a crash. The more interesting context
is the parent context prior to the IPI being received.
Record the parent context register state rather than the register state
in machine_crash_nonpanic_core(), which is more relevant to the failing
condition.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When a panic() occurs, the kexec code uses smp_send_stop() to stop
the other CPUs, but this results in the CPU register state not being
saved, and gdb is unable to inspect the state of other CPUs.
Commit 0ee59413c967 ("x86/panic: replace smp_send_stop() with kdump
friendly version in panic path") addressed the issue on x86, but
ignored other architectures. Address the issue on ARM by splitting
out the crash stop implementation to crash_smp_send_stop() and
adding the necessary protection.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When kexec was converted to DTB, the dtb address was passed between
machine_kexec_prepare() and machine_kexec() using a static variable.
This is bad news if you load a crash kernel followed by a normal
kernel or vice versa - the last loaded kernel overwrites the dtb
address.
This can result in kexec failures, as (eg) we try to boot the crash
kernel with the last loaded dtb. For example, with:
the crash kernel fails to find the dtb.
Avoid this by defining a kimage architecture structure, and store
the address to be passed in r2 there, which will either be the ATAGs
or the dtb blob.
Fixes: 4cabd1d9625c ("ARM: 7539/1: kexec: scan for dtb magic in segments")
Fixes: 42d720d1731a ("ARM: kexec: Make .text R/W in machine_kexec")
Reported-by: Keerthy <j-keerthy@ti.com>
Tested-by: Keerthy <j-keerthy@ti.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
| |
set_memory_* functions have moved to set_memory.h. Switch to this
explicitly
Link: http://lkml.kernel.org/r/1488920133-27229-3-git-send-email-labbott@redhat.com
Signed-off-by: Laura Abbott <labbott@redhat.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Provide kexec with the boot view of memory by overriding the normal
kexec translation functions added in a previous patch. We also need to
fix a call to memblock in machine_kexec_prepare() so that we provide it
with a running-view physical address rather than a boot- view physical
address.
Link: http://lkml.kernel.org/r/E1b8koa-0004Hl-Ey@rmk-PC.armlinux.org.uk
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Keerthy <j-keerthy@ti.com>
Cc: Pratyush Anand <panand@redhat.com>
Cc: Vitaly Andrianov <vitalya@ti.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Simon Horman <horms@verge.net.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
| |
Code run via soft_restart() is run with the MMU disabled, so we need to
pass the identity map physical address rather than the address obtained
from virt_to_phys(). Therefore, replace virt_to_phys() with
virt_to_idmap() for all callers of soft_restart().
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When trying to kexec into a new kernel on a platform where multiple CPU
cores are present, but no SMP bringup code is available yet, the
kexec_load system call fails with:
kexec_load failed: Invalid argument
The SMP test added to machine_kexec_prepare() in commit 2103f6cba61a8b8b
("ARM: 7807/1: kexec: validate CPU hotplug support") wants to prohibit
kexec on SMP platforms where it cannot disable secondary CPUs.
However, this test is too strict: if the secondary CPUs couldn't be
enabled in the first place, there's no need to disable them later at
kexec time. Hence skip the test in the absence of SMP bringup code.
This allows to add all CPU cores to the DTS from the beginning, without
having to implement SMP bringup first, improving DT compatibility.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This introduces CONFIG_DEBUG_RODATA, making kernel text and rodata
read-only. Additionally, this splits rodata from text so that rodata can
also be NX, which may lead to wasted memory when aligning to SECTION_SIZE.
The read-only areas are made writable during ftrace updates and kexec.
Signed-off-by: Kees Cook <keescook@chromium.org>
Tested-by: Laura Abbott <lauraa@codeaurora.org>
Acked-by: Nicolas Pitre <nico@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
With the introduction of Kees Cook's patch to make the kernel .text
read-only the existing method by which kexec works got broken since it
directly pokes some values in the template code, which resides in the
.text section.
The current patch changes the way those values are inserted so that poking
.text section occurs only in machine_kexec (e.g when we are about to nuke
the old kernel and are beyond the point of return). This allows to use
set_kernel_text_rw() to directly patch the values in the .text section.
I had already sent a patch which achieved this but it was significantly
more complicated, so this is a cleaner/straight-forward approach.
Signed-off-by: Nikolay Borisov <Nikolay.Borisov@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
[kees: collapsed kexec_boot_atags (will.daecon)]
[kees: for bisectability, moved set_kernel_text_rw() to RODATA patch]
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Nicolas Pitre <nico@linaro.org>
|
|/
|
|
|
|
|
|
|
|
|
| |
Convert many (but not all) printk(KERN_* to pr_* to simplify the code.
We take the opportunity to join some printk lines together so we don't
split the message across several lines, and we also add a few levels
to some messages which were previously missing them.
Tested-by: Andrew Lunn <andrew@lunn.ch>
Tested-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For vmcore generated by LPAE enabled kernel, user space
utility such as crash needs additional infomation to
parse.
So this patch add arch_crash_save_vmcoreinfo as what PAE enabled
i386 linux does.
Cc: <stable@vger.kernel.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Liu Hua <sdu.liu@huawei.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Copying a function with memcpy() and then trying to execute the
result isn't trivially portable to Thumb.
This patch modifies the kexec soft restart code to copy its
assembler trampoline relocate_new_kernel() using fncpy() instead,
so that relocate_new_kernel can be in the same ISA as the rest of
the kernel without problems.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Reported-by: Taras Kondratiuk <taras.kondratiuk@linaro.org>
Tested-by: Taras Kondratiuk <taras.kondratiuk@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In case of normal kexec kernel load, all cpu's are offlined
before calling machine_kexec().But in case crash panic cpus
are relaxed in machine_crash_nonpanic_core() SMP function
but not offlined.
When crash kernel is loaded with kexec and on panic trigger
machine_kexec() checks for number of cpus online.
If more than one cpu is online machine_kexec() fails to load
with below error
kexec: error: multiple CPUs still online
In machine_crash_nonpanic_core() SMP function, offline CPU
before cpu_relax
Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@caviumnetworks.com>
Acked-by: Stephen Warren <swarren@wwwdotorg.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Architectures should fully validate whether kexec is possible as part of
machine_kexec_prepare(), so that user-space's kexec_load() operation can
report any problems. Performing validation in machine_kexec() itself is
too late, since it is not allowed to return.
Prior to this patch, ARM's machine_kexec() was testing after-the-fact
whether machine_kexec_prepare() was able to disable all but one CPU.
Instead, modify machine_kexec_prepare() to validate all conditions
necessary for machine_kexec_prepare()'s to succeed. BUG if the validation
succeeded, yet disabling the CPUs didn't actually work.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add comments to machine_shutdown()/halt()/power_off()/restart() that
describe their purpose and/or requirements re: CPUs being active/not.
In machine_shutdown(), replace the call to smp_send_stop() with a call to
disable_nonboot_cpus(). This completely disables all but one CPU, thus
satisfying the requirement that only a single CPU be active for kexec.
Adjust Kconfig dependencies for this change.
In machine_halt()/power_off()/restart(), call smp_send_stop() directly,
rather than via machine_shutdown(); these functions don't need to
completely de-activate all CPUs using hotplug, but rather just quiesce
them.
Remove smp_kill_cpus(), and its call from smp_send_stop().
smp_kill_cpus() was indirectly calling smp_ops.cpu_kill() without calling
smp_ops.cpu_die() on the target CPUs first. At least some implementations
of smp_ops had issues with this; it caused cpu_kill() to hang on Tegra,
for example. Since smp_send_stop() is only used for shutdown, halt, and
power-off, there is no need to attempt any kind of CPU hotplug here.
Adjust Kconfig to reflect that machine_shutdown() (and hence kexec)
relies upon disable_nonboot_cpus(). However, this alone doesn't guarantee
that hotplug will work, or even that hotplug is implemented for a
particular piece of HW that a multi-platform zImage runs on. Hence, add
error-checking to machine_kexec() to determine whether it did work.
Suggested-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Tested-by: Zhangfei Gao <zhangfei.gao@gmail.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
| |
Commit c564df4db85aac8d1d65a56176a0a25f46138064 (ARM: 7540/1: kexec:
Check segment memory addresses) added a safety check with accidentally
reversed condition, and broke kexec functionality on ARM. Fix this.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Aaro Koskinen <aaro.koskinen@iki.fi>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
| |
Ensure that the memory regions that are set within the segments
correspond to physical contiguous memory regions.
Reviewed-by: Simon Horman <horms@verge.net.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Matthew Leach <matthew.leach@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch allows a dtb to be passed to a new kernel using the kexec
mechinism.
When loading segments from userspace, scan each segment's first four
bytes for the dtb magic. If this is found set the kexec_boot_atags
parameter to the relocate_kernel code to the phyical address of this
segment.
Reviewed-by: Simon Horman <horms@verge.net.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Matthew Leach <matthew.leach@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull more ARM updates from Russell King.
This got a fair number of conflicts with the <asm/system.h> split, but
also with some other sparse-irq and header file include cleanups. They
all looked pretty trivial, though.
* 'for-linus' of git://git.linaro.org/people/rmk/linux-arm: (59 commits)
ARM: fix Kconfig warning for HAVE_BPF_JIT
ARM: 7361/1: provide XIP_VIRT_ADDR for no-MMU builds
ARM: 7349/1: integrator: convert to sparse irqs
ARM: 7259/3: net: JIT compiler for packet filters
ARM: 7334/1: add jump label support
ARM: 7333/2: jump label: detect %c support for ARM
ARM: 7338/1: add support for early console output via semihosting
ARM: use set_current_blocked() and block_sigmask()
ARM: exec: remove redundant set_fs(USER_DS)
ARM: 7332/1: extract out code patch function from kprobes
ARM: 7331/1: extract out insn generation code from ftrace
ARM: 7330/1: ftrace: use canonical Thumb-2 wide instruction format
ARM: 7351/1: ftrace: remove useless memory checks
ARM: 7316/1: kexec: EOI active and mask all interrupts in kexec crash path
ARM: Versatile Express: add NO_IOPORT
ARM: get rid of asm/irq.h in asm/prom.h
ARM: 7319/1: Print debug info for SIGBUS in user faults
ARM: 7318/1: gic: refactor irq_start assignment
ARM: 7317/1: irq: avoid NULL check in for_each_irq_desc loop
ARM: 7315/1: perf: add support for the Cortex-A7 PMU
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The kexec machine crash code can be called in interrupt context via a
sysrq trigger made using the magic key combination. If the irq chip
dealing with the serial interrupt is using the fasteoi flow handler,
then we will never EOI the interrupt because the interrupt handler will
be fatal. In the case of a GIC, this results in the crash kernel not
receiving interrupts on that CPU interface.
This patch adds code (based on the PowerPC implementation) to EOI any
pending interrupts on the crash CPU before masking and disabling all
interrupts. Secondary cores are not a problem since they are placed into
a cpu_relax() loop via an IPI.
Reported-by: Lei Wen <leiwen@marvell.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|/
|
|
|
|
|
|
| |
Disintegrate asm/system.h for ARM.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Russell King <linux@arm.linux.org.uk>
cc: linux-arm-kernel@lists.infradead.org
|
|
|
|
|
|
|
| |
Now that there is a common way to reset the machine, let's use it
instead of reinventing the wheel in the kexec backend.
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|\
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/will/linux into devel-stable
Conflicts:
arch/arm/common/gic.c
arch/arm/plat-omap/include/plat/common.h
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
stage"
This reverts commit 2b034922af2caa19df86f0c502e76cb6f6e910f9.
Will Deacon reports:
This is causing kexec to fail.
The symptoms are that the .init.text section is not loaded as part of the
new kernel image, so when we try to do the SMP/UP fixups we hit a whole sea
of poison left there by the previous kernel.
So my guess is that machine_kexec_prepare *is* too early for preparing the
reboot_code_buffer and, unless anybody has a good reason not to, I'd like to
revert the patch causing these problems.
Reported-by: Will Deacon <will.deacon@arm.com>
|
|/
|
|
|
|
|
|
|
|
| |
setup_mm_for_reboot() doesn't make use of its argument, so remove it.
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
| |
This copy really don't need to do at the very second before the kernel
would crash.
Signed-off-by: Lei Wen <leiwen@marvell.com>
Acked-by: Simon Horman <horms@verge.net.au>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
| |
Provide the option to call a machine-specific function
before kexec'ing a new kernel.
Signed-off-by: Eric Cooper <ecc@cmu.edu>
Signed-off-by: Nicolas Pitre <nico@fluxnic.net>
|
|
|
|
|
|
|
|
|
| |
When kexec is used to start a crash kernel the other cores
are notified. These non-crashing cores will save their state
in the crash notes and then do nothing.
Signed-off-by: Per Fransson <per.xx.fransson@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
kexec does not disable the outer cache before disabling the inner
caches in cpu_proc_fin(). So L2 is enabled across the kexec jump. When
the new kernel enables chaches again, it randomly crashes.
Disabling L2 before calling cpu_proc_fin() cures the problem.
Disabling L2 requires the following new functions: flush_all(),
inv_all() and disable(). Add them to outer_cache_fns and call them
from the kexec code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Linus Walleij <linus.walleij@stericsson.com>
|
|\
| |
| |
| |
| | |
Conflicts:
arch/arm/mm/init.c
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
x86 calls machine_shutdown() from the various machine_*() calls which
take the machine down ready for halting, restarting, etc, and uses
this to bring the system safely to a point where those actions can be
performed. Such actions are stopping the secondary CPUs.
So, change the ARM implementation of these to reflect what x86 does.
This solves kexec problems on ARM SMP platforms, where the secondary
CPUs were left running across the kexec call.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
All implementations of cpu_proc_fin() start by disabling interrupts
and then flush caches. Rather than have every processors proc_fin()
implementation do this, move it out into generic code - and move the
cache flush past setup_mm_for_reboot() (so it can benefit from having
caches still enabled.)
This allows cpu_proc_fin() to become independent of the L1/L2 cache
types, and eventually move the L2 cache flushing into the L2 support
code.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|/
|
|
|
|
|
|
| |
Implement function machine_crash_shutdown() which disables IRQs and
saves machine state to ELF notes structure.
Signed-off-by: Mika Westerberg <ext-mika.1.westerberg@nokia.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
| |
The C99 specification states in section 6.11.5:
The placement of a storage-class specifier other than at the beginning of the
declaration specifiers in a declaration is an obsolescent feature.
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
| |
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rename KEXEC_CONTROL_CODE_SIZE to KEXEC_CONTROL_PAGE_SIZE, because control
page is used for not only code on some platform. For example in kexec
jump, it is used for data and stack too.
[akpm@linux-foundation.org: unbreak powerpc and arm, finish conversion]
Signed-off-by: Huang Ying <ying.huang@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, the atags used by kexec are fixed to the ones originally used
to boot the kernel. This is less than ideal as changing the commandline,
initrd and other options would be a useful feature.
This patch exports the atags used for the current kernel to userspace
through an "atags" file in procfs. The presence of the file is
controlled by its own Kconfig option and cleans up several ifdef blocks
into a separate file. The tags for the new kernel are assumed to be at
a fixed location before the kernel image itself. The location of the
tags used to boot the original kernel is unimportant and no longer
saved.
Based on a patch from Uli Luckas <u.luckas@road.de>
Signed-off-by: Richard Purdie <rpurdie@rpsys.net>
Acked-by: Uli Luckas <u.luckas@road.de>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Add kexec support to ARM.
Improvements like commandline handling could be made but this patch gives
basic functional support. It uses the next available syscall number, 347.
Once the syscall number is known, userspace support will be
finalised/submitted to kexec-tools, various patches already exist.
Originally based on a patch by Maxim Syrchin but updated and forward
ported by various people.
Signed-off-by: Richard Purdie <rpurdie@rpsys.net>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|