summaryrefslogtreecommitdiffstats
path: root/arch/sparc/kernel/perf_event.c
Commit message (Collapse)AuthorAgeFilesLines
* sparc64: Perf should save/restore fault infoRob Gardner2015-12-241-0/+4
| | | | | | | | | | | | | | | | | | | | There have been several reports of random processes being killed with a bus error or segfault during userspace stack walking in perf. One of the root causes of this problem is an asynchronous modification to thread_info fault_address and fault_code, which stems from a perf counter interrupt arriving during kernel processing of a "benign" fault, such as a TSB miss. Since perf_callchain_user() invokes copy_from_user() to read user stacks, a fault is not only possible, but probable. Validity checks on the stack address merely cover up the problem and reduce its frequency. The solution here is to save and restore fault_address and fault_code in perf_callchain_user() so that the benign fault handler is not disturbed by a perf interrupt. Signed-off-by: Rob Gardner <rob.gardner@oracle.com> Signed-off-by: Dave Aldridge <david.j.aldridge@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Ensure perf can access user stacksRob Gardner2015-12-241-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | When an interrupt (such as a perf counter interrupt) is delivered while executing in user space, the trap entry code puts ASI_AIUS in %asi so that copy_from_user() and copy_to_user() will access the correct memory. But if a perf counter interrupt is delivered while the cpu is already executing in kernel space, then the trap entry code will put ASI_P in %asi, and this will prevent copy_from_user() from reading any useful stack data in either of the perf_callchain_user_X functions, and thus no user callgraph data will be collected for this sample period. An additional problem is that a fault is guaranteed to occur, and though it will be silently covered up, it wastes time and could perturb state. In perf_callchain_user(), we ensure that %asi contains ASI_AIUS because we know for a fact that the subsequent calls to copy_from_user() are intended to read the user's stack. [ Use get_fs()/set_fs() -DaveM ] Signed-off-by: Rob Gardner <rob.gardner@oracle.com> Signed-off-by: Dave Aldridge <david.j.aldridge@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* treewide: Remove old email addressPeter Zijlstra2015-11-231-1/+1
| | | | | | | | | | | | | | | | | There were still a number of references to my old Red Hat email address in the kernel source. Remove these while keeping the Red Hat copyright notices intact. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Ingo Molnar <mingo@kernel.org>
* perf/core: Drop PERF_EVENT_TXNSukadev Bhattiprolu2015-09-131-5/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We currently use PERF_EVENT_TXN flag to determine if we are in the middle of a transaction. If in a transaction, we defer the schedulability checks from pmu->add() operation to the pmu->commit() operation. Now that we have "transaction types" (PERF_PMU_TXN_ADD, PERF_PMU_TXN_READ) we can use the type to determine if we are in a transaction and drop the PERF_EVENT_TXN flag. When PERF_EVENT_TXN is dropped, the cpuhw->group_flag on some architectures becomes unused, so drop that field as well. This is an extension of the Powerpc patch from Peter Zijlstra to s390, Sparc and x86 architectures. Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1441336073-22750-11-git-send-email-sukadev@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* perf/core: Add a 'flags' parameter to the PMU transactional interfacesSukadev Bhattiprolu2015-09-131-1/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, the PMU interface allows reading only one counter at a time. But some PMUs like the 24x7 counters in Power, support reading several counters at once. To leveage this functionality, extend the transaction interface to support a "transaction type". The first type, PERF_PMU_TXN_ADD, refers to the existing transactions, i.e. used to _schedule_ all the events on the PMU as a group. A second transaction type, PERF_PMU_TXN_READ, will be used in a follow-on patch, by the 24x7 counters to read several counters at once. Extend the transaction interfaces to the PMU to accept a 'txn_flags' parameter and use this parameter to ignore any transactions that are not of type PERF_PMU_TXN_ADD. Thanks to Peter Zijlstra for his input. Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> [peterz: s390 compile fix] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1441336073-22750-3-git-send-email-sukadev@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sparc, perf/sparc: Remove unnecessary assignmentSukadev Bhattiprolu2015-09-131-1/+0
| | | | | | | | | | | | | | | | | | | | | In ->commit_txn() 'cpuc' is already initialized when it is declared, so we can remove the duplicate assignment. Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David S. Miller <davem@davemloft.net> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: sparclinux@vger.kernel.org Link: http://lkml.kernel.org/r/1441336073-22750-2-git-send-email-sukadev@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sparc64: perf: Use UREG_FP rather than UREG_I6David Ahern2015-06-251-2/+2
| | | | | | | | perf walks userspace callchains by following frame pointers. Use the UREG_FP macro to make it clearer that the %fp is being used. Signed-off-by: David Ahern <david.ahern@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: perf: Add sanity checking on addresses in user stackDavid Ahern2015-06-251-0/+13
| | | | | | | | | | | | | | Processes are getting killed (sigbus or segv) while walking userspace callchains when using perf. In some instances I have seen ufp = 0x7ff which does not seem like a proper stack address. This patch adds a function to run validity checks against the address before attempting the copy_from_user. The checks are copied from the x86 version as a start point with the addition of a 4-byte alignment check. Signed-off-by: David Ahern <david.ahern@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc: perf: Disable pagefaults while walking userspace stacksDavid Ahern2015-06-251-1/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Page faults generated walking userspace stacks can call schedule to switch out the task. When collecting callchains for scheduler tracepoints this causes a deadlock as the tracepoints can be hit with the runqueue lock held: [ 8138.159054] WARNING: CPU: 758 PID: 12488 at /opt/dahern/linux.git/arch/sparc/kernel/nmi.c:80 perfctr_irq+0x1f8/0x2b4() [ 8138.203152] Watchdog detected hard LOCKUP on cpu 758 [ 8138.410969] CPU: 758 PID: 12488 Comm: perf Not tainted 4.0.0-rc6+ #6 [ 8138.437146] Call Trace: [ 8138.447193] [000000000045cdd4] warn_slowpath_common+0x7c/0xa0 [ 8138.471238] [000000000045ce90] warn_slowpath_fmt+0x30/0x40 [ 8138.494189] [0000000000983e38] perfctr_irq+0x1f8/0x2b4 [ 8138.515716] [00000000004209f4] tl0_irq15+0x14/0x20 [ 8138.535791] [00000000009839ec] _raw_spin_trylock_bh+0x68/0x108 [ 8138.560180] [0000000000980018] __schedule+0xcc/0x710 [ 8138.580981] [00000000009806dc] preempt_schedule_common+0x10/0x3c [ 8138.606082] [000000000098077c] _cond_resched+0x34/0x44 [ 8138.627603] [0000000000565990] kmem_cache_alloc_node+0x24/0x1a0 [ 8138.652345] [0000000000450b60] tsb_grow+0xac/0x488 [ 8138.672429] [0000000000985040] do_sparc64_fault+0x4dc/0x6e4 [ 8138.695736] [0000000000407c2c] sparc64_realfault_common+0x10/0x20 [ 8138.721202] [00000000006f2e24] NG4copy_from_user+0xa4/0x3c0 [ 8138.744510] [000000000044f900] perf_callchain_user+0x5c/0x6c [ 8138.768182] [0000000000517b5c] perf_callchain+0x16c/0x19c [ 8138.790774] [0000000000515f84] perf_prepare_sample+0x68/0x218 [ 8138.814801] ---[ end trace 42ca6294b1ff7573 ]--- As with PowerPC (b59a1bfcc240, "powerpc/perf: Disable pagefaults during callchain stack read") disable pagefaults while walking userspace stacks. Signed-off-by: David Ahern <david.ahern@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Use M7 PMC write on all chips T4 and onward.David S. Miller2015-04-211-32/+3
| | | | | | | | | They both work equally well, and the M7 implementation is simpler and cheaper (less register writes). With help from David Ahern. Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc: perf: Add support M7 processorDavid Ahern2015-03-191-0/+40
| | | | | | | | | | The M7 processor has a different hypervisor group id and different PCR fast trap values. PIC read/write functions and PCR bit fields are the same as the T4 so those are reused. Signed-off-by: David Ahern <david.ahern@oracle.com> Acked-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc: perf: Make counting mode actually workDavid Ahern2015-03-191-8/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently perf-stat (aka, counting mode) does not work: $ perf stat ls ... Performance counter stats for 'ls': 1.585665 task-clock (msec) # 0.580 CPUs utilized 24 context-switches # 0.015 M/sec 0 cpu-migrations # 0.000 K/sec 86 page-faults # 0.054 M/sec <not supported> cycles <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend <not supported> instructions <not supported> branches <not supported> branch-misses 0.002735100 seconds time elapsed The reason is that state is never reset (stays with PERF_HES_UPTODATE set). Add a call to sparc_pmu_enable_event during the added_event handling. Clean up the encoding since pmu_start calls sparc_pmu_enable_event which does the same. Passing PERF_EF_RELOAD to sparc_pmu_start means the call to sparc_perf_event_set_period can be removed as well. With this patch: $ perf stat ls ... Performance counter stats for 'ls': 1.552890 task-clock (msec) # 0.552 CPUs utilized 24 context-switches # 0.015 M/sec 0 cpu-migrations # 0.000 K/sec 86 page-faults # 0.055 M/sec 5,748,997 cycles # 3.702 GHz <not supported> stalled-cycles-frontend:HG <not supported> stalled-cycles-backend:HG 1,684,362 instructions:HG # 0.29 insns per cycle 295,133 branches:HG # 190.054 M/sec 28,007 branch-misses:HG # 9.49% of all branches 0.002815665 seconds time elapsed Signed-off-by: David Ahern <david.ahern@oracle.com> Acked-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc: perf: Remove redundant perf_pmu_{en|dis}able callsDavid Ahern2015-03-191-4/+0
| | | | | | | | | | | | perf_pmu_disable is called by core perf code before pmu->del and the enable function is called by core perf code afterwards. No need to call again within sparc_pmu_del. Ditto for pmu->add and sparc_pmu_add. Signed-off-by: David Ahern <david.ahern@oracle.com> Acked-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* Merge branch 'for-3.18-consistent-ops' of ↵Linus Torvalds2014-10-151-13/+13
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu Pull percpu consistent-ops changes from Tejun Heo: "Way back, before the current percpu allocator was implemented, static and dynamic percpu memory areas were allocated and handled separately and had their own accessors. The distinction has been gone for many years now; however, the now duplicate two sets of accessors remained with the pointer based ones - this_cpu_*() - evolving various other operations over time. During the process, we also accumulated other inconsistent operations. This pull request contains Christoph's patches to clean up the duplicate accessor situation. __get_cpu_var() uses are replaced with with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr(). Unfortunately, the former sometimes is tricky thanks to C being a bit messy with the distinction between lvalues and pointers, which led to a rather ugly solution for cpumask_var_t involving the introduction of this_cpu_cpumask_var_ptr(). This converts most of the uses but not all. Christoph will follow up with the remaining conversions in this merge window and hopefully remove the obsolete accessors" * 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits) irqchip: Properly fetch the per cpu offset percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write. percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t Revert "powerpc: Replace __get_cpu_var uses" percpu: Remove __this_cpu_ptr clocksource: Replace __this_cpu_ptr with raw_cpu_ptr sparc: Replace __get_cpu_var uses avr32: Replace __get_cpu_var with __this_cpu_write blackfin: Replace __get_cpu_var uses tile: Use this_cpu_ptr() for hardware counters tile: Replace __get_cpu_var uses powerpc: Replace __get_cpu_var uses alpha: Replace __get_cpu_var ia64: Replace __get_cpu_var uses s390: cio driver &__get_cpu_var replacements s390: Replace __get_cpu_var uses mips: Replace __get_cpu_var uses MIPS: Replace __get_cpu_var uses in FPU emulator. arm: Replace __this_cpu_ptr with raw_cpu_ptr ...
| * sparc: Replace __get_cpu_var usesChristoph Lameter2014-08-261-13/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: sparclinux@vger.kernel.org Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
* | sparc64: T5 PMUbob picco2014-09-161-1/+2
|/ | | | | | | | | | | | The T5 (niagara5) has different PCR related HV fast trap values and a new HV API Group. This patch utilizes these and shares when possible with niagara4. We use the same sparc_pmu niagara4_pmu. Should there be new effort to obtain the MCU perf statistics then this would have to be changed. Cc: sparclinux@vger.kernel.org Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Fix pcr_ops initialization and usage bugs.David S. Miller2014-08-111-2/+5
| | | | | | | | | | | | | | | | | | | | | | | | | Christopher reports that perf_event_print_debug() can crash in uniprocessor builds. The crash is due to pcr_ops being NULL. This happens because pcr_arch_init() is only invoked by smp_cpus_done() which only executes in SMP builds. init_hw_perf_events() is closely intertwined with pcr_ops being setup properly, therefore: 1) Call pcr_arch_init() early on from init_hw_perf_events(), instead of from smp_cpus_done(). 2) Do not hook up a PMU type if pcr_ops is NULL after pcr_arch_init(). 3) Move init_hw_perf_events to a later initcall so that it we will be sure to invoke pcr_arch_init() after all cpus are brought up. Finally, guard the one naked sequence of pcr_ops dereferences in __global_pmu_self() with an appropriate NULL check. Reported-by: Christopher Alexander Tobias Schulze <cat.schulze@alice-dsl.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: fix sparse warnings in perf_event.cSam Ravnborg2014-05-181-10/+13
| | | | | | | | | | | | | | | | | Fix following sparse warnings: kernel/perf_event.c:113:1: warning: symbol 'cpu_hw_events' was not declared. Should it be static? kernel/perf_event.c:1156:6: warning: symbol 'perf_event_grab_pmc' was not declared. Should it be static? kernel/perf_event.c:1172:6: warning: symbol 'perf_event_release_pmc' was not declared. Should it be static? kernel/perf_event.c:1672:12: warning: symbol 'init_hw_perf_events' was not declared. Should it be static? kernel/perf_event.c:1749:52: warning: incorrect type in argument 2 (different address spaces) kernel/perf_event.c:1772:60: warning: incorrect type in argument 2 (different address spaces) kernel/perf_event.c:1779:60: warning: incorrect type in argument 2 (different address spaces) Define the functions static as they are not used outside this file. Fix it so copy_from_user are supplied with pointers annotated _user Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Make montmul/montsqr/mpmul usable in 32-bit threads.David S. Miller2012-10-261-6/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The Montgomery Multiply, Montgomery Square, and Multiple-Precision Multiply instructions work by loading a combination of the floating point and multiple register windows worth of integer registers with the inputs. These values are 64-bit. But for 32-bit userland processes we only save the low 32-bits of each integer register during a register spill. This is because the register window save area is in the user stack and has a fixed layout. Therefore, the only way to use these instruction in 32-bit mode is to perform the following sequence: 1) Load the top-32bits of a choosen integer register with a sentinel, say "-1". This will be in the outer-most register window. The idea is that we're trying to see if the outer-most register window gets spilled, and thus the 64-bit values were truncated. 2) Load all the inputs for the montmul/montsqr/mpmul instruction, down to the inner-most register window. 3) Execute the opcode. 4) Traverse back up to the outer-most register window. 5) Check the sentinel, if it's still "-1" store the results. Otherwise retry the entire sequence. This retry is extremely troublesome. If you're just unlucky and an interrupt or other trap happens, it'll push that outer-most window to the stack and clear the sentinel when we restore it. We could retry forever and never make forward progress if interrupts arrive at a fast enough rate (consider perf events as one example). So we have do limited retries and fallback to software which is extremely non-deterministic. Luckily it's very straightforward to provide a mechanism to let 32-bit applications use a 64-bit stack. Stacks in 64-bit mode are biased by 2047 bytes, which means that the lowest bit is set in the actual %sp register value. So if we see bit zero set in a 32-bit application's stack we treat it like a 64-bit stack. Runtime detection of such a facility is tricky, and cumbersome at best. For example, just trying to use a biased stack and seeing if it works is hard to recover from (the signal handler will need to use an alt stack, plus something along the lines of longjmp). Therefore, we add a system call to report a bitmask of arch specific features like this in a cheap and less hairy way. With help from Andy Polyakov. Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Fix bit twiddling in sparc_pmu_enable_event().David S. Miller2012-10-161-2/+4
| | | | | | | | | | | | | | | | | | | There was a serious disconnect in the logic happening in sparc_pmu_disable_event() vs. sparc_pmu_enable_event(). Event disable is implemented by programming a NOP event into the PCR. However, event enable was not reversing this operation. Instead, it was setting the User/Priv/Hypervisor trace enable bits. That's not sparc_pmu_enable_event()'s job, that's what sparc_pmu_enable() and sparc_pmu_disable() do . The intent of sparc_pmu_enable_event() is clear, since it first clear out the event type encoding field. So fix this by OR'ing in the event encoding rather than the trace enable bits. Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Like x86 we should check current->mm during perf backtrace generation.David S. Miller2012-10-141-4/+5
| | | | | | | If the MM is not active, only report the top-level PC. Do not try to access the address space. Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Update generic comments in perf event code to match reality.David S. Miller2012-08-181-13/+27
| | | | | | | | | Describe how we support two types of PMU setups, one with a single control register and two counters stored in a single register, and another with one control register per counter and each counter living in it's own register. Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Add SPARC-T4 perf event support.David S. Miller2012-08-181-2/+187
| | | | Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Support perf event encoding for multi-PCR PMUs.David S. Miller2012-08-181-23/+75
| | | | Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Make sparc_pmu_{enable,disable}_event() multi-pcr aware.David S. Miller2012-08-181-6/+14
| | | | Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Rework sparc_pmu_enable() so that the side effects are clearer.David S. Miller2012-08-181-6/+2
| | | | | | | | | When cpuc->n_events is zero, we actually don't do anything and we just write the cpuc->pcr[0] value as-is without any modifications. The "pcr = 0;" assignment there was just useless and confusing. Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Prepare perf event layer for handling multiple PCR registers.David S. Miller2012-08-181-27/+45
| | | | | | | | | Make the per-cpu pcr save area an array instead of one u64. Describe how many PCR and PIC registers the chip has in the sparc_pmu descriptor. Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Specify user and supervisor trace PCR bits in sparc_pmu.David S. Miller2012-08-181-4/+12
| | | | Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Abstract PMC read/write behind sparc_pmu.David S. Miller2012-08-181-30/+38
| | | | Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Allow max hw perf events to be variable.David S. Miller2012-08-181-3/+7
| | | | | | Now specified in sparc_pmu descriptor. Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Add perf_event abstractions for orthogonal PMUs.David S. Miller2012-08-181-0/+20
| | | | | | | | | | | Starting with SPARC-T4 we have a seperate PCR control register for each performance counter, and there are absolutely no restrictions on what events can run on which counters. Add flags that we can use to elide the conflict and dependency logic used to handle older chips. Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Abstract away PIC register accesses.David S. Miller2012-08-181-12/+11
| | | | | | | | | | And, like for the PCR, allow indexing of different PIC register numbers. This also removes all of the non-__KERNEL__ bits from asm/perfctr.h, nothing kernel side should include it any more. Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Add 'reg_num' argument to pcr_ops methods.David S. Miller2012-08-181-7/+7
| | | | | | | SPARC-T4 and later have multiple PCR registers, one for each PIC counter. Signed-off-by: David S. Miller <davem@davemloft.net>
* perf: Pass last sampling period to perf_sample_data_init()Robert Richter2012-05-091-3/+1
| | | | | | | | | | | | | | | | | | | | | We always need to pass the last sample period to perf_sample_data_init(), otherwise the event distribution will be wrong. Thus, modifiyng the function interface with the required period as argument. So basically a pattern like this: perf_sample_data_init(&data, ~0ULL); data.period = event->hw.last_period; will now be like that: perf_sample_data_init(&data, ~0ULL, event->hw.last_period); Avoids unininitialized data.period and simplifies code. Signed-off-by: Robert Richter <robert.richter@amd.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1333390758-10893-3-git-send-email-robert.richter@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Disintegrate asm/system.h for SparcDavid Howells2012-03-281-0/+2
| | | | | | | Disintegrate asm/system.h for Sparc. Signed-off-by: David Howells <dhowells@redhat.com> cc: sparclinux@vger.kernel.org
* perf: Disable PERF_SAMPLE_BRANCH_* when not supportedStephane Eranian2012-03-051-0/+4
| | | | | | | | | | | | | | PERF_SAMPLE_BRANCH_* is disabled for: - SW events (sw counters, tracepoints) - HW breakpoints - ALL but Intel x86 architecture - AMD64 processors Signed-off-by: Stephane Eranian <eranian@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1328826068-11713-10-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sparc: Detect and handle UltraSPARC-T3 cpu types.David S. Miller2011-07-271-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The cpu compatible string we look for is "SPARC-T3". As far as memset/memcpy optimizations go, we treat this chip the same as Niagara-T2/T2+. Use cache initializing stores for memset, and use perfetch, FPU block loads, cache initializing stores, and block stores for copies. We use the Niagara-T2 perf support, since T3 is a close relative in this regard. Later we'll add support for the new events T3 can report, plus enable T3's new "sample" mode. For now I haven't added any new ELF hwcap flags. We probably need to add a couple, for example: T2 and T3 both support the population count instruction in hardware. T3 supports VIS3 instructions, including support (finally) for partitioned shift. One can also now move directly between float and integer registers. T3 supports instructions meant to help with Galois Field and other HPC calculations, such as XOR multiply. Also there are "OP and negate" instructions, for example "fnmul" which is multiply-and-negate. T3 recognizes the transactional memory opcodes, however since transactional memory isn't supported: 1) 'commit' behaves as a NOP and 2) 'chkpt' always branches 3) 'rdcps' returns all zeros and 4) 'wrcps' behaves as a NOP. So we'll need about 3 new elf capability flags in the end to represent all of these things. Signed-off-by: David S. Miller <davem@davemloft.net>
* atomic: use <linux/atomic.h>Arun Sharma2011-07-261-1/+1
| | | | | | | | | | | | | | This allows us to move duplicated code in <asm/atomic.h> (atomic_inc_not_zero() for now) to <linux/atomic.h> Signed-off-by: Arun Sharma <asharma@fb.com> Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: David Miller <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Acked-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* perf, arch: Add generic NODE cache eventsPeter Zijlstra2011-07-011-0/+42
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a NODE level to the generic cache events which is used to measure local vs remote memory accesses. Like all other cache events, an ACCESS is HIT+MISS, if there is no way to distinguish between reads and writes do reads only etc.. The below needs filling out for !x86 (which I filled out with unsupported events). I'm fairly sure ARM can leave it like that since it doesn't strike me as an architecture that even has NUMA support. SH might have something since it does appear to have some NUMA bits. Sparc64, PowerPC and MIPS certainly want a good look there since they clearly are NUMA capable. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: David Miller <davem@davemloft.net> Cc: Anton Blanchard <anton@samba.org> Cc: David Daney <ddaney@caviumnetworks.com> Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Robert Richter <robert.richter@amd.com> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1303508226.4865.8.camel@laptop Signed-off-by: Ingo Molnar <mingo@elte.hu>
* perf: Remove the nmi parameter from the swevent and overflow interfacePeter Zijlstra2011-07-011-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The nmi parameter indicated if we could do wakeups from the current context, if not, we would set some state and self-IPI and let the resulting interrupt do the wakeup. For the various event classes: - hardware: nmi=0; PMI is in fact an NMI or we run irq_work_run from the PMI-tail (ARM etc.) - tracepoint: nmi=0; since tracepoint could be from NMI context. - software: nmi=[0,1]; some, like the schedule thing cannot perform wakeups, and hence need 0. As one can see, there is very little nmi=1 usage, and the down-side of not using it is that on some platforms some software events can have a jiffy delay in wakeup (when arch_irq_work_raise isn't implemented). The up-side however is that we can remove the nmi parameter and save a bunch of conditionals in fast paths. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Michael Cree <mcree@orcon.net.nz> Cc: Will Deacon <will.deacon@arm.com> Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com> Cc: Anton Blanchard <anton@samba.org> Cc: Eric B Munson <emunson@mgebm.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: David S. Miller <davem@davemloft.net> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jason Wessel <jason.wessel@windriver.com> Cc: Don Zickus <dzickus@redhat.com> Link: http://lkml.kernel.org/n/tip-agjev8eu666tvknpb3iaj0fg@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sparc: consolidate show_cpuinfo in cpu.cSam Ravnborg2011-04-211-0/+1
| | | | | | | | We have all the cpu related info in cpu.c - so move the remaining functions to support /proc/cpuinfo to this file. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* Fix common misspellingsLucas De Marchi2011-03-311-1/+1
| | | | | | Fixes generated by 'codespell' and manually reviewed. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
* perf: Dynamic pmu typesPeter Zijlstra2010-12-161-1/+1
| | | | | | | | | | | | | | Extend the perf_pmu_register() interface to allow for named and dynamic pmu types. Because we need to support the existing static types we cannot use dynamic types for everything, hence provide a type argument. If we want to enumerate the PMUs they need a name, provide one. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20101117222056.259707703@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* perf, sparc: Fix CONFIG_PERF_EVENTS=y build errorIngo Molnar2010-12-101-1/+1
| | | | | | | | | | | | | Fix a typo in: 004417a6d468: perf, arch: Cleanup perf-pmu init vs lockup-detector Which caused a build failure on Sparc, reported by Stephen Rothwell. Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Cc: David S. Miller <davem@davemloft.net> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* perf, arch: Cleanup perf-pmu init vs lockup-detectorPeter Zijlstra2010-11-261-2/+5
| | | | | | | | | | | | | | | | | | | | | | The perf hardware pmu got initialized at various points in the boot, some before early_initcall() some after (notably arch_initcall). The problem is that the NMI lockup detector is ran from early_initcall() and expects the hardware pmu to be present. Sanitize this by moving all architecture hardware pmu implementations to initialize at early_initcall() and move the lockup detector to an explicit initcall right after that. Cc: paulus <paulus@samba.org> Cc: davem <davem@davemloft.net> Cc: Michael Cree <mcree@orcon.net.nz> Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com> Acked-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1290707759.2145.119.camel@laptop> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Merge branch 'linus' into perf/coreIngo Molnar2010-09-231-3/+12
|\ | | | | | | | | | | | | | | | | Conflicts: arch/sparc/kernel/perf_event.c Merge reason: Resolve the conflict. Signed-off-by: Ingo Molnar <mingo@elte.hu>
| * sparc64: Support RAW perf events.David S. Miller2010-09-121-3/+11
| | | | | | | | | | | | Encoding is "(encoding << 16) | pic_mask" Signed-off-by: David S. Miller <davem@davemloft.net>
* | perf: Remove the sysfs bitsPeter Zijlstra2010-09-091-6/+3
| | | | | | | | | | | | | | | | | | | | Neither the overcommit nor the reservation sysfs parameter were actually working, remove them as they'll only get in the way. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: paulus <paulus@samba.org> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* | perf: Rework the PMU methodsPeter Zijlstra2010-09-091-42/+67
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Replace pmu::{enable,disable,start,stop,unthrottle} with pmu::{add,del,start,stop}, all of which take a flags argument. The new interface extends the capability to stop a counter while keeping it scheduled on the PMU. We replace the throttled state with the generic stopped state. This also allows us to efficiently stop/start counters over certain code paths (like IRQ handlers). It also allows scheduling a counter without it starting, allowing for a generic frozen state (useful for rotating stopped counters). The stopped state is implemented in two different ways, depending on how the architecture implemented the throttled state: 1) We disable the counter: a) the pmu has per-counter enable bits, we flip that b) we program a NOP event, preserving the counter state 2) We store the counter state and ignore all read/overflow events Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: paulus <paulus@samba.org> Cc: stephane eranian <eranian@googlemail.com> Cc: Robert Richter <robert.richter@amd.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Lin Ming <ming.m.lin@intel.com> Cc: Yanmin <yanmin_zhang@linux.intel.com> Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com> Cc: David Miller <davem@davemloft.net> Cc: Michael Cree <mcree@orcon.net.nz> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* | perf: Per PMU disablePeter Zijlstra2010-09-091-9/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Changes perf_disable() into perf_pmu_disable(). Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: paulus <paulus@samba.org> Cc: stephane eranian <eranian@googlemail.com> Cc: Robert Richter <robert.richter@amd.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Lin Ming <ming.m.lin@intel.com> Cc: Yanmin <yanmin_zhang@linux.intel.com> Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com> Cc: David Miller <davem@davemloft.net> Cc: Michael Cree <mcree@orcon.net.nz> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>