summaryrefslogtreecommitdiffstats
path: root/arch/x86/mm/numa_64.c
Commit message (Collapse)AuthorAgeFilesLines
* Merge branch 'x86-bootmem-for-linus' of ↵Linus Torvalds2010-03-031-48/+49
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'x86-bootmem-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (30 commits) early_res: Need to save the allocation name in drop_range_partial() sparsemem: Fix compilation on PowerPC early_res: Add free_early_partial() x86: Fix non-bootmem compilation on PowerPC core: Move early_res from arch/x86 to kernel/ x86: Add find_fw_memmap_area Move round_up/down to kernel.h x86: Make 32bit support NO_BOOTMEM early_res: Enhance check_and_double_early_res x86: Move back find_e820_area to e820.c x86: Add find_early_area_size x86: Separate early_res related code from e820.c x86: Move bios page reserve early to head32/64.c sparsemem: Put mem map for one node together. sparsemem: Put usemap for one node together x86: Make 64 bit use early_res instead of bootmem before slab x86: Only call dma32_reserve_bootmem 64bit !CONFIG_NUMA x86: Make early_node_mem get mem > 4 GB if possible x86: Dynamically increase early_res array size x86: Introduce max_early_res and early_res_count ...
| * x86: Make 64 bit use early_res instead of bootmem before slabYinghai Lu2010-02-121-5/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | Finally we can use early_res to replace bootmem for x86_64 now. Still can use CONFIG_NO_BOOTMEM to enable it or not. -v2: fix 32bit compiling about MAX_DMA32_PFN -v3: folded bug fix from LKML message below Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <4B747239.4070907@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
| * x86: Make early_node_mem get mem > 4 GB if possibleYinghai Lu2010-02-101-4/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | So we could put pgdata for the node high, and later sparse vmmap will get the section nr that need. With this patch will make <4 GB ram not use a sparse vmmap. before this patch, will get, before swiotlb try get bootmem [ 0.000000] nid=1 start=0 end=2080000 aligned=1 [ 0.000000] free [10 - 96] [ 0.000000] free [b12 - 1000] [ 0.000000] free [359f - 38a3] [ 0.000000] free [38b5 - 3a00] [ 0.000000] free [41e01 - 42000] [ 0.000000] free [73dde - 73e00] [ 0.000000] free [73fdd - 74000] [ 0.000000] free [741dd - 74200] [ 0.000000] free [743dd - 74400] [ 0.000000] free [745dd - 74600] [ 0.000000] free [747dd - 74800] [ 0.000000] free [749dd - 74a00] [ 0.000000] free [74bdd - 74c00] [ 0.000000] free [74ddd - 74e00] [ 0.000000] free [74fdd - 75000] [ 0.000000] free [751dd - 75200] [ 0.000000] free [753dd - 75400] [ 0.000000] free [755dd - 75600] [ 0.000000] free [757dd - 75800] [ 0.000000] free [759dd - 75a00] [ 0.000000] free [75bdd - 7bf5f] [ 0.000000] free [7f730 - 7f750] [ 0.000000] free [100000 - 2080000] [ 0.000000] total free 1f87170 [ 93.301474] Placing 64MB software IO TLB between ffff880075bdd000 - ffff880079bdd000 [ 93.311814] software IO TLB at phys 0x75bdd000 - 0x79bdd000 with this patch will get: before swiotlb try get bootmem [ 0.000000] nid=1 start=0 end=2080000 aligned=1 [ 0.000000] free [a - 96] [ 0.000000] free [702 - 1000] [ 0.000000] free [359f - 3600] [ 0.000000] free [37de - 3800] [ 0.000000] free [39dd - 3a00] [ 0.000000] free [3bdd - 3c00] [ 0.000000] free [3ddd - 3e00] [ 0.000000] free [3fdd - 4000] [ 0.000000] free [41dd - 4200] [ 0.000000] free [43dd - 4400] [ 0.000000] free [45dd - 4600] [ 0.000000] free [47dd - 4800] [ 0.000000] free [49dd - 4a00] [ 0.000000] free [4bdd - 4c00] [ 0.000000] free [4ddd - 4e00] [ 0.000000] free [4fdd - 5000] [ 0.000000] free [51dd - 5200] [ 0.000000] free [53dd - 5400] [ 0.000000] free [55dd - 7bf5f] [ 0.000000] free [7f730 - 7f750] [ 0.000000] free [100428 - 100600] [ 0.000000] free [13ea01 - 13ec00] [ 0.000000] free [170800 - 2080000] [ 0.000000] total free 1f87170 [ 92.689485] PCI-DMA: Using software bounce buffering for IO (SWIOTLB) [ 92.699799] Placing 64MB software IO TLB between ffff8800055dd000 - ffff8800095dd000 [ 92.710916] software IO TLB at phys 0x55dd000 - 0x95dd000 so will get enough space below 4G, aka pfn 0x100000 Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-15-git-send-email-yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
| * x86: Call early_res_to_bootmem one timeYinghai Lu2010-02-101-42/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | Simplify setup_node_mem: don't use bootmem from other node, instead just find_e820_area in early_node_mem. This keeps the boundary between early_res and boot mem more clear, and lets us only call early_res_to_bootmem() one time instead of for all nodes. Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-12-git-send-email-yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
* | x86, numa: Remove configurable node size support for numa emulationDavid Rientjes2010-02-151-147/+13
| | | | | | | | | | | | | | | | | | | | | | | | Now that numa=fake=<size>[MG] is implemented, it is possible to remove configurable node size support. The command-line parsing was already broken (numa=fake=*128, for example, would not work) and since fake nodes are now interleaved over physical nodes, this support is no longer required. Signed-off-by: David Rientjes <rientjes@google.com> LKML-Reference: <alpine.DEB.2.00.1002151343080.26927@chino.kir.corp.google.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
* | x86, numa: Add fixed node size option for numa emulationDavid Rientjes2010-02-151-8/+109
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | numa=fake=N specifies the number of fake nodes, N, to partition the system into and then allocates them by interleaving over physical nodes. This requires knowledge of the system capacity when attempting to allocate nodes of a certain size: either very large nodes to benchmark scalability of code that operates on individual nodes, or very small nodes to find bugs in the VM. This patch introduces numa=fake=<size>[MG] so it is possible to specify the size of each node to allocate. When used, nodes of the size specified will be allocated and interleaved over the set of physical nodes. FAKE_NODE_MIN_SIZE was also moved to the more-appropriate include/asm/numa_64.h. Signed-off-by: David Rientjes <rientjes@google.com> LKML-Reference: <alpine.DEB.2.00.1002151342510.26927@chino.kir.corp.google.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
* | x86, numa: Fix numa emulation calculation of big nodesDavid Rientjes2010-02-151-1/+1
|/ | | | | | | | | | | | | | | | | numa=fake=N uses split_nodes_interleave() to partition the system into N fake nodes. Each node size must have be a multiple of FAKE_NODE_MIN_SIZE, otherwise it is possible to get strange alignments. Because of this, the remaining memory from each node when rounded to FAKE_NODE_MIN_SIZE is consolidated into a number of "big nodes" that are bigger than the rest. The calculation of the number of big nodes is incorrect since it is using a logical AND operator when it should be multiplying the rounded-off portion of each node with N. Signed-off-by: David Rientjes <rientjes@google.com> LKML-Reference: <alpine.DEB.2.00.1002151342230.26927@chino.kir.corp.google.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
* x86, numa: Use near(er) online node instead of roundrobin for NUMAYinghai Lu2009-11-231-1/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CPU to node mapping is set via the following sequence: 1. numa_init_array(): Set up roundrobin from cpu to online node 2. init_cpu_to_node(): Set that according to apicid_to_node[] according to srat only handle the node that is online, and leave other cpu on node without ram (aka not online) to still roundrobin. 3. later call srat_detect_node for Intel/AMD, will use first_online node or nearby node. Problem is that setup_per_cpu_areas() is not called between 2 and 3, the per_cpu for cpu on node with ram is on different node, and could put that on node with two hops away. So try to optimize this and add find_near_online_node() and call init_cpu_to_node(). Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: David Rientjes <rientjes@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> LKML-Reference: <4B07A739.3030104@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* x86, numa, bootmem: Only free bootmem on NUMA failure pathYinghai Lu2009-11-231-2/+8
| | | | | | | | | | | | | | In the NUMA bootmem setup failure path we freed nodedata_phys incorrectly. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: David Rientjes <rientjes@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> LKML-Reference: <4B07A739.3030104@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* x86: Interleave emulated nodes over physical nodesDavid Rientjes2009-10-121-27/+184
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add interleaved NUMA emulation support This patch interleaves emulated nodes over the system's physical nodes. This is required for interleave optimizations since mempolicies, for example, operate by iterating over a nodemask and act without knowledge of node distances. It can also be used for testing memory latencies and NUMA bugs in the kernel. There're a couple of ways to do this: - divide the number of emulated nodes by the number of physical nodes and allocate the result on each physical node, or - allocate each successive emulated node on a different physical node until all memory is exhausted. The disadvantage of the first option is, depending on the asymmetry in node capacities of each physical node, emulated nodes may substantially differ in size on a particular physical node compared to another. The disadvantage of the second option is, also depending on the asymmetry in node capacities of each physical node, there may be more emulated nodes allocated on a single physical node as another. This patch implements the second option; we sacrifice the possibility that we may have slightly more emulated nodes on a particular physical node compared to another in lieu of node size asymmetry. [ Note that "node capacity" of a physical node is not only a function of its addressable range, but also is affected by subtracting out the amount of reserved memory over that range. NUMA emulation only deals with available, non-reserved memory quantities. ] We ensure there is at least a minimal amount of available memory allocated to each node. We also make sure that at least this amount of available memory is available in ZONE_DMA32 for any node that includes both ZONE_DMA32 and ZONE_NORMAL. This patch also cleans the emulation code up by no longer passing the statically allocated struct bootnode array among the various functions. This init.data array is not allocated on the stack since it may be very large and thus it may be accessed at file scope. The WARN_ON() for nodes_cover_memory() when faking proximity domains is removed since it relies on successive nodes always having greater start addresses than previous nodes; with interleaving this is no longer always true. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Ankita Garg <ankita@in.ibm.com> Cc: Len Brown <len.brown@intel.com> LKML-Reference: <alpine.DEB.1.00.0909251519150.14754@chino.kir.corp.google.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* x86: Export srat physical topologyDavid Rientjes2009-10-121-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | This is the counterpart to "x86: export k8 physical topology" for SRAT. It is not as invasive because the acpi code already seperates node setup into detection and registration steps, with the exception of registering e820 active regions in acpi_numa_memory_affinity_init(). This is now moved to acpi_scan_nodes() if NUMA emulation is disabled or deferred. acpi_numa_init() now returns a value which specifies whether an underlying SRAT was located. If so, that topology can be used by the emulation code to interleave emulated nodes over physical nodes or to register the nodes for ACPI. acpi_get_nodes() may now be used to export the srat physical topology of the machine for NUMA emulation. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Ankita Garg <ankita@in.ibm.com> Cc: Len Brown <len.brown@intel.com> LKML-Reference: <alpine.DEB.1.00.0909251518580.14754@chino.kir.corp.google.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* x86: Export k8 physical topologyDavid Rientjes2009-10-121-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | To eventually interleave emulated nodes over physical nodes, we need to know the physical topology of the machine without actually registering it. This does the k8 node setup in two parts: detection and registration. NUMA emulation can then used the physical topology detected to setup the address ranges of emulated nodes accordingly. If emulation isn't used, the k8 nodes are registered as normal. Two formals are added to the x86 NUMA setup functions: `acpi' and `k8'. These represent whether ACPI or K8 NUMA has been detected; both cannot be true at the same time. This specifies to the NUMA emulation code whether an underlying physical NUMA topology exists and which interface to use. This patch deals solely with separating the k8 setup path into Northbridge detection and registration steps and leaves the ACPI changes for a subsequent patch. The `acpi' formal is added here, however, to avoid touching all the header files again in the next patch. This approach also ensures emulated nodes will not span physical nodes so the true memory latency is not misrepresented. k8_get_nodes() may now be used to export the k8 physical topology of the machine for NUMA emulation. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Ankita Garg <ankita@in.ibm.com> Cc: Len Brown <len.brown@intel.com> LKML-Reference: <alpine.DEB.1.00.0909251518400.14754@chino.kir.corp.google.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* x86, mm: Fix node_possible_map logicYinghai Lu2009-05-181-3/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Recently there were some changes to the meaning of node_possible_map, and it is quite strange: - the node without memory would be set in node_possible_map - but some node with less NODE_MIN_SIZE will be kicked out of node_possible_map. fix it by adding strict_setup_node_bootmem(). Also, remove unparse_node(). so result will be: 1. cpu_to_node() will return online node only (nearest one) 2. apicid_to_node() still returns the node that could be not online but is set in node_possible_map. 3. node_possible_map will include nodes that mem on it are less NODE_MIN_SIZE v2: after move_cpus_to_node change. [ Impact: get node_possible_map right ] Signed-off-by: Yinghai Lu <yinghai@kernel.org> Tested-by: Jack Steiner <steiner@sgi.com> LKML-Reference: <4A0C49BE.6080800@kernel.org> [ v3: various small cleanups and comment clarifications ] Signed-off-by: Ingo Molnar <mingo@elte.hu>
* mm, x86: remove MEMORY_HOTPLUG_RESERVE related codeYinghai Lu2009-05-181-5/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | after: | commit b263295dbffd33b0fbff670720fa178c30e3392a | Author: Christoph Lameter <clameter@sgi.com> | Date: Wed Jan 30 13:30:47 2008 +0100 | | x86: 64-bit, make sparsemem vmemmap the only memory model we don't have MEMORY_HOTPLUG_RESERVE anymore. Historically, x86-64 had an architecture-specific method for memory hotplug whereby it scanned the SRAT for physical memory ranges that could be potentially used for memory hot-add later. By reserving those ranges without physical memory, the memmap would be allocated and left dormant until needed. This depended on the DISCONTIG memory model which has been removed so the code implementing HOTPLUG_RESERVE is now dead. This patch removes the dead code used by MEMORY_HOTPLUG_RESERVE. (Changelog authored by Mel.) v2: updated changelog, and remove hotadd= in doc [ Impact: remove dead code ] Signed-off-by: Yinghai Lu <yinghai@kernel.org> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Workflow-found-OK-by: Andrew Morton <akpm@linux-foundation.org> LKML-Reference: <4A0C4910.7090508@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* x86: unify 64-bit UMA and NUMA paging_init()Pekka Enberg2009-05-111-15/+0
| | | | | | | | | | | | 64-bit UMA and NUMA versions of paging_init() are almost identical. Therefore, merge the copy in mm/numa_64.c to mm/init_64.c to remove duplicate code. [ Impact: cleanup ] Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi> LKML-Reference: <1241699741.17846.30.camel@penberg-laptop> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* x86: check boundary in setup_node_bootmem()Yinghai Lu2009-04-231-0/+3
| | | | | | | | | | | | | | | Commit dc09855 ("x86/uv: fix init of memory-less nodes") causes a two sockets system (where node-1 doesn't have RAM installed) to crash. That commit makes node_possible include cpu nodes that do not have memory. So check boundary in setup_node_bootmem(). [ Impact: fix boot crash on RAM-less NUMA node system ] Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Jack Steiner <steiner@sgi.com> LKML-Reference: <49EF89DF.9090404@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* cpumask: remove x86 cpumask_t uses.Rusty Russell2009-03-131-1/+1
| | | | | | | | | | | | | Impact: cleanup We are removing cpumask_t in favour of struct cpumask: mainly as a marker of what code is now CONFIG_CPUMASK_OFFSTACK-safe. The only non-trivial change here is vector_allocation_domain(): explicitly clear the mask and set the first word, rather than using assignment. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
* cpumask: convert node_to_cpumask_map[] to cpumask_var_tRusty Russell2009-03-131-7/+7
| | | | | | | | | | | | Impact: reduce kernel memory usage when CONFIG_CPUMASK_OFFSTACK=y Straightforward conversion: done for 32 and 64 bit kernels. node_to_cpumask_map is now a cpumask_var_t array. 64-bit used to be a dynamic cpumask_t array, and 32-bit used to be a static cpumask_t array. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
* x86: unify 32 and 64-bit node_to_cpumask_mapRusty Russell2009-03-131-69/+0
| | | | | | | | | | | | Impact: cleanup We take the 64-bit code and use it on 32-bit as well. The new file is called mm/numa.c. In a minor cleanup, we use cpu_none_mask instead of declaring a local cpu_mask_none. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
* cpumask: remove x86's node_to_cpumask now everyone uses cpumask_of_nodeRusty Russell2009-03-131-26/+0
| | | | | | Impact: cleanup Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
* Merge branch 'linus' into x86/apicIngo Molnar2009-02-221-1/+1
|\ | | | | | | | | | | | | | | | | | | Conflicts: arch/x86/mach-default/setup.c Semantic conflict resolution: arch/x86/kernel/setup.c Signed-off-by: Ingo Molnar <mingo@elte.hu>
| * mm: clean up for early_pfn_to_nid()KAMEZAWA Hiroyuki2009-02-181-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | What's happening is that the assertion in mm/page_alloc.c:move_freepages() is triggering: BUG_ON(page_zone(start_page) != page_zone(end_page)); Once I knew this is what was happening, I added some annotations: if (unlikely(page_zone(start_page) != page_zone(end_page))) { printk(KERN_ERR "move_freepages: Bogus zones: " "start_page[%p] end_page[%p] zone[%p]\n", start_page, end_page, zone); printk(KERN_ERR "move_freepages: " "start_zone[%p] end_zone[%p]\n", page_zone(start_page), page_zone(end_page)); printk(KERN_ERR "move_freepages: " "start_pfn[0x%lx] end_pfn[0x%lx]\n", page_to_pfn(start_page), page_to_pfn(end_page)); printk(KERN_ERR "move_freepages: " "start_nid[%d] end_nid[%d]\n", page_to_nid(start_page), page_to_nid(end_page)); ... And here's what I got: move_freepages: Bogus zones: start_page[2207d0000] end_page[2207dffc0] zone[fffff8103effcb00] move_freepages: start_zone[fffff8103effcb00] end_zone[fffff8003fffeb00] move_freepages: start_pfn[0x81f600] end_pfn[0x81f7ff] move_freepages: start_nid[1] end_nid[0] My memory layout on this box is: [ 0.000000] Zone PFN ranges: [ 0.000000] Normal 0x00000000 -> 0x0081ff5d [ 0.000000] Movable zone start PFN for each node [ 0.000000] early_node_map[8] active PFN ranges [ 0.000000] 0: 0x00000000 -> 0x00020000 [ 0.000000] 1: 0x00800000 -> 0x0081f7ff [ 0.000000] 1: 0x0081f800 -> 0x0081fe50 [ 0.000000] 1: 0x0081fed1 -> 0x0081fed8 [ 0.000000] 1: 0x0081feda -> 0x0081fedb [ 0.000000] 1: 0x0081fedd -> 0x0081fee5 [ 0.000000] 1: 0x0081fee7 -> 0x0081ff51 [ 0.000000] 1: 0x0081ff59 -> 0x0081ff5d So it's a block move in that 0x81f600-->0x81f7ff region which triggers the problem. This patch: Declaration of early_pfn_to_nid() is scattered over per-arch include files, and it seems it's complicated to know when the declaration is used. I think it makes fix-for-memmap-init not easy. This patch moves all declaration to include/linux/mm.h After this, if !CONFIG_NODES_POPULATES_NODE_MAP && !CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID -> Use static definition in include/linux/mm.h else if !CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID -> Use generic definition in mm/page_alloc.c else -> per-arch back end function will be called. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reported-by: David Miller <davem@davemlloft.net> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: <stable@kernel.org> [2.6.25.x, 2.6.26.x, 2.6.27.x, 2.6.28.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | x86: fix abuse of per_cpu_offsetBrian Gerst2009-02-091-2/+2
| | | | | | | | | | | | | | | | | | | | | | Impact: bug fix Don't use per_cpu_offset() to determine if it valid to access a per-cpu variable for a given cpu number. It is not a valid assumption on x86-64 anymore. Use cpu_possible() instead. Signed-off-by: Brian Gerst <brgerst@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* | x86: move 64-bit NUMA codeBrian Gerst2009-01-271-0/+217
|/ | | | | | | | | Impact: Code movement, no functional change. Move the 64-bit NUMA code from setup_percpu.c to numa_64.c Signed-off-by: Brian Gerst <brgerst@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
* x86: prepare for cpumask iterators to only go to nr_cpu_idsMike Travis2008-12-161-2/+2
| | | | | | | | | | | | | | | Impact: cleanup, futureproof In fact, all cpumask ops will only be valid (in general) for bit numbers < nr_cpu_ids. So use that instead of NR_CPUS in various places. This is always safe: no cpu number can be >= nr_cpu_ids, and nr_cpu_ids is initialized to NR_CPUS at boot. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Mike Travis <travis@sgi.com> Acked-by: Ingo Molnar <mingo@elte.hu>
* x86: convert numa_64.c from round_up to roundupJoerg Roedel2008-07-261-5/+5
| | | | | Signed-off-by: Joerg Roedel <joerg.roedel@amd.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* mm: move bootmem descriptors definition to a single placeJohannes Weiner2008-07-241-3/+1
| | | | | | | | | | | | | | | | | | | | | | | | There are a lot of places that define either a single bootmem descriptor or an array of them. Use only one central array with MAX_NUMNODES items instead. Signed-off-by: Johannes Weiner <hannes@saeurebad.de> Acked-by: Ralf Baechle <ralf@linux-mips.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Richard Henderson <rth@twiddle.net> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Tony Luck <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Kyle McMartin <kyle@parisc-linux.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: David S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* x86: convert Dprintk to pr_debugThomas Gleixner2008-07-211-4/+0
| | | | | | | | There are a couple of places where (P)Dprintk is used which is an old compile time enabled printk wrapper. Convert it to the generic pr_debug(). Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* x86: remove end_pfn in 64bitYinghai Lu2008-07-081-2/+2
| | | | | | | and use max_pfn directly. Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* x86: introduce initmem_init for 64 bitYinghai Lu2008-07-081-1/+1
| | | | | Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Merge branch 'x86/numa' into x86/develIngo Molnar2008-07-081-57/+30
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | Conflicts: arch/x86/Kconfig arch/x86/kernel/e820.c arch/x86/kernel/efi_64.c arch/x86/kernel/mpparse.c arch/x86/kernel/setup.c arch/x86/kernel/setup_32.c arch/x86/mm/init_64.c include/asm-x86/proto.h Signed-off-by: Ingo Molnar <mingo@elte.hu>
| * x86: numa_64.c fix shadowed variableThomas Gleixner2008-07-081-15/+15
| | | | | | | | | | | | | | | | sparse mutters: arch/x86/mm/numa_64.c:195:27: warning: symbol 'end_pfn' shadows an earlier one Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
| * x86: numa_64.c make local variables staticThomas Gleixner2008-07-081-4/+4
| | | | | | | | | | | | | | | | plat_node_bdata, cmdline, nodemap_addr, nodemap_size are local to numa_64.c. Make them static Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
| * x86: remove the static 256k node_to_cpumask_mapMike Travis2008-07-081-6/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * Consolidate node_to_cpumask operations and remove the 256k byte node_to_cpumask_map. This is done by allocating the node_to_cpumask_map array after the number of possible nodes (nr_node_ids) is known. * Debug printouts when CONFIG_DEBUG_PER_CPU_MAPS is active have been increased. It now shows faults when calling node_to_cpumask() and node_to_cpumask_ptr(). For inclusion into sched-devel/latest tree. Based on: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git + sched-devel/latest .../mingo/linux-2.6-sched-devel.git Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
| * x86: cleanup early per cpu variables/accesses v4Mike Travis2008-07-081-32/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * Introduce a new PER_CPU macro called "EARLY_PER_CPU". This is used by some per_cpu variables that are initialized and accessed before there are per_cpu areas allocated. ["Early" in respect to per_cpu variables is "earlier than the per_cpu areas have been setup".] This patchset adds these new macros: DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) EXPORT_EARLY_PER_CPU_SYMBOL(_name) DECLARE_EARLY_PER_CPU(_type, _name) early_per_cpu_ptr(_name) early_per_cpu_map(_name, _idx) early_per_cpu(_name, _cpu) The DEFINE macro defines the per_cpu variable as well as the early map and pointer. It also initializes the per_cpu variable and map elements to "_initvalue". The early_* macros provide access to the initial map (usually setup during system init) and the early pointer. This pointer is initialized to point to the early map but is then NULL'ed when the actual per_cpu areas are setup. After that the per_cpu variable is the correct access to the variable. The early_per_cpu() macro is not very efficient but does show how to access the variable if you have a function that can be called both "early" and "late". It tests the early ptr to be NULL, and if not then it's still valid. Otherwise, the per_cpu variable is used instead: #define early_per_cpu(_name, _cpu) \ (early_per_cpu_ptr(_name) ? \ early_per_cpu_ptr(_name)[_cpu] : \ per_cpu(_name, _cpu)) A better method is to actually check the pointer manually. In the case below, numa_set_node can be called both "early" and "late": void __cpuinit numa_set_node(int cpu, int node) { int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); if (cpu_to_node_map) cpu_to_node_map[cpu] = node; else per_cpu(x86_cpu_to_node_map, cpu) = node; } * Add a flag "arch_provides_topology_pointers" that indicates pointers to topology cpumask_t maps are available. Otherwise, use the function returning the cpumask_t value. This is useful if cpumask_t set size is very large to avoid copying data on to/off of the stack. * The coverage of CONFIG_DEBUG_PER_CPU_MAPS has been increased while the non-debug case has been optimized a bit. * Remove an unreferenced compiler warning in drivers/base/topology.c * Clean up #ifdef in setup.c For inclusion into sched-devel/latest tree. Based on: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git + sched-devel/latest .../mingo/linux-2.6-sched-devel.git Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* | x86 boot: remove some unused extern function declarationsPaul Jackson2008-05-251-1/+1
|/ | | | | | | | Remove three extern declarations for routines that don't exist. Fix a typo in a comment. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* x86_64: fix setup_node_bootmem to support big mem excluding with memmapYinghai Lu2008-04-261-6/+36
| | | | | | | | | | | | | | | | | | | | | | | | typical case: four sockets system, every node has 4g ram, and we are using: memmap=10g$4g to mask out memory on node1 and node2 when numa is enabled, early_node_mem is used to get node_data and node_bootmap. if it can not get memory from the same node with find_e820_area(), it will use alloc_bootmem to get buff from previous nodes. so check it and print out some info about it. need to move early_res_to_bootmem into every setup_node_bootmem. and it takes range that node has. otherwise alloc_bootmem could return addr that reserved early. depends on "mm: make reserve_bootmem can crossed the nodes". Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Merge branch 'for-linus' of ↵Linus Torvalds2008-04-211-1/+2
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched-devel * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched-devel: (62 commits) sched: build fix sched: better rt-group documentation sched: features fix sched: /debug/sched_features sched: add SCHED_FEAT_DEADLINE sched: debug: show a weight tree sched: fair: weight calculations sched: fair-group: de-couple load-balancing from the rb-trees sched: fair-group scheduling vs latency sched: rt-group: optimize dequeue_rt_stack sched: debug: add some debug code to handle the full hierarchy sched: fair-group: SMP-nice for group scheduling sched, cpuset: customize sched domains, core sched, cpuset: customize sched domains, docs sched: prepatory code movement sched: rt: multi level group constraints sched: task_group hierarchy sched: fix the task_group hierarchy for UID grouping sched: allow the group scheduler to have multiple levels sched: mix tasks and groups ...
| * numa: move large array from stack to _initdata sectionMike Travis2008-04-191-1/+2
| | | | | | | | | | | | | | | | | | * Move large array "struct bootnode nodes" from stack to _initdata section to reduce amount of stack space required. Cc: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* | srat, x86: add support for nodes spanning other nodesSuresh Siddha2008-04-191-5/+11
|/ | | | | | | | | | | | | | | For example, If the physical address layout on a two node system with 8 GB memory is something like: node 0: 0-2GB, 4-6GB node 1: 2-4GB, 6-8GB Current kernels fail to boot/detect this NUMA topology. ACPI SRAT tables can expose such a topology which needs to be supported. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* x86: clean up non-smp usage of cpu mapsMike Travis2008-04-171-1/+3
| | | | | | | | | | Cleanup references to the early cpu maps for the non-SMP configuration and remove some functions called for SMP configurations only. Cc: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* x86: remove never used nodenumer in pdaYinghai Lu2008-04-171-2/+0
| | | | | | | Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* x86_64: free_bootmem should take physYinghai Lu2008-03-211-2/+1
| | | | | | | | so use nodedata_phys directly. Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* x86: not set node to cpu_to_node if the node is not onlineYinghai Lu2008-03-041-2/+6
| | | | | | | | | | | | | | | | | | | resolve boot problem reported by Mel Gorman: http://lkml.org/lkml/2008/2/13/404 init_cpu_to_node will use cpu->apic (from MADT or mptable) and apic->node(from SRAT or AMD config space with k8_bus_64.c) to have cpu->node mapping, and later identify_cpu will overwrite them again...(with nearby_node...) this patch checks if the node is online, otherwise it will not update cpu_node map. so keep cpu_node map to online node before identify_cpu..., to prevent possible error. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Thomas Gleixner <tglx@linutronix.de>
* x86: reenable support for system without on node0Yinghai Lu2008-02-181-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | One system doesn't have RAM for node0 installed. SRAT: PXM 0 -> APIC 0 -> Node 0 SRAT: PXM 0 -> APIC 1 -> Node 0 SRAT: PXM 1 -> APIC 2 -> Node 1 SRAT: PXM 1 -> APIC 3 -> Node 1 SRAT: Node 1 PXM 1 0-a0000 SRAT: Node 1 PXM 1 0-dd000000 SRAT: Node 1 PXM 1 0-123000000 ACPI: SLIT: nodes = 2 10 13 13 10 mapped APIC to ffffffffff5fb000 ( fee00000) Bootmem setup node 1 0000000000000000-0000000123000000 NODE_DATA [000000000000e000 - 0000000000014fff] bootmap [0000000000015000 - 00000000000395ff] pages 25 Could not find start_pfn for node 0 Pid: 0, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #14 Call Trace: [<ffffffff80bab498>] free_area_init_node+0x22/0x381 [<ffffffff8045ffc5>] generic_swap+0x0/0x17 [<ffffffff80bab0cc>] find_zone_movable_pfns_for_nodes+0x54/0x271 [<ffffffff80baba5f>] free_area_init_nodes+0x239/0x287 [<ffffffff80ba6311>] paging_init+0x46/0x4c [<ffffffff80b9dda5>] setup_arch+0x3c3/0x44e [<ffffffff80b978be>] start_kernel+0x6f/0x2c7 [<ffffffff80b971cc>] _sinittext+0x1cc/0x1d3 This happens because node 0 is not online, but the node state in mm/page_alloc.c has node 0 set. nodemask_t node_states[NR_NODE_STATES] __read_mostly = { [N_POSSIBLE] = NODE_MASK_ALL, [N_ONLINE] = { { [0] = 1UL } }, So we need to clear node_online_map before initializing the memory. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* Introduce flags for reserve_bootmem()Bernhard Walle2008-02-071-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | This patchset adds a flags variable to reserve_bootmem() and uses the BOOTMEM_EXCLUSIVE flag in crashkernel reservation code to detect collisions between crashkernel area and already used memory. This patch: Change the reserve_bootmem() function to accept a new flag BOOTMEM_EXCLUSIVE. If that flag is set, the function returns with -EBUSY if the memory already has been reserved in the past. This is to avoid conflicts. Because that code runs before SMP initialisation, there's no race condition inside reserve_bootmem_core(). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix powerpc build] Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: <linux-arch@vger.kernel.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* x86: print out node_data addr and bootmap_start addrYinghai Lu2008-02-041-1/+6
| | | | | | | | | | print out node_data addr and bootmap_start addr. helpful for debugging early crashes on high-end NUMA systems. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* x86: remove unneeded round_upYinghai Lu2008-02-011-3/+2
| | | | | Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* x86_64: make bootmap_start page align v6Yinghai Lu2008-02-011-15/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | boot oopses when a system has 64 or 128 GB of RAM installed: Calling initcall 0xffffffff80bc33b6: sctp_init+0x0/0x711() BUG: unable to handle kernel NULL pointer dereference at 000000000000005f IP: [<ffffffff802bfe55>] proc_register+0xe7/0x10f PGD 0 Oops: 0000 [1] SMP CPU 0 Modules linked in: Pid: 1, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #6 RIP: 0010:[<ffffffff802bfe55>] [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP: 0000:ffff810824c57e60 EFLAGS: 00010246 RAX: 000000000000d7d7 RBX: ffff811024c5fa80 RCX: ffff810824c57e08 RDX: 0000000000000000 RSI: 0000000000000195 RDI: ffffffff80cc2460 RBP: ffffffffffffffff R08: 0000000000000000 R09: ffff811024c5fa80 R10: 0000000000000000 R11: 0000000000000002 R12: ffff810824c57e6c R13: 0000000000000000 R14: ffff810824c57ee0 R15: 00000006abd25bee FS: 0000000000000000(0000) GS:ffffffff80b4d000(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000005f CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 1, threadinfo ffff810824c56000, task ffff812024c52000) Stack: ffffffff80a57348 0000019500000000 ffff811024c5fa80 0000000000000000 00000000ffffff97 ffffffff802bfef0 0000000000000000 ffffffffffffffff 0000000000000000 ffffffff80bc3b4b ffff810824c57ee0 ffffffff80bc34a5 Call Trace: [<ffffffff802bfef0>] ? create_proc_entry+0x73/0x8a [<ffffffff80bc3b4b>] ? sctp_snmp_proc_init+0x1c/0x34 [<ffffffff80bc34a5>] ? sctp_init+0xef/0x711 [<ffffffff80b976e3>] ? kernel_init+0x175/0x2e1 [<ffffffff8020ccf8>] ? child_rip+0xa/0x12 [<ffffffff80b9756e>] ? kernel_init+0x0/0x2e1 [<ffffffff8020ccee>] ? child_rip+0x0/0x12 Code: 1e 48 83 7b 38 00 75 08 48 c7 43 38 f0 e8 82 80 48 83 7b 30 00 75 08 48 c7 43 30 d0 e9 82 80 48 c7 c7 60 24 cc 80 e8 bd 5a 54 00 <48> 8b 45 60 48 89 6b 58 48 89 5d 60 48 89 43 50 fe 05 f5 25 a0 RIP [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP <ffff810824c57e60> CR2: 000000000000005f ---[ end trace 02c2d78def82877a ]--- Kernel panic - not syncing: Attempted to kill init! it turns out some variables near end of bss are corrupted already. in System.map we have ffffffff80d40420 b rsi_table ffffffff80d40620 B krb5_seq_lock ffffffff80d40628 b i.20437 ffffffff80d40630 b xprt_rdma_inline_write_padding ffffffff80d40638 b sunrpc_table_header ffffffff80d40640 b zero ffffffff80d40644 b min_memreg ffffffff80d40648 b rpcrdma_tk_lock_g ffffffff80d40650 B sctp_assocs_id_lock ffffffff80d40658 B proc_net_sctp ffffffff80d40660 B sctp_assocs_id ffffffff80d40680 B sysctl_sctp_mem ffffffff80d40690 B sysctl_sctp_rmem ffffffff80d406a0 B sysctl_sctp_wmem ffffffff80d406b0 b sctp_ctl_socket ffffffff80d406b8 b sctp_pf_inet6_specific ffffffff80d406c0 b sctp_pf_inet_specific ffffffff80d406c8 b sctp_af_v4_specific ffffffff80d406d0 b sctp_af_v6_specific ffffffff80d406d8 b sctp_rand.33270 ffffffff80d406dc b sctp_memory_pressure ffffffff80d406e0 b sctp_sockets_allocated ffffffff80d406e4 b sctp_memory_allocated ffffffff80d406e8 b sctp_sysctl_header ffffffff80d406f0 b zero ffffffff80d406f4 A __bss_stop ffffffff80d406f4 A _end and setup_node_bootmem() will use that page 0xd40000 for bootmap Bootmem setup node 0 0000000000000000-0000000828000000 NODE_DATA [000000000008a485 - 0000000000091484] bootmap [0000000000d406f4 - 0000000000e456f3] pages 105 Bootmem setup node 1 0000000828000000-0000001028000000 NODE_DATA [0000000828000000 - 0000000828006fff] bootmap [0000000828007000 - 0000000828106fff] pages 100 Bootmem setup node 2 0000001028000000-0000001828000000 NODE_DATA [0000001028000000 - 0000001028006fff] bootmap [0000001028007000 - 0000001028106fff] pages 100 Bootmem setup node 3 0000001828000000-0000002028000000 NODE_DATA [0000001828000000 - 0000001828006fff] bootmap [0000001828007000 - 0000001828106fff] pages 100 setup_node_bootmem() makes NODE_DATA cacheline aligned, and bootmap is page-aligned. the patch updates find_e820_area() to make sure we can meet the alignment constraints. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* x86_64: add debug name for early_resYinghai Lu2008-02-011-1/+1
| | | | | | | helps debugging problems in this rather murky area of code. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>