| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CPUs vulnerable to Spectre-BHB either need to make an SMC-CC firmware
call from the vectors, or run a sequence of branches. This gets added
to the hyp vectors. If there is no support for arch-workaround-1 in
firmware, the indirect vector will be used.
kvm_init_vector_slots() only initialises the two indirect slots if
the platform is vulnerable to Spectre-v3a. pKVM's hyp_map_vectors()
only initialises __hyp_bp_vect_base if the platform is vulnerable to
Spectre-v3a.
As there are about to more users of the indirect vectors, ensure
their entries in hyp_spectre_vector_selector[] are always initialised,
and __hyp_bp_vect_base defaults to the regular VA mapping.
The Spectre-v3a check is moved to a helper
kvm_system_needs_idmapped_vectors(), and merged with the code
that creates the hyp mappings.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 5.17, take #2
- A couple of fixes when handling an exception while a SError has been
delivered
- Workaround for Cortex-A510's single-step[ erratum
|
| |\
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Pull kvm updates from Paolo Bonzini:
"RISCV:
- Use common KVM implementation of MMU memory caches
- SBI v0.2 support for Guest
- Initial KVM selftests support
- Fix to avoid spurious virtual interrupts after clearing hideleg CSR
- Update email address for Anup and Atish
ARM:
- Simplification of the 'vcpu first run' by integrating it into KVM's
'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to a
simpler state and less shared data between EL1 and EL2 in the nVHE
case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be unmapped
from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once the vcpu
xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
s390:
- fix sigp sense/start/stop/inconsistency
- cleanups
x86:
- Clean up some function prototypes more
- improved gfn_to_pfn_cache with proper invalidation, used by Xen
emulation
- add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery
- completely remove potential TOC/TOU races in nested SVM consistency
checks
- update some PMCs on emulated instructions
- Intel AMX support (joint work between Thomas and Intel)
- large MMU cleanups
- module parameter to disable PMU virtualization
- cleanup register cache
- first part of halt handling cleanups
- Hyper-V enlightened MSR bitmap support for nested hypervisors
Generic:
- clean up Makefiles
- introduce CONFIG_HAVE_KVM_DIRTY_RING
- optimize memslot lookup using a tree
- optimize vCPU array usage by converting to xarray"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (268 commits)
x86/fpu: Fix inline prefix warnings
selftest: kvm: Add amx selftest
selftest: kvm: Move struct kvm_x86_state to header
selftest: kvm: Reorder vcpu_load_state steps for AMX
kvm: x86: Disable interception for IA32_XFD on demand
x86/fpu: Provide fpu_sync_guest_vmexit_xfd_state()
kvm: selftests: Add support for KVM_CAP_XSAVE2
kvm: x86: Add support for getting/setting expanded xstate buffer
x86/fpu: Add uabi_size to guest_fpu
kvm: x86: Add CPUID support for Intel AMX
kvm: x86: Add XCR0 support for Intel AMX
kvm: x86: Disable RDMSR interception of IA32_XFD_ERR
kvm: x86: Emulate IA32_XFD_ERR for guest
kvm: x86: Intercept #NM for saving IA32_XFD_ERR
x86/fpu: Prepare xfd_err in struct fpu_guest
kvm: x86: Add emulation for IA32_XFD
x86/fpu: Provide fpu_update_guest_xfd() for IA32_XFD emulation
kvm: x86: Enable dynamic xfeatures at KVM_SET_CPUID2
x86/fpu: Provide fpu_enable_guest_xfd_features() for KVM
x86/fpu: Add guest support to xfd_enable_feature()
...
|
| |\ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Borislav Petkov:
"Cleanup of the perf/kvm interaction."
* tag 'perf_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Drop guest callback (un)register stubs
KVM: arm64: Drop perf.c and fold its tiny bits of code into arm.c
KVM: arm64: Hide kvm_arm_pmu_available behind CONFIG_HW_PERF_EVENTS=y
KVM: arm64: Convert to the generic perf callbacks
KVM: x86: Move Intel Processor Trace interrupt handler to vmx.c
KVM: Move x86's perf guest info callbacks to generic KVM
KVM: x86: More precisely identify NMI from guest when handling PMI
KVM: x86: Drop current_vcpu for kvm_running_vcpu + kvm_arch_vcpu variable
perf/core: Use static_call to optimize perf_guest_info_callbacks
perf: Force architectures to opt-in to guest callbacks
perf: Add wrappers for invoking guest callbacks
perf/core: Rework guest callbacks to prepare for static_call support
perf: Drop dead and useless guest "support" from arm, csky, nds32 and riscv
perf: Stop pretending that perf can handle multiple guest callbacks
KVM: x86: Register Processor Trace interrupt hook iff PT enabled in guest
KVM: x86: Register perf callbacks after calling vendor's hardware_setup()
perf: Protect perf_guest_cbs with RCU
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Call KVM's (un)register perf callbacks helpers directly from arm.c and
delete perf.c
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211111020738.2512932-17-seanjc@google.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Move x86's perf guest callbacks into common KVM, as they are semantically
identical to arm64's callbacks (the only other such KVM callbacks).
arm64 will convert to the common versions in a future patch.
Implement the necessary arm64 arch hooks now to avoid having to provide
stubs or a temporary #define (from x86) to avoid arm64 compilation errors
when CONFIG_GUEST_PERF_EVENTS=y.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211111020738.2512932-13-seanjc@google.com
|
| |_|/
|/| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
In kvm_arch_vcpu_ioctl_run() we enter an RCU extended quiescent state
(EQS) by calling guest_enter_irqoff(), and unmasked IRQs prior to
exiting the EQS by calling guest_exit(). As the IRQ entry code will not
wake RCU in this case, we may run the core IRQ code and IRQ handler
without RCU watching, leading to various potential problems.
Additionally, we do not inform lockdep or tracing that interrupts will
be enabled during guest execution, which caan lead to misleading traces
and warnings that interrupts have been enabled for overly-long periods.
This patch fixes these issues by using the new timing and context
entry/exit helpers to ensure that interrupts are handled during guest
vtime but with RCU watching, with a sequence:
guest_timing_enter_irqoff();
guest_state_enter_irqoff();
< run the vcpu >
guest_state_exit_irqoff();
< take any pending IRQs >
guest_timing_exit_irqoff();
Since instrumentation may make use of RCU, we must also ensure that no
instrumented code is run during the EQS. I've split out the critical
section into a new kvm_arm_enter_exit_vcpu() helper which is marked
noinstr.
Fixes: 1b3d546daf85ed2b ("arm/arm64: KVM: Properly account for guest CPU time")
Reported-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Message-Id: <20220201132926.3301912-3-mark.rutland@arm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for Linux 5.16
- Simplification of the 'vcpu first run' by integrating it into
KVM's 'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to
a simpler state and less shared data between EL1 and EL2 in
the nVHE case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be
unmapped from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once
the vcpu xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and
page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Make use of the newly introduced unshare hypercall during guest teardown
to unmap guest-related data structures from the hyp stage-1.
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211215161232.1480836-15-qperret@google.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The create_hyp_mappings() function can currently be called at any point
in time. However, its behaviour in protected mode changes widely
depending on when it is being called. Prior to KVM init, it is used to
create the temporary page-table used to bring-up the hypervisor, and
later on it is transparently turned into a 'share' hypercall when the
kernel has lost control over the hypervisor stage-1. In order to prepare
the ground for also unsharing pages with the hypervisor during guest
teardown, introduce a kvm_share_hyp() function to make it clear in which
places a share hypercall should be expected, as we will soon need a
matching unshare hypercall in all those places.
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211215161232.1480836-7-qperret@google.com
|
| |\ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
* kvm-arm64/fpsimd-tracking:
: .
: Simplify the handling of both the FP/SIMD and SVE state by
: removing the need for mapping the thread at EL2, and by
: dropping the tracking of the host's SVE state which is
: always invalid by construction.
: .
arm64/fpsimd: Document the use of TIF_FOREIGN_FPSTATE by KVM
KVM: arm64: Stop mapping current thread_info at EL2
KVM: arm64: Introduce flag shadowing TIF_FOREIGN_FPSTATE
KVM: arm64: Remove unused __sve_save_state
KVM: arm64: Get rid of host SVE tracking/saving
KVM: arm64: Reorder vcpu flag definitions
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| | |/ /
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
We currently have to maintain a mapping the thread_info structure
at EL2 in order to be able to check the TIF_FOREIGN_FPSTATE flag.
In order to eventually get rid of this, start with a vcpu flag that
shadows the thread flag on each entry into the hypervisor.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
With the transition to kvm_arch_vcpu_run_pid_change() to handle
the "run once" activities, it becomes obvious that has_run_once
is now an exact shadow of vcpu->pid.
Replace vcpu->arch.has_run_once with a new vcpu_has_run_once()
helper that directly checks for vcpu->pid, and get rid of the
now unused field.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The kvm_arch_vcpu_run_pid_change() helper gets called on each PID
change. The kvm_vcpu_first_run_init() helper gets run on the...
first run(!) of a vcpu.
As it turns out, the first run of a vcpu also triggers a PID change
event (vcpu->pid is initially NULL).
Use this property to merge these two helpers and get rid of another
arm64-specific oddity.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Restructure kvm_vcpu_first_run_init() to set the has_run_once
flag after having completed all the "run once" activities.
This includes moving the flip of the userspace irqchip static key
to a point where nothing can fail.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| |/ /
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Having kvm_arch_vcpu_run_pid_change() inline doesn't bring anything
to the table. Move it next to kvm_vcpu_first_run_init(), which will
be convenient for what is next to come.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Add helpers to wake and query a blocking vCPU. In addition to providing
nice names, the helpers reduce the probability of KVM neglecting to use
kvm_arch_vcpu_get_wait().
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Rename kvm_vcpu_block() to kvm_vcpu_halt() in preparation for splitting
the actual "block" sequences into a separate helper (to be named
kvm_vcpu_block()). x86 will use the standalone block-only path to handle
non-halt cases where the vCPU is not runnable.
Rename block_ns to halt_ns to match the new function name.
No functional change intended.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Move the put and reload of the vGIC out of the block/unblock callbacks
and into a dedicated WFI helper. Functionally, this is nearly a nop as
the block hook is called at the very beginning of kvm_vcpu_block(), and
the only code in kvm_vcpu_block() after the unblock hook is to update the
halt-polling controls, i.e. can only affect the next WFI.
Back when the arch (un)blocking hooks were added by commits 3217f7c25bca
("KVM: Add kvm_arch_vcpu_{un}blocking callbacks) and d35268da6687
("arm/arm64: KVM: arch_timer: Only schedule soft timer on vcpu_block"),
the hooks were invoked only when KVM was about to "block", i.e. schedule
out the vCPU. The use case at the time was to schedule a timer in the
host based on the earliest timer in the guest in order to wake the
blocking vCPU when the emulated guest timer fired. Commit accb99bcd0ca
("KVM: arm/arm64: Simplify bg_timer programming") reworked the timer
logic to be even more precise, by waiting until the vCPU was actually
scheduled out, and so move the timer logic from the (un)blocking hooks to
vcpu_load/put.
In the meantime, the hooks gained usage for enabling vGIC v4 doorbells in
commit df9ba95993b9 ("KVM: arm/arm64: GICv4: Use the doorbell interrupt
as an unblocking source"), and added related logic for the VMCR in commit
5eeaf10eec39 ("KVM: arm/arm64: Sync ICH_VMCR_EL2 back when about to block").
Finally, commit 07ab0f8d9a12 ("KVM: Call kvm_arch_vcpu_blocking early
into the blocking sequence") hoisted the (un)blocking hooks so that they
wrapped KVM's halt-polling logic in addition to the core "block" logic.
In other words, the original need for arch hooks to take action _only_
in the block path is long since gone.
Cc: Oliver Upton <oupton@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Everywhere we use kvm_for_each_vpcu(), we use an int as the vcpu
index. Unfortunately, we're about to move rework the iterator,
which requires this to be upgrade to an unsigned long.
Let's bite the bullet and repaint all of it in one go.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Message-Id: <20211116160403.4074052-7-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|/ /
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
All architectures have similar loops iterating over the vcpus,
freeing one vcpu at a time, and eventually wiping the reference
off the vcpus array. They are also inconsistently taking
the kvm->lock mutex when wiping the references from the array.
Make this code common, which will simplify further changes.
The locking is dropped altogether, as this should only be called
when there is no further references on the kvm structure.
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Message-Id: <20211116160403.4074052-2-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Generally, it doesn't make sense to return the recommended maximum number
of vCPUs which exceeds the maximum possible number of vCPUs.
Note: ARM64 is special as the value returned by KVM_CAP_MAX_VCPUS differs
depending on whether it is a system-wide ioctl or a per-VM one. Previously,
KVM_CAP_NR_VCPUS didn't have this difference and it seems preferable to
keep the status quo. Cap KVM_CAP_NR_VCPUS by kvm_arm_default_max_vcpus()
which is what gets returned by system-wide KVM_CAP_MAX_VCPUS.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211116163443.88707-2-vkuznets@redhat.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-master
KVM/arm64 fixes for 5.16, take #1
- Fix the host S2 finalization by solely iterating over the memblocks
instead of the whole IPA space
- Tighten the return value of kvm_vcpu_preferred_target() now that
32bit support is long gone
- Make sure the extraction of ESR_ELx.EC is limited to the architected
bits
- Comment fixups
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
kvm_vcpu_preferred_target() always return 0 because kvm_target_cpu()
never returns a negative error code.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211105011500.16280-1-yuehaibing@huawei.com
|
|\|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for Linux 5.16
- More progress on the protected VM front, now with the full
fixed feature set as well as the limitation of some hypercalls
after initialisation.
- Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
- Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
- More memcg accounting of the memory allocated on behalf of a guest
- Timer and vgic selftests
- Workarounds for the Apple M1 broken vgic implementation
- KConfig cleanups
- New kvmarm.mode=none option, for those who really dislike us
|
| |\
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
* kvm-arm64/pkvm/fixed-features: (22 commits)
: .
: Add the pKVM fixed feature that allows a bunch of exceptions
: to either be forbidden or be easily handled at EL2.
: .
KVM: arm64: pkvm: Give priority to standard traps over pvm handling
KVM: arm64: pkvm: Pass vpcu instead of kvm to kvm_get_exit_handler_array()
KVM: arm64: pkvm: Move kvm_handle_pvm_restricted around
KVM: arm64: pkvm: Consolidate include files
KVM: arm64: pkvm: Preserve pending SError on exit from AArch32
KVM: arm64: pkvm: Handle GICv3 traps as required
KVM: arm64: pkvm: Drop sysregs that should never be routed to the host
KVM: arm64: pkvm: Drop AArch32-specific registers
KVM: arm64: pkvm: Make the ERR/ERX*_EL1 registers RAZ/WI
KVM: arm64: pkvm: Use a single function to expose all id-regs
KVM: arm64: Fix early exit ptrauth handling
KVM: arm64: Handle protected guests at 32 bits
KVM: arm64: Trap access to pVM restricted features
KVM: arm64: Move sanitized copies of CPU features
KVM: arm64: Initialize trap registers for protected VMs
KVM: arm64: Add handlers for protected VM System Registers
KVM: arm64: Simplify masking out MTE in feature id reg
KVM: arm64: Add missing field descriptor for MDCR_EL2
KVM: arm64: Pass struct kvm to per-EC handlers
KVM: arm64: Move early handlers to per-EC handlers
...
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Protected VMs have more restricted features that need to be
trapped. Moreover, the host should not be trusted to set the
appropriate trapping registers and their values.
Initialize the trapping registers, i.e., hcr_el2, mdcr_el2, and
cptr_el2 at EL2 for protected guests, based on the values of the
guest's feature id registers.
No functional change intended as trap handlers introduced in the
previous patch are still not hooked in to the guest exit
handlers.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010145636.1950948-9-tabba@google.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Add system register handlers for protected VMs. These cover Sys64
registers (including feature id registers), and debug.
No functional change intended as these are not hooked in yet to
the guest exit handlers introduced earlier. So when trapping is
triggered, the exit handlers let the host handle it, as before.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010145636.1950948-8-tabba@google.com
|
| |\ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
* kvm-arm64/memory-accounting:
: .
: Sprinkle a bunch of GFP_KERNEL_ACCOUNT all over the code base
: to better track memory allocation made on behalf of a VM.
: .
KVM: arm64: Add memcg accounting to KVM allocations
KVM: arm64: vgic: Add memcg accounting to vgic allocations
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| | |/
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Inspired by commit 254272ce6505 ("kvm: x86: Add memcg accounting to KVM
allocations"), it would be better to make arm64 KVM consistent with
common kvm codes.
The memory allocations of VM scope should be charged into VM process
cgroup, hence change GFP_KERNEL to GFP_KERNEL_ACCOUNT.
There remain a few cases since these allocations are global, not in VM
scope.
Signed-off-by: Jia He <justin.he@arm.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210907123112.10232-3-justin.he@arm.com
|
| |\ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
* kvm-arm64/misc-5.16:
: .
: - Allow KVM to be disabled from the command-line
: - Clean up CONFIG_KVM vs CONFIG_HAVE_KVM
: .
KVM: arm64: Depend on HAVE_KVM instead of OF
KVM: arm64: Unconditionally include generic KVM's Kconfig
KVM: arm64: Allow KVM to be disabled from the command line
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| | |/
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Although KVM can be compiled out of the kernel, it cannot be disabled
at runtime. Allow this possibility by introducing a new mode that
will prevent KVM from initialising.
This is useful in the (limited) circumstances where you don't want
KVM to be available (what is wrong with you?), or when you want
to install another hypervisor instead (good luck with that).
Reviewed-by: David Brazdil <dbrazdil@google.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Andrew Scull <ascull@google.com>
Link: https://lore.kernel.org/r/20211001170553.3062988-1-maz@kernel.org
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
If the __pkvm_prot_finalize hypercall returns an error, we WARN but fail
to propagate the failure code back to kvm_arch_init().
Pass a pointer to a zero-initialised return variable so that failure
to finalise the pKVM protections on a host CPU can be reported back to
KVM.
Cc: Marc Zyngier <maz@kernel.org>
Cc: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211008135839.1193-5-will@kernel.org
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The stub hypercalls provide mechanisms to reset and replace the EL2 code,
so uninstall them once pKVM has been initialised in order to ensure the
integrity of the hypervisor code.
To ensure pKVM initialisation remains functional, split cpu_hyp_reinit()
into two helper functions to separate usage of the stub from usage of
pkvm hypercalls either side of __pkvm_init on the boot CPU.
Cc: Marc Zyngier <maz@kernel.org>
Cc: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211008135839.1193-4-will@kernel.org
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
| |
By switching from kfree() to kvfree() in kvm_arch_free_vm() Arm64 can
use the common variant. This can be accomplished by adding another
macro __KVM_HAVE_ARCH_VM_FREE, which will be used only by x86 for now.
Further simplification can be achieved by adding __kvm_arch_free_vm()
doing the common part.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Message-Id: <20210903130808.30142-5-jgross@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
* kvm-arm64/pkvm-fixed-features-prologue:
: Rework a bunch of common infrastructure as a prologue
: to Fuad Tabba's protected VM fixed feature series.
KVM: arm64: Upgrade trace_kvm_arm_set_dreg32() to 64bit
KVM: arm64: Add config register bit definitions
KVM: arm64: Add feature register flag definitions
KVM: arm64: Track value of cptr_el2 in struct kvm_vcpu_arch
KVM: arm64: Keep mdcr_el2's value as set by __init_el2_debug
KVM: arm64: Restore mdcr_el2 from vcpu
KVM: arm64: Refactor sys_regs.h,c for nVHE reuse
KVM: arm64: Fix names of config register fields
KVM: arm64: MDCR_EL2 is a 64-bit register
KVM: arm64: Remove trailing whitespace in comment
KVM: arm64: placeholder to check if VM is protected
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Track the baseline guest value for cptr_el2 in struct
kvm_vcpu_arch, similar to the other registers that control traps.
Use this value when setting cptr_el2 for the guest.
Currently this value is unchanged (CPTR_EL2_DEFAULT), but future
patches will set trapping bits based on features supported for
the guest.
No functional change intended.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210817081134.2918285-9-tabba@google.com
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
* kvm-arm64/mmu/vmid-cleanups:
: Cleanup the stage-2 configuration by providing a single helper,
: and tidy up some of the ordering requirements for the VMID
: allocator.
KVM: arm64: Upgrade VMID accesses to {READ,WRITE}_ONCE
KVM: arm64: Unify stage-2 programming behind __load_stage2()
KVM: arm64: Move kern_hyp_va() usage in __load_guest_stage2() into the callers
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Since TLB invalidation can run in parallel with VMID allocation,
we need to be careful and avoid any sort of load/store tearing.
Use {READ,WRITE}_ONCE consistently to avoid any surprise.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Jade Alglave <jade.alglave@arm.com>
Cc: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20210806113109.2475-6-will@kernel.org
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Switch KVM/arm64 to the generic entry code, courtesy of Oliver Upton
* kvm-arm64/generic-entry:
KVM: arm64: Use generic KVM xfer to guest work function
entry: KVM: Allow use of generic KVM entry w/o full generic support
KVM: arm64: Record number of signal exits as a vCPU stat
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Clean up handling of checks for pending work by switching to the generic
infrastructure to do so.
We pick up handling for TIF_NOTIFY_RESUME from this switch, meaning that
task work will be correctly handled.
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210802192809.1851010-4-oupton@google.com
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Most other architectures that implement KVM record a statistic
indicating the number of times a vCPU has exited due to a pending
signal. Add support for that stat to arm64.
Reviewed-by: Jing Zhang <jingzhangos@google.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210802192809.1851010-2-oupton@google.com
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
PSCI fixes from Oliver Upton:
- Plug race on reset
- Ensure that a pending reset is applied before userspace accesses
- Reject PSCI requests with illegal affinity bits
* kvm-arm64/psci/cpu_on:
selftests: KVM: Introduce psci_cpu_on_test
KVM: arm64: Enforce reserved bits for PSCI target affinities
KVM: arm64: Handle PSCI resets before userspace touches vCPU state
KVM: arm64: Fix read-side race on updates to vcpu reset state
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The CPU_ON PSCI call takes a payload that KVM uses to configure a
destination vCPU to run. This payload is non-architectural state and not
exposed through any existing UAPI. Effectively, we have a race between
CPU_ON and userspace saving/restoring a guest: if the target vCPU isn't
ran again before the VMM saves its state, the requested PC and context
ID are lost. When restored, the target vCPU will be runnable and start
executing at its old PC.
We can avoid this race by making sure the reset payload is serviced
before userspace can access a vCPU's state.
Fixes: 358b28f09f0a ("arm/arm64: KVM: Allow a VCPU to fully reset itself")
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210818202133.1106786-3-oupton@google.com
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
* kvm-arm64/mmu/el2-tracking: (25 commits)
: Enable tracking of page sharing between host EL1 and EL2
KVM: arm64: Minor optimization of range_is_memory
KVM: arm64: Make hyp_panic() more robust when protected mode is enabled
KVM: arm64: Return -EPERM from __pkvm_host_share_hyp()
KVM: arm64: Make __pkvm_create_mappings static
KVM: arm64: Restrict EL2 stage-1 changes in protected mode
KVM: arm64: Refactor protected nVHE stage-1 locking
KVM: arm64: Remove __pkvm_mark_hyp
KVM: arm64: Mark host bss and rodata section as shared
KVM: arm64: Enable retrieving protections attributes of PTEs
KVM: arm64: Introduce addr_is_memory()
KVM: arm64: Expose pkvm_hyp_id
KVM: arm64: Expose host stage-2 manipulation helpers
KVM: arm64: Add helpers to tag shared pages in SW bits
KVM: arm64: Allow populating software bits
KVM: arm64: Enable forcing page-level stage-2 mappings
KVM: arm64: Tolerate re-creating hyp mappings to set software bits
KVM: arm64: Don't overwrite software bits with owner id
KVM: arm64: Rename KVM_PTE_LEAF_ATTR_S2_IGNORED
KVM: arm64: Optimize host memory aborts
KVM: arm64: Expose page-table helpers
...
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| |\ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
KVM/arm64 fixes for 5.14, take #2
- Plug race between enabling MTE and creating vcpus
- Fix off-by-one bug when checking whether an address range is RAM
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| | |/
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
When enabling KVM_CAP_ARM_MTE the ioctl checks that there are no VCPUs
created to ensure that the capability is enabled before the VM is
running. However no locks are held at that point so it is
(theoretically) possible for another thread in the VMM to create VCPUs
between the check and actually setting mte_enabled. Close the race by
taking kvm->lock.
Reported-by: Alexandru Elisei <alexandru.elisei@arm.com>
Fixes: 673638f434ee ("KVM: arm64: Expose KVM_ARM_CAP_MTE")
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210729160036.20433-1-steven.price@arm.com
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Now that we mark memory owned by the hypervisor in the host stage-2
during __pkvm_init(), we no longer need to rely on the host to
explicitly mark the hyp sections later on.
Remove the __pkvm_mark_hyp() hypercall altogether.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-19-qperret@google.com
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Prevent kmemleak from peeking into the HYP data, which is fatal
in protected mode.
* kvm-arm64/mmu/kmemleak-pkvm:
KVM: arm64: Unregister HYP sections from kmemleak in protected mode
arm64: Move .hyp.rodata outside of the _sdata.._edata range
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Booting a KVM host in protected mode with kmemleak quickly results
in a pretty bad crash, as kmemleak doesn't know that the HYP sections
have been taken away. This is specially true for the BSS section,
which is part of the kernel BSS section and registered at boot time
by kmemleak itself.
Unregister the HYP part of the BSS before making that section
HYP-private. The rest of the HYP-specific data is obtained via
the page allocator or lives in other sections, none of which is
subjected to kmemleak.
Fixes: 90134ac9cabb ("KVM: arm64: Protect the .hyp sections from the host")
Reviewed-by: Quentin Perret <qperret@google.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org # 5.13
Link: https://lore.kernel.org/r/20210802123830.2195174-3-maz@kernel.org
|