summaryrefslogtreecommitdiffstats
path: root/arch/x86
Commit message (Collapse)AuthorAgeFilesLines
* Merge tag 'x86_urgent_for_v6.7_rc2' of ↵Linus Torvalds2023-11-192-22/+18
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Borislav Petkov: - Ignore invalid x2APIC entries in order to not waste per-CPU data - Fix a back-to-back signals handling scenario when shadow stack is in use - A documentation fix - Add Kirill as TDX maintainer * tag 'x86_urgent_for_v6.7_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/acpi: Ignore invalid x2APIC entries x86/shstk: Delay signal entry SSP write until after user accesses x86/Documentation: Indent 'note::' directive for protocol version number note MAINTAINERS: Add Intel TDX entry
| * x86/acpi: Ignore invalid x2APIC entriesZhang Rui2023-11-091-19/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, the kernel enumerates the possible CPUs by parsing both ACPI MADT Local APIC entries and x2APIC entries. So CPUs with "valid" APIC IDs, even if they have duplicated APIC IDs in Local APIC and x2APIC, are always enumerated. Below is what ACPI MADT Local APIC and x2APIC describes on an Ivebridge-EP system, [02Ch 0044 1] Subtable Type : 00 [Processor Local APIC] [02Fh 0047 1] Local Apic ID : 00 ... [164h 0356 1] Subtable Type : 00 [Processor Local APIC] [167h 0359 1] Local Apic ID : 39 [16Ch 0364 1] Subtable Type : 00 [Processor Local APIC] [16Fh 0367 1] Local Apic ID : FF ... [3ECh 1004 1] Subtable Type : 09 [Processor Local x2APIC] [3F0h 1008 4] Processor x2Apic ID : 00000000 ... [B5Ch 2908 1] Subtable Type : 09 [Processor Local x2APIC] [B60h 2912 4] Processor x2Apic ID : 00000077 As a result, kernel shows "smpboot: Allowing 168 CPUs, 120 hotplug CPUs". And this wastes significant amount of memory for the per-cpu data. Plus this also breaks https://lore.kernel.org/all/87edm36qqb.ffs@tglx/, because __max_logical_packages is over-estimated by the APIC IDs in the x2APIC entries. According to https://uefi.org/specs/ACPI/6.5/05_ACPI_Software_Programming_Model.html#processor-local-x2apic-structure: "[Compatibility note] On some legacy OSes, Logical processors with APIC ID values less than 255 (whether in XAPIC or X2APIC mode) must use the Processor Local APIC structure to convey their APIC information to OSPM, and those processors must be declared in the DSDT using the Processor() keyword. Logical processors with APIC ID values 255 and greater must use the Processor Local x2APIC structure and be declared using the Device() keyword." Therefore prevent the registration of x2APIC entries with an APIC ID less than 255 if the local APIC table enumerates valid APIC IDs. [ tglx: Simplify the logic ] Signed-off-by: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20230702162802.344176-1-rui.zhang@intel.com
| * x86/shstk: Delay signal entry SSP write until after user accessesRick Edgecombe2023-11-081-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When a signal is being delivered, the kernel needs to make accesses to userspace. These accesses could encounter an access error, in which case the signal delivery itself will trigger a segfault. Usually this would result in the kernel killing the process. But in the case of a SEGV signal handler being configured, the failure of the first signal delivery will result in *another* signal getting delivered. The second signal may succeed if another thread has resolved the issue that triggered the segfault (i.e. a well timed mprotect()/mmap()), or the second signal is being delivered to another stack (i.e. an alt stack). On x86, in the non-shadow stack case, all the accesses to userspace are done before changes to the registers (in pt_regs). The operation is aborted when an access error occurs, so although there may be writes done for the first signal, control flow changes for the signal (regs->ip, regs->sp, etc) are not committed until all the accesses have already completed successfully. This means that the second signal will be delivered as if it happened at the time of the first signal. It will effectively replace the first aborted signal, overwriting the half-written frame of the aborted signal. So on sigreturn from the second signal, control flow will resume happily from the point of control flow where the original signal was delivered. The problem is, when shadow stack is active, the shadow stack SSP register/MSR is updated *before* some of the userspace accesses. This means if the earlier accesses succeed and the later ones fail, the second signal will not be delivered at the same spot on the shadow stack as the first one. So on sigreturn from the second signal, the SSP will be pointing to the wrong location on the shadow stack (off by a frame). Pengfei privately reported that while using a shadow stack enabled glibc, the “signal06” test in the LTP test-suite hung. It turns out it is testing the above described double signal scenario. When this test was compiled with shadow stack, the first signal pushed a shadow stack sigframe, then the second pushed another. When the second signal was handled, the SSP was at the first shadow stack signal frame instead of the original location. The test then got stuck as the #CP from the twice incremented SSP was incorrect and generated segfaults in a loop. Fix this by adjusting the SSP register only after any userspace accesses, such that there can be no failures after the SSP is adjusted. Do this by moving the shadow stack sigframe push logic to happen after all other userspace accesses. Note, sigreturn (as opposed to the signal delivery dealt with in this patch) has ordering behavior that could lead to similar failures. The ordering issues there extend beyond shadow stack to include the alt stack restoration. Fixing that would require cross-arch changes, and the ordering today does not cause any known test or apps breakages. So leave it as is, for now. [ dhansen: minor changelog/subject tweak ] Fixes: 05e36022c054 ("x86/shstk: Handle signals for shadow stack") Reported-by: Pengfei Xu <pengfei.xu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Cc:stable@vger.kernel.org Link: https://lore.kernel.org/all/20231107182251.91276-1-rick.p.edgecombe%40intel.com Link: https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/syscalls/signal/signal06.c
* | acpi/processor: sanitize _OSC/_PDC capabilities for Xen dom0Roger Pau Monne2023-11-132-0/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The Processor capability bits notify ACPI of the OS capabilities, and so ACPI can adjust the return of other Processor methods taking the OS capabilities into account. When Linux is running as a Xen dom0, the hypervisor is the entity in charge of processor power management, and hence Xen needs to make sure the capabilities reported by _OSC/_PDC match the capabilities of the driver in Xen. Introduce a small helper to sanitize the buffer when running as Xen dom0. When Xen supports HWP, this serves as the equivalent of commit a21211672c9a ("ACPI / processor: Request native thermal interrupt handling via _OSC") to avoid SMM crashes. Xen will set bit ACPI_PROC_CAP_COLLAB_PROC_PERF (bit 12) in the capability bits and the _OSC/_PDC call will apply it. [ jandryuk: Mention Xen HWP's need. Support _OSC & _PDC ] Signed-off-by: Roger Pau Monné <roger.pau@citrix.com> Cc: stable@vger.kernel.org Signed-off-by: Jason Andryuk <jandryuk@gmail.com> Reviewed-by: Michal Wilczynski <michal.wilczynski@intel.com> Reviewed-by: Juergen Gross <jgross@suse.com> Link: https://lore.kernel.org/r/20231108212517.72279-1-jandryuk@gmail.com Signed-off-by: Juergen Gross <jgross@suse.com>
* | kprobes: unify kprobes_exceptions_nofify() prototypesArnd Bergmann2023-11-101-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Most architectures that support kprobes declare this function in their own asm/kprobes.h header and provide an override, but some are missing the prototype, which causes a warning for the __weak stub implementation: kernel/kprobes.c:1865:12: error: no previous prototype for 'kprobe_exceptions_notify' [-Werror=missing-prototypes] 1865 | int __weak kprobe_exceptions_notify(struct notifier_block *self, Move the prototype into linux/kprobes.h so it is visible to all the definitions. Link: https://lore.kernel.org/all/20231108125843.3806765-4-arnd@kernel.org/ Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
* | Merge tag 'tsm-for-6.7' of ↵Linus Torvalds2023-11-043-0/+24
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/djbw/linux Pull unified attestation reporting from Dan Williams: "In an ideal world there would be a cross-vendor standard attestation report format for confidential guests along with a common device definition to act as the transport. In the real world the situation ended up with multiple platform vendors inventing their own attestation report formats with the SEV-SNP implementation being a first mover to define a custom sev-guest character device and corresponding ioctl(). Later, this configfs-tsm proposal intercepted an attempt to add a tdx-guest character device and a corresponding new ioctl(). It also anticipated ARM and RISC-V showing up with more chardevs and more ioctls(). The proposal takes for granted that Linux tolerates the vendor report format differentiation until a standard arrives. From talking with folks involved, it sounds like that standardization work is unlikely to resolve anytime soon. It also takes the position that kernfs ABIs are easier to maintain than ioctl(). The result is a shared configfs mechanism to return per-vendor report-blobs with the option to later support a standard when that arrives. Part of the goal here also is to get the community into the "uncomfortable, but beneficial to the long term maintainability of the kernel" state of talking to each other about their differentiation and opportunities to collaborate. Think of this like the device-driver equivalent of the common memory-management infrastructure for confidential-computing being built up in KVM. As for establishing an "upstream path for cross-vendor confidential-computing device driver infrastructure" this is something I want to discuss at Plumbers. At present, the multiple vendor proposals for assigning devices to confidential computing VMs likely needs a new dedicated repository and maintainer team, but that is a discussion for v6.8. For now, Greg and Thomas have acked this approach and this is passing is AMD, Intel, and Google tests. Summary: - Introduce configfs-tsm as a shared ABI for confidential computing attestation reports - Convert sev-guest to additionally support configfs-tsm alongside its vendor specific ioctl() - Added signed attestation report retrieval to the tdx-guest driver forgoing a new vendor specific ioctl() - Misc cleanups and a new __free() annotation for kvfree()" * tag 'tsm-for-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/linux: virt: tdx-guest: Add Quote generation support using TSM_REPORTS virt: sevguest: Add TSM_REPORTS support for SNP_GET_EXT_REPORT mm/slab: Add __free() support for kvfree virt: sevguest: Prep for kernel internal get_ext_report() configfs-tsm: Introduce a shared ABI for attestation reports virt: coco: Add a coco/Makefile and coco/Kconfig virt: sevguest: Fix passing a stack buffer as a scatterlist target
| * | virt: tdx-guest: Add Quote generation support using TSM_REPORTSKuppuswamy Sathyanarayanan2023-10-193-0/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In TDX guest, the attestation process is used to verify the TDX guest trustworthiness to other entities before provisioning secrets to the guest. The first step in the attestation process is TDREPORT generation, which involves getting the guest measurement data in the format of TDREPORT, which is further used to validate the authenticity of the TDX guest. TDREPORT by design is integrity-protected and can only be verified on the local machine. To support remote verification of the TDREPORT in a SGX-based attestation, the TDREPORT needs to be sent to the SGX Quoting Enclave (QE) to convert it to a remotely verifiable Quote. SGX QE by design can only run outside of the TDX guest (i.e. in a host process or in a normal VM) and guest can use communication channels like vsock or TCP/IP to send the TDREPORT to the QE. But for security concerns, the TDX guest may not support these communication channels. To handle such cases, TDX defines a GetQuote hypercall which can be used by the guest to request the host VMM to communicate with the SGX QE. More details about GetQuote hypercall can be found in TDX Guest-Host Communication Interface (GHCI) for Intel TDX 1.0, section titled "TDG.VP.VMCALL<GetQuote>". Trusted Security Module (TSM) [1] exposes a common ABI for Confidential Computing Guest platforms to get the measurement data via ConfigFS. Extend the TSM framework and add support to allow an attestation agent to get the TDX Quote data (included usage example below). report=/sys/kernel/config/tsm/report/report0 mkdir $report dd if=/dev/urandom bs=64 count=1 > $report/inblob hexdump -C $report/outblob rmdir $report GetQuote TDVMCALL requires TD guest pass a 4K aligned shared buffer with TDREPORT data as input, which is further used by the VMM to copy the TD Quote result after successful Quote generation. To create the shared buffer, allocate a large enough memory and mark it shared using set_memory_decrypted() in tdx_guest_init(). This buffer will be re-used for GetQuote requests in the TDX TSM handler. Although this method reserves a fixed chunk of memory for GetQuote requests, such one time allocation can help avoid memory fragmentation related allocation failures later in the uptime of the guest. Since the Quote generation process is not time-critical or frequently used, the current version uses a polling model for Quote requests and it also does not support parallel GetQuote requests. Link: https://lore.kernel.org/lkml/169342399185.3934343.3035845348326944519.stgit@dwillia2-xfh.jf.intel.com/ [1] Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com> Reviewed-by: Erdem Aktas <erdemaktas@google.com> Tested-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com> Tested-by: Peter Gonda <pgonda@google.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | | Merge tag 'x86_microcode_for_v6.7_rc1' of ↵Linus Torvalds2023-11-0419-905/+897
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 microcode loading updates from Borislac Petkov: "Major microcode loader restructuring, cleanup and improvements by Thomas Gleixner: - Restructure the code needed for it and add a temporary initrd mapping on 32-bit so that the loader can access the microcode blobs. This in itself is a preparation for the next major improvement: - Do not load microcode on 32-bit before paging has been enabled. Handling this has caused an endless stream of headaches, issues, ugly code and unnecessary hacks in the past. And there really wasn't any sensible reason to do that in the first place. So switch the 32-bit loading to happen after paging has been enabled and turn the loader code "real purrty" again - Drop mixed microcode steppings loading on Intel - there, a single patch loaded on the whole system is sufficient - Rework late loading to track which CPUs have updated microcode successfully and which haven't, act accordingly - Move late microcode loading on Intel in NMI context in order to guarantee concurrent loading on all threads - Make the late loading CPU-hotplug-safe and have the offlined threads be woken up for the purpose of the update - Add support for a minimum revision which determines whether late microcode loading is safe on a machine and the microcode does not change software visible features which the machine cannot use anyway since feature detection has happened already. Roughly, the minimum revision is the smallest revision number which must be loaded currently on the system so that late updates can be allowed - Other nice leanups, fixess, etc all over the place" * tag 'x86_microcode_for_v6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits) x86/microcode/intel: Add a minimum required revision for late loading x86/microcode: Prepare for minimal revision check x86/microcode: Handle "offline" CPUs correctly x86/apic: Provide apic_force_nmi_on_cpu() x86/microcode: Protect against instrumentation x86/microcode: Rendezvous and load in NMI x86/microcode: Replace the all-in-one rendevous handler x86/microcode: Provide new control functions x86/microcode: Add per CPU control field x86/microcode: Add per CPU result state x86/microcode: Sanitize __wait_for_cpus() x86/microcode: Clarify the late load logic x86/microcode: Handle "nosmt" correctly x86/microcode: Clean up mc_cpu_down_prep() x86/microcode: Get rid of the schedule work indirection x86/microcode: Mop up early loading leftovers x86/microcode/amd: Use cached microcode for AP load x86/microcode/amd: Cache builtin/initrd microcode early x86/microcode/amd: Cache builtin microcode too x86/microcode/amd: Use correct per CPU ucode_cpu_info ...
| * | | x86/microcode/intel: Add a minimum required revision for late loadingAshok Raj2023-10-242-5/+35
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In general users, don't have the necessary information to determine whether late loading of a new microcode version is safe and does not modify anything which the currently running kernel uses already, e.g. removal of CPUID bits or behavioural changes of MSRs. To address this issue, Intel has added a "minimum required version" field to a previously reserved field in the microcode header. Microcode updates should only be applied if the current microcode version is equal to, or greater than this minimum required version. Thomas made some suggestions on how meta-data in the microcode file could provide Linux with information to decide if the new microcode is suitable candidate for late loading. But even the "simpler" option requires a lot of metadata and corresponding kernel code to parse it, so the final suggestion was to add the 'minimum required version' field in the header. When microcode changes visible features, microcode will set the minimum required version to its own revision which prevents late loading. Old microcode blobs have the minimum revision field always set to 0, which indicates that there is no information and the kernel considers it unsafe. This is a pure OS software mechanism. The hardware/firmware ignores this header field. For early loading there is no restriction because OS visible features are enumerated after the early load and therefore a change has no effect. The check is always enabled, but by default not enforced. It can be enforced via Kconfig or kernel command line. If enforced, the kernel refuses to late load microcode with a minimum required version field which is zero or when the currently loaded microcode revision is smaller than the minimum required revision. If not enforced the load happens independent of the revision check to stay compatible with the existing behaviour, but it influences the decision whether the kernel is tainted or not. If the check signals that the late load is safe, then the kernel is not tainted. Early loading is not affected by this. [ tglx: Massaged changelog and fixed up the implementation ] Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ashok Raj <ashok.raj@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115903.776467264@linutronix.de
| * | | x86/microcode: Prepare for minimal revision checkThomas Gleixner2023-10-245-6/+44
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Applying microcode late can be fatal for the running kernel when the update changes functionality which is in use already in a non-compatible way, e.g. by removing a CPUID bit. There is no way for admins which do not have access to the vendors deep technical support to decide whether late loading of such a microcode is safe or not. Intel has added a new field to the microcode header which tells the minimal microcode revision which is required to be active in the CPU in order to be safe. Provide infrastructure for handling this in the core code and a command line switch which allows to enforce it. If the update is considered safe the kernel is not tainted and the annoying warning message not emitted. If it's enforced and the currently loaded microcode revision is not safe for late loading then the load is aborted. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211724.079611170@linutronix.de
| * | | x86/microcode: Handle "offline" CPUs correctlyThomas Gleixner2023-10-244-6/+113
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Offline CPUs need to be parked in a safe loop when microcode update is in progress on the primary CPU. Currently, offline CPUs are parked in mwait_play_dead(), and for Intel CPUs, its not a safe instruction, because the MWAIT instruction can be patched in the new microcode update that can cause instability. - Add a new microcode state 'UCODE_OFFLINE' to report status on per-CPU basis. - Force NMI on the offline CPUs. Wake up offline CPUs while the update is in progress and then return them back to mwait_play_dead() after microcode update is complete. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115903.660850472@linutronix.de
| * | | x86/apic: Provide apic_force_nmi_on_cpu()Thomas Gleixner2023-10-245-1/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When SMT siblings are soft-offlined and parked in one of the play_dead() variants they still react on NMI, which is problematic on affected Intel CPUs. The default play_dead() variant uses MWAIT on modern CPUs, which is not guaranteed to be safe when updated concurrently. Right now late loading is prevented when not all SMT siblings are online, but as they still react on NMI, it is possible to bring them out of their park position into a trivial rendezvous handler. Provide a function which allows to do that. I does sanity checks whether the target is in the cpus_booted_once_mask and whether the APIC driver supports it. Mark X2APIC and XAPIC as capable, but exclude 32bit and the UV and NUMACHIP variants as that needs feedback from the relevant experts. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115903.603100036@linutronix.de
| * | | x86/microcode: Protect against instrumentationThomas Gleixner2023-10-241-28/+83
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The wait for control loop in which the siblings are waiting for the microcode update on the primary thread must be protected against instrumentation as instrumentation can end up in #INT3, #DB or #PF, which then returns with IRET. That IRET reenables NMI which is the opposite of what the NMI rendezvous is trying to achieve. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115903.545969323@linutronix.de
| * | | x86/microcode: Rendezvous and load in NMIThomas Gleixner2023-10-245-5/+57
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | stop_machine() does not prevent the spin-waiting sibling from handling an NMI, which is obviously violating the whole concept of rendezvous. Implement a static branch right in the beginning of the NMI handler which is nopped out except when enabled by the late loading mechanism. The late loader enables the static branch before stop_machine() is invoked. Each CPU has an nmi_enable in its control structure which indicates whether the CPU should go into the update routine. This is required to bridge the gap between enabling the branch and actually being at the point where it is required to enter the loader wait loop. Each CPU which arrives in the stopper thread function sets that flag and issues a self NMI right after that. If the NMI function sees the flag clear, it returns. If it's set it clears the flag and enters the rendezvous. This is safe against a real NMI which hits in between setting the flag and sending the NMI to itself. The real NMI will be swallowed by the microcode update and the self NMI will then let stuff continue. Otherwise this would end up with a spurious NMI. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115903.489900814@linutronix.de
| * | | x86/microcode: Replace the all-in-one rendevous handlerThomas Gleixner2023-10-241-42/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | with a new handler which just separates the control flow of primary and secondary CPUs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115903.433704135@linutronix.de
| * | | x86/microcode: Provide new control functionsThomas Gleixner2023-10-241-0/+84
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The current all in one code is unreadable and really not suited for adding future features like uniform loading with package or system scope. Provide a set of new control functions which split the handling of the primary and secondary CPUs. These will replace the current rendezvous all in one function in the next step. This is intentionally a separate change because diff makes an complete unreadable mess otherwise. So the flow separates the primary and the secondary CPUs into their own functions which use the control field in the per CPU ucode_ctrl struct. primary() secondary() wait_for_all() wait_for_all() apply_ucode() wait_for_release() release() apply_ucode() Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115903.377922731@linutronix.de
| * | | x86/microcode: Add per CPU control fieldThomas Gleixner2023-10-241-2/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a per CPU control field to ucode_ctrl and define constants for it which are going to be used to control the loading state machine. In theory this could be a global control field, but a global control does not cover the following case: 15 primary CPUs load microcode successfully 1 primary CPU fails and returns with an error code With global control the sibling of the failed CPU would either try again or the whole operation would be aborted with the consequence that the 15 siblings do not invoke the apply path and end up with inconsistent software state. The result in dmesg would be inconsistent too. There are two additional fields added and initialized: ctrl_cpu and secondaries. ctrl_cpu is the CPU number of the primary thread for now, but with the upcoming uniform loading at package or system scope this will be one CPU per package or just one CPU. Secondaries hands the control CPU a CPU mask which will be required to release the secondary CPUs out of the wait loop. Preparatory change for implementing a properly split control flow for primary and secondary CPUs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115903.319959519@linutronix.de
| * | | x86/microcode: Add per CPU result stateThomas Gleixner2023-10-242-47/+68
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The microcode rendezvous is purely acting on global state, which does not allow to analyze fails in a coherent way. Introduce per CPU state where the results are written into, which allows to analyze the return codes of the individual CPUs. Initialize the state when walking the cpu_present_mask in the online check to avoid another for_each_cpu() loop. Enhance the result print out with that. The structure is intentionally named ucode_ctrl as it will gain control fields in subsequent changes. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211723.632681010@linutronix.de
| * | | x86/microcode: Sanitize __wait_for_cpus()Thomas Gleixner2023-10-241-22/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The code is too complicated for no reason: - The return value is pointless as this is a strict boolean. - It's way simpler to count down from num_online_cpus() and check for zero. - The timeout argument is pointless as this is always one second. - Touching the NMI watchdog every 100ns does not make any sense, neither does checking every 100ns. This is really not a hotpath operation. Preload the atomic counter with the number of online CPUs and simplify the whole timeout logic. Delay for one microsecond and touch the NMI watchdog once per millisecond. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115903.204251527@linutronix.de
| * | | x86/microcode: Clarify the late load logicThomas Gleixner2023-10-241-22/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | reload_store() is way too complicated. Split the inner workings out and make the following enhancements: - Taint the kernel only when the microcode was actually updated. If. e.g. the rendezvous fails, then nothing happened and there is no reason for tainting. - Return useful error codes Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Link: https://lore.kernel.org/r/20231002115903.145048840@linutronix.de
| * | | x86/microcode: Handle "nosmt" correctlyThomas Gleixner2023-10-244-31/+44
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On CPUs where microcode loading is not NMI-safe the SMT siblings which are parked in one of the play_dead() variants still react to NMIs. So if an NMI hits while the primary thread updates the microcode the resulting behaviour is undefined. The default play_dead() implementation on modern CPUs is using MWAIT which is not guaranteed to be safe against a microcode update which affects MWAIT. Take the cpus_booted_once_mask into account to detect this case and refuse to load late if the vendor specific driver does not advertise that late loading is NMI safe. AMD stated that this is safe, so mark the AMD driver accordingly. This requirement will be partially lifted in later changes. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115903.087472735@linutronix.de
| * | | x86/microcode: Clean up mc_cpu_down_prep()Thomas Gleixner2023-10-241-7/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This function has nothing to do with suspend. It's a hotplug callback. Remove the bogus comment. Drop the pointless debug printk. The hotplug core provides tracepoints which track the invocation of those callbacks. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115903.028651784@linutronix.de
| * | | x86/microcode: Get rid of the schedule work indirectionThomas Gleixner2023-10-241-19/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Scheduling work on all CPUs to collect the microcode information is just another extra step for no value. Let the CPU hotplug callback registration do it. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211723.354748138@linutronix.de
| * | | x86/microcode: Mop up early loading leftoversThomas Gleixner2023-10-242-17/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Get rid of the initrd_gone hack which was required to keep find_microcode_in_initrd() functional after init. As find_microcode_in_initrd() is now only used during init, mark it accordingly. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211723.298854846@linutronix.de
| * | | x86/microcode/amd: Use cached microcode for AP loadThomas Gleixner2023-10-243-24/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that the microcode cache is initialized before the APs are brought up, there is no point in scanning builtin/initrd microcode during AP loading. Convert the AP loader to utilize the cache, which in turn makes the CPU hotplug callback which applies the microcode after initrd/builtin is gone, obsolete as the early loading during late hotplug operations including the resume path depends now only on the cache. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211723.243426023@linutronix.de
| * | | x86/microcode/amd: Cache builtin/initrd microcode earlyThomas Gleixner2023-10-242-17/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There is no reason to scan builtin/initrd microcode on each AP. Cache the builtin/initrd microcode in an early initcall so that the early AP loader can utilize the cache. The existing fs initcall which invoked save_microcode_in_initrd_amd() is still required to maintain the initrd_gone flag. Rename it accordingly. This will be removed once the AP loader code is converted to use the cache. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211723.187566507@linutronix.de
| * | | x86/microcode/amd: Cache builtin microcode tooThomas Gleixner2023-10-241-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | save_microcode_in_initrd_amd() fails to cache builtin microcode and only scans initrd. Use find_blobs_in_containers() instead which covers both. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231010150702.495139089@linutronix.de
| * | | x86/microcode/amd: Use correct per CPU ucode_cpu_infoThomas Gleixner2023-10-241-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | find_blobs_in_containers() is invoked on every CPU but overwrites unconditionally ucode_cpu_info of CPU0. Fix this by using the proper CPU data and move the assignment into the call site apply_ucode_from_containers() so that the function can be reused. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231010150702.433454320@linutronix.de
| * | | x86/microcode: Remove pointless apply() invocationThomas Gleixner2023-10-241-17/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Microcode is applied on the APs during early bringup. There is no point in trying to apply the microcode again during the hotplug operations and neither at the point where the microcode device is initialized. Collect CPU info and microcode revision in setup_online_cpu() for now. This will move to the CPU hotplug callback later. [ bp: Leave the starting notifier for the following scenario: - boot, late load, suspend to disk, resume without the starting notifier, only the last core manages to update the microcode upon resume: # rdmsr -a 0x8b 10000bf 10000bf 10000bf 10000bf 10000bf 10000dc <---- This is on an AMD F10h machine. For the future, one should check whether potential unification of the CPU init path could cover the resume path too so that this can be simplified even more. tglx: This is caused by the odd handling of APs which try to find the microcode blob in builtin or initrd instead of caching the microcode blob during early init before the APs are brought up. Will be cleaned up in a later step. ] Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20231017211723.018821624@linutronix.de
| * | | x86/microcode/intel: Rework intel_find_matching_signature()Thomas Gleixner2023-10-242-27/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Take a cpu_signature argument and work from there. Move the match() helper next to the callsite as there is no point for having it in a header. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115902.797820205@linutronix.de
| * | | x86/microcode/intel: Reuse intel_cpu_collect_info()Thomas Gleixner2023-10-241-15/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | No point for an almost duplicate function. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115902.741173606@linutronix.de
| * | | x86/microcode/intel: Rework intel_cpu_collect_info()Thomas Gleixner2023-10-242-26/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Nothing needs struct ucode_cpu_info. Make it take struct cpu_signature, let it return a boolean and simplify the implementation. Rename it now that the silly name clash with collect_cpu_info() is gone. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.851573238@linutronix.de
| * | | x86/microcode/intel: Unify microcode apply() functionsThomas Gleixner2023-10-241-68/+36
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Deduplicate the early and late apply() functions. [ bp: Rename the function which does the actual application to __apply_microcode() to differentiate it from microcode_ops.apply_microcode(). ] Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20231017211722.795508212@linutronix.de
| * | | x86/microcode/intel: Switch to kvmalloc()Thomas Gleixner2023-10-241-23/+25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Microcode blobs are getting larger and might soon reach the kmalloc() limit. Switch over kvmalloc(). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115902.564323243@linutronix.de
| * | | x86/microcode/intel: Save the microcode only after a successful late-loadThomas Gleixner2023-10-243-15/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are situations where the late microcode is loaded into memory but is not applied: 1) The rendezvous fails 2) The microcode is rejected by the CPUs If any of this happens then the pointer which was updated at firmware load time is stale and subsequent CPU hotplug operations either fail to update or create inconsistent microcode state. Save the loaded microcode in a separate pointer before the late load is attempted and when successful, update the hotplug pointer accordingly via a new microcode_ops callback. Remove the pointless fallback in the loader to a microcode pointer which is never populated. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115902.505491309@linutronix.de
| * | | x86/microcode/intel: Simplify early loadingThomas Gleixner2023-10-243-93/+79
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The early loading code is overly complicated: - It scans the builtin/initrd for microcode not only on the BSP, but also on all APs during early boot and then later in the boot process it scans again to duplicate and save the microcode before initrd goes away. That's a pointless exercise because this can be simply done before bringing up the APs when the memory allocator is up and running. - Saving the microcode from within the scan loop is completely non-obvious and a left over of the microcode cache. This can be done at the call site now which makes it obvious. Rework the code so that only the BSP scans the builtin/initrd microcode once during early boot and save it away in an early initcall for later use. [ bp: Test and fold in a fix from tglx ontop which handles the need to distinguish what save_microcode() does depending on when it is called: - when on the BSP during early load, it needs to find a newer revision than the one currently loaded on the BSP - later, before SMP init, it still runs on the BSP and gets the BSP revision just loaded and uses that revision to know which patch to save for the APs. For that it needs to find the exact one as on the BSP. ] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.629085215@linutronix.de
| * | | x86/microcode/intel: Cleanup code furtherThomas Gleixner2023-10-191-44/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Sanitize the microcode scan loop, fixup printks and move the loading function for builtin microcode next to the place where it is used and mark it __init. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115902.389400871@linutronix.de
| * | | x86/microcode/intel: Simplify and rename generic_load_microcode()Thomas Gleixner2023-10-191-30/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | so it becomes less obfuscated and rename it because there is nothing generic about it. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115902.330295409@linutronix.de
| * | | x86/microcode/intel: Simplify scan_microcode()Thomas Gleixner2023-10-191-21/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make it readable and comprehensible. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115902.271940980@linutronix.de
| * | | x86/microcode/intel: Rip out mixed stepping support for Intel CPUsAshok Raj2023-10-194-121/+34
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Mixed steppings aren't supported on Intel CPUs. Only one microcode patch is required for the entire system. The caching of microcode blobs which match the family and model is therefore pointless and in fact is dysfunctional as CPU hotplug updates use only a single microcode blob, i.e. the one where *intel_ucode_patch points to. Remove the microcode cache and make it an AMD local feature. [ tglx: - save only at the end. Otherwise random microcode ends up in the pointer for early loading - free the ucode patch pointer in save_microcode_patch() only after kmemdup() has succeeded, as reported by Andrew Cooper ] Originally-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ashok Raj <ashok.raj@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.404362809@linutronix.de
| * | | x86/microcode/32: Move early loading after paging enableThomas Gleixner2023-10-189-270/+71
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
| * | | x86/boot/32: Temporarily map initrd for microcode loadingThomas Gleixner2023-10-182-2/+54
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Early microcode loading on 32-bit runs in physical address mode because the initrd is not covered by the initial page tables. That results in a horrible mess all over the microcode loader code. Provide a temporary mapping for the initrd in the initial page tables by appending it to the actual initial mapping starting with a new PGD or PMD depending on the configured page table levels ([non-]PAE). The page table entries are located after _brk_end so they are not permanently using memory space. The mapping is invalidated right away in i386_start_kernel() after the early microcode loader has run. This prepares for removing the physical address mode oddities from all over the microcode loader code, which in turn allows further cleanups. Provide the map and unmap code and document the place where the microcode loader needs to be invoked with a comment. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.292291436@linutronix.de
| * | | x86/microcode: Provide CONFIG_MICROCODE_INITRD32Thomas Gleixner2023-10-181-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Create an aggregate config switch which covers X86_32, MICROCODE and BLK_DEV_INITRD to avoid lengthy #ifdeffery in upcoming code. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.236208250@linutronix.de
| * | | x86/boot/32: Restructure mk_early_pgtbl_32()Thomas Gleixner2023-10-181-19/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Prepare it for adding a temporary initrd mapping by splitting out the actual map loop. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.175910753@linutronix.de
| * | | x86/boot/32: De-uglify the 2/3 level paging difference in mk_early_pgtbl_32()Thomas Gleixner2023-10-182-18/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Move the ifdeffery out of the function and use proper typedefs to make it work for both 2 and 3 level paging. No functional change. [ bp: Move mk_early_pgtbl_32() declaration into a header. ] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.111059491@linutronix.de
| * | | x86/boot: Use __pa_nodebug() in mk_early_pgtbl_32()Thomas Gleixner2023-10-181-10/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Use the existing macro instead of undefining and redefining __pa(). No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.051625827@linutronix.de
| * | | x86/boot/32: Disable stackprotector and tracing for mk_early_pgtbl_32()Thomas Gleixner2023-10-182-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Stackprotector cannot work before paging is enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via FS on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. Stop relying on pure luck and disable the stack protector for the only C function which is called during early boot before paging is enabled. Remove function tracing from the whole source file as there is no way to trace this at all, but in case of CONFIG_DYNAMIC_FTRACE=n mk_early_pgtbl_32() would access global function tracer variables in physical address mode which again might work by chance. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115902.156063939@linutronix.de
| * | | x86/microcode/amd: Fix snprintf() format string warning in W=1 buildPaolo Bonzini2023-10-171-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Building with GCC 11.x results in the following warning: arch/x86/kernel/cpu/microcode/amd.c: In function ‘find_blobs_in_containers’: arch/x86/kernel/cpu/microcode/amd.c:504:58: error: ‘h.bin’ directive output may be truncated writing 5 bytes into a region of size between 1 and 7 [-Werror=format-truncation=] arch/x86/kernel/cpu/microcode/amd.c:503:17: note: ‘snprintf’ output between 35 and 41 bytes into a destination of size 36 The issue is that GCC does not know that the family can only be a byte (it ultimately comes from CPUID). Suggest the right size to the compiler by marking the argument as char-size ("hh"). While at it, instead of using the slightly more obscure precision specifier use the width with zero padding (over 23000 occurrences in kernel sources, vs 500 for the idiom using the precision). Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Closes: https://lore.kernel.org/oe-kbuild-all/202308252255.2HPJ6x5Q-lkp@intel.com/ Link: https://lore.kernel.org/r/20231016224858.2829248-1-pbonzini@redhat.com
* | | | Merge tag 'kbuild-v6.7' of ↵Linus Torvalds2023-11-044-45/+4
|\ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: - Implement the binary search in modpost for faster symbol lookup - Respect HOSTCC when linking host programs written in Rust - Change the binrpm-pkg target to generate kernel-devel RPM package - Fix endianness issues for tee and ishtp MODULE_DEVICE_TABLE - Unify vdso_install rules - Remove unused __memexit* annotations - Eliminate stale whitelisting for __devinit/__devexit from modpost - Enable dummy-tools to handle the -fpatchable-function-entry flag - Add 'userldlibs' syntax * tag 'kbuild-v6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (30 commits) kbuild: support 'userldlibs' syntax kbuild: dummy-tools: pretend we understand -fpatchable-function-entry kbuild: Correct missing architecture-specific hyphens modpost: squash ALL_{INIT,EXIT}_TEXT_SECTIONS to ALL_TEXT_SECTIONS modpost: merge sectioncheck table entries regarding init/exit sections modpost: use ALL_INIT_SECTIONS for the section check from DATA_SECTIONS modpost: disallow the combination of EXPORT_SYMBOL and __meminit* modpost: remove EXIT_SECTIONS macro modpost: remove MEM_INIT_SECTIONS macro modpost: remove more symbol patterns from the section check whitelist modpost: disallow *driver to reference .meminit* sections linux/init: remove __memexit* annotations modpost: remove ALL_EXIT_DATA_SECTIONS macro kbuild: simplify cmd_ld_multi_m kbuild: avoid too many execution of scripts/pahole-flags.sh kbuild: remove ARCH_POSTLINK from module builds kbuild: unify no-compiler-targets and no-sync-config-targets kbuild: unify vdso_install rules docs: kbuild: add INSTALL_DTBS_PATH UML: remove unused cmd_vdso_install ...
| * | | | kbuild: remove ARCH_POSTLINK from module buildsMasahiro Yamada2023-10-281-3/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The '%.ko' rule in arch/*/Makefile.postlink does nothing but call the 'true' command. Remove the unneeded code. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nicolas Schier <n.schier@avm.de>