| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | | |
Each source is associated with an Event State Buffer (ESB) with a
even/odd pair of pages which provides commands to manage the source:
to trigger, to EOI, to turn off the source for instance.
The custom VM fault handler will deduce the guest IRQ number from the
offset of the fault, and the ESB page of the associated XIVE interrupt
will be inserted into the VMA using the internal structure caching
information on the interrupts.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | | |
Each thread has an associated Thread Interrupt Management context
composed of a set of registers. These registers let the thread handle
priority management and interrupt acknowledgment. The most important
are :
- Interrupt Pending Buffer (IPB)
- Current Processor Priority (CPPR)
- Notification Source Register (NSR)
They are exposed to software in four different pages each proposing a
view with a different privilege. The first page is for the physical
thread context and the second for the hypervisor. Only the third
(operating system) and the fourth (user level) are exposed the guest.
A custom VM fault handler will populate the VMA with the appropriate
pages, which should only be the OS page for now.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | | |
The state of the thread interrupt management registers needs to be
collected for migration. These registers are cached under the
'xive_saved_state.w01' field of the VCPU when the VPCU context is
pulled from the HW thread. An OPAL call retrieves the backup of the
IPB register in the underlying XIVE NVT structure and merges it in the
KVM state.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | | |
When migration of a VM is initiated, a first copy of the RAM is
transferred to the destination before the VM is stopped, but there is
no guarantee that the EQ pages in which the event notifications are
queued have not been modified.
To make sure migration will capture a consistent memory state, the
XIVE device should perform a XIVE quiesce sequence to stop the flow of
event notifications and stabilize the EQs. This is the purpose of the
KVM_DEV_XIVE_EQ_SYNC control which will also marks the EQ pages dirty
to force their transfer.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | | |
This control will be used by the H_INT_SYNC hcall from QEMU to flush
event notifications on the XIVE IC owning the source.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | | |
This control is to be used by the H_INT_RESET hcall from QEMU. Its
purpose is to clear all configuration of the sources and EQs. This is
necessary in case of a kexec (for a kdump kernel for instance) to make
sure that no remaining configuration is left from the previous boot
setup so that the new kernel can start safely from a clean state.
The queue 7 is ignored when the XIVE device is configured to run in
single escalation mode. Prio 7 is used by escalations.
The XIVE VP is kept enabled as the vCPU is still active and connected
to the XIVE device.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | | |
These controls will be used by the H_INT_SET_QUEUE_CONFIG and
H_INT_GET_QUEUE_CONFIG hcalls from QEMU to configure the underlying
Event Queue in the XIVE IC. They will also be used to restore the
configuration of the XIVE EQs and to capture the internal run-time
state of the EQs. Both 'get' and 'set' rely on an OPAL call to access
the EQ toggle bit and EQ index which are updated by the XIVE IC when
event notifications are enqueued in the EQ.
The value of the guest physical address of the event queue is saved in
the XIVE internal xive_q structure for later use. That is when
migration needs to mark the EQ pages dirty to capture a consistent
memory state of the VM.
To be noted that H_INT_SET_QUEUE_CONFIG does not require the extra
OPAL call setting the EQ toggle bit and EQ index to configure the EQ,
but restoring the EQ state will.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | | |
This control will be used by the H_INT_SET_SOURCE_CONFIG hcall from
QEMU to configure the target of a source and also to restore the
configuration of a source when migrating the VM.
The XIVE source interrupt structure is extended with the value of the
Effective Interrupt Source Number. The EISN is the interrupt number
pushed in the event queue that the guest OS will use to dispatch
events internally. Caching the EISN value in KVM eases the test when
checking if a reconfiguration is indeed needed.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | | |
The XIVE KVM device maintains a list of interrupt sources for the VM
which are allocated in the pool of generic interrupts (IPIs) of the
main XIVE IC controller. These are used for the CPU IPIs as well as
for virtual device interrupts. The IRQ number space is defined by
QEMU.
The XIVE device reuses the source structures of the XICS-on-XIVE
device for the source blocks (2-level tree) and for the source
interrupts. Under XIVE native, the source interrupt caches mostly
configuration information and is less used than under the XICS-on-XIVE
device in which hcalls are still necessary at run-time.
When a source is initialized in KVM, an IPI interrupt source is simply
allocated at the OPAL level and then MASKED. KVM only needs to know
about its type: LSI or MSI.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | | |
The user interface exposes a new capability KVM_CAP_PPC_IRQ_XIVE to
let QEMU connect the vCPU presenters to the XIVE KVM device if
required. The capability is not advertised for now as the full support
for the XIVE native exploitation mode is not yet available. When this
is case, the capability will be advertised on PowerNV Hypervisors
only. Nested guests (pseries KVM Hypervisor) are not supported.
Internally, the interface to the new KVM device is protected with a
new interrupt mode: KVMPPC_IRQ_XIVE.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | | |
This is the basic framework for the new KVM device supporting the XIVE
native exploitation mode. The user interface exposes a new KVM device
to be created by QEMU, only available when running on a L0 hypervisor.
Support for nested guests is not available yet.
The XIVE device reuses the device structure of the XICS-on-XIVE device
as they have a lot in common. That could possibly change in the future
if the need arise.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | |\ \ \ \ \ \ \ \ \ \ \
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
This merges in the ppc-kvm topic branch from the powerpc tree to get
patches which touch both general powerpc code and KVM code, one of
which is a prerequisite for following patches.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
On POWER9 and later processors where the host can schedule vcpus on a
per thread basis, there is a streamlined entry path used when the guest
is radix. This entry path saves/restores the fp and vr state in
kvmhv_p9_guest_entry() by calling store_[fp/vr]_state() and
load_[fp/vr]_state(). This is the same as the old entry path however the
old entry path also saved/restored the VRSAVE register, which isn't done
in the new entry path.
This means that the vrsave register is now volatile across guest exit,
which is an incorrect change in behaviour.
Fix this by saving/restoring the vrsave register in kvmhv_p9_guest_entry().
This restores the old, correct, behaviour.
Fixes: 95a6432ce9038 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
When running on POWER9 with kvm_hv.indep_threads_mode = N and the host
in SMT1 mode, KVM will run guest VCPUs on offline secondary threads.
If those guests are in radix mode, we fail to load the LPID and flush
the TLB if necessary, leading to the guest crashing with an
unsupported MMU fault. This arises from commit 9a4506e11b97 ("KVM:
PPC: Book3S HV: Make radix handle process scoped LPID flush in C,
with relocation on", 2018-05-17), which didn't consider the case
where indep_threads_mode = N.
For simplicity, this makes the real-mode guest entry path flush the
TLB in the same place for both radix and hash guests, as we did before
9a4506e11b97, though the code is now C code rather than assembly code.
We also have the radix TLB flush open-coded rather than calling
radix__local_flush_tlb_lpid_guest(), because the TLB flush can be
called in real mode, and in real mode we don't want to invoke the
tracepoint code.
Fixes: 9a4506e11b97 ("KVM: PPC: Book3S HV: Make radix handle process scoped LPID flush in C, with relocation on")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
This replaces assembler code in book3s_hv_rmhandlers.S that checks
the kvm->arch.need_tlb_flush cpumask and optionally does a TLB flush
with C code in book3s_hv_builtin.c. Note that unlike the radix
version, the hash version doesn't do an explicit ERAT invalidation
because we will invalidate and load up the SLB before entering the
guest, and that will invalidate the ERAT.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
The code in book3s_hv_rmhandlers.S that pushes the XIVE virtual CPU
context to the hardware currently assumes it is being called in real
mode, which is usually true. There is however a path by which it can
be executed in virtual mode, in the case where indep_threads_mode = N.
A virtual CPU executing on an offline secondary thread can take a
hypervisor interrupt in virtual mode and return from the
kvmppc_hv_entry() call after the kvm_secondary_got_guest label.
It is possible for it to be given another vcpu to execute before it
gets to execute the stop instruction. In that case it will call
kvmppc_hv_entry() for the second VCPU in virtual mode, and the XIVE
vCPU push code will be executed in virtual mode. The result in that
case will be a host crash due to an unexpected data storage interrupt
caused by executing the stdcix instruction in virtual mode.
This fixes it by adding a code path for virtual mode, which uses the
virtual TIMA pointer and normal load/store instructions.
[paulus@ozlabs.org - wrote patch description]
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
This fixes a bug in the XICS emulation on POWER9 machines which is
triggered by the guest doing a H_IPI with priority = 0 (the highest
priority). What happens is that the notification interrupt arrives
at the destination at priority zero. The loop in scan_interrupts()
sees that a priority 0 interrupt is pending, but because xc->mfrr is
zero, we break out of the loop before taking the notification
interrupt out of the queue and EOI-ing it. (This doesn't happen
when xc->mfrr != 0; in that case we process the priority-0 notification
interrupt on the first iteration of the loop, and then break out of
a subsequent iteration of the loop with hirq == XICS_IPI.)
To fix this, we move the prio >= xc->mfrr check down to near the end
of the loop. However, there are then some other things that need to
be adjusted. Since we are potentially handling the notification
interrupt and also delivering an IPI to the guest in the same loop
iteration, we need to update pending and handle any q->pending_count
value before the xc->mfrr check, rather than at the end of the loop.
Also, we need to update the queue pointers when we have processed and
EOI-ed the notification interrupt, since we may not do it later.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
I made the same typo when trying to grep for uses of smp_wmb and figured
I might as well fix it.
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
We already allocate hardware TCE tables in multiple levels and skip
intermediate levels when we can, now it is a turn of the KVM TCE tables.
Thankfully these are allocated already in 2 levels.
This moves the table's last level allocation from the creating helper to
kvmppc_tce_put() and kvm_spapr_tce_fault(). Since such allocation cannot
be done in real mode, this creates a virtual mode version of
kvmppc_tce_put() which handles allocations.
This adds kvmppc_rm_ioba_validate() to do an additional test if
the consequent kvmppc_tce_put() needs a page which has not been allocated;
if this is the case, we bail out to virtual mode handlers.
The allocations are protected by a new mutex as kvm->lock is not suitable
for the task because the fault handler is called with the mmap_sem held
but kvmhv_setup_mmu() locks kvm->lock and mmap_sem in the reverse order.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
The kvmppc_tce_to_ua() helper is called from real and virtual modes
and it works fine as long as CONFIG_DEBUG_LOCKDEP is not enabled.
However if the lockdep debugging is on, the lockdep will most likely break
in kvm_memslots() because of srcu_dereference_check() so we need to use
PPC-own kvm_memslots_raw() which uses realmode safe
rcu_dereference_raw_notrace().
This creates a realmode copy of kvmppc_tce_to_ua() which replaces
kvm_memslots() with kvm_memslots_raw().
Since kvmppc_rm_tce_to_ua() becomes static and can only be used inside
HV KVM, this moves it earlier under CONFIG_KVM_BOOK3S_HV_POSSIBLE.
This moves truly virtual-mode kvmppc_tce_to_ua() to where it belongs and
drops the prmap parameter which was never used in the virtual mode.
Fixes: d3695aa4f452 ("KVM: PPC: Add support for multiple-TCE hcalls", 2016-02-15)
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
The trace_hardirqs_on() sets current->hardirqs_enabled and from here
the lockdep assumes interrupts are enabled although they are remain
disabled until the context switches to the guest. Consequent
srcu_read_lock() checks the flags in rcu_lock_acquire(), observes
disabled interrupts and prints a warning (see below).
This moves trace_hardirqs_on/off closer to __kvmppc_vcore_entry to
prevent lockdep from being confused.
DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)
WARNING: CPU: 16 PID: 8038 at kernel/locking/lockdep.c:4128 check_flags.part.25+0x224/0x280
[...]
NIP [c000000000185b84] check_flags.part.25+0x224/0x280
LR [c000000000185b80] check_flags.part.25+0x220/0x280
Call Trace:
[c000003fec253710] [c000000000185b80] check_flags.part.25+0x220/0x280 (unreliable)
[c000003fec253780] [c000000000187ea4] lock_acquire+0x94/0x260
[c000003fec253840] [c00800001a1e9768] kvmppc_run_core+0xa60/0x1ab0 [kvm_hv]
[c000003fec253a10] [c00800001a1ed944] kvmppc_vcpu_run_hv+0x73c/0xec0 [kvm_hv]
[c000003fec253ae0] [c00800001a1095dc] kvmppc_vcpu_run+0x34/0x48 [kvm]
[c000003fec253b00] [c00800001a1056bc] kvm_arch_vcpu_ioctl_run+0x2f4/0x400 [kvm]
[c000003fec253b90] [c00800001a0f3618] kvm_vcpu_ioctl+0x460/0x850 [kvm]
[c000003fec253d00] [c00000000041c4f4] do_vfs_ioctl+0xe4/0x930
[c000003fec253db0] [c00000000041ce04] ksys_ioctl+0xc4/0x110
[c000003fec253e00] [c00000000041ce78] sys_ioctl+0x28/0x80
[c000003fec253e20] [c00000000000b5a4] system_call+0x5c/0x70
Instruction dump:
419e0034 3d220004 39291730 81290000 2f890000 409e0020 3c82ffc6 3c62ffc5
3884be70 386329c0 4bf6ea71 60000000 <0fe00000> 3c62ffc6 3863be90 4801273d
irq event stamp: 1025
hardirqs last enabled at (1025): [<c00800001a1e9728>] kvmppc_run_core+0xa20/0x1ab0 [kvm_hv]
hardirqs last disabled at (1024): [<c00800001a1e9358>] kvmppc_run_core+0x650/0x1ab0 [kvm_hv]
softirqs last enabled at (0): [<c0000000000f1210>] copy_process.isra.4.part.5+0x5f0/0x1d00
softirqs last disabled at (0): [<0000000000000000>] (null)
---[ end trace 31180adcc848993e ]---
possible reason: unannotated irqs-off.
irq event stamp: 1025
hardirqs last enabled at (1025): [<c00800001a1e9728>] kvmppc_run_core+0xa20/0x1ab0 [kvm_hv]
hardirqs last disabled at (1024): [<c00800001a1e9358>] kvmppc_run_core+0x650/0x1ab0 [kvm_hv]
softirqs last enabled at (0): [<c0000000000f1210>] copy_process.isra.4.part.5+0x5f0/0x1d00
softirqs last disabled at (0): [<0000000000000000>] (null)
Fixes: 8b24e69fc47e ("KVM: PPC: Book3S HV: Close race with testing for signals on guest entry", 2017-06-26)
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Implement a real mode handler for the H_CALL H_PAGE_INIT which can be
used to zero or copy a guest page. The page is defined to be 4k and must
be 4k aligned.
The in-kernel real mode handler halves the time to handle this H_CALL
compared to handling it in userspace for a hash guest.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Implement a virtual mode handler for the H_CALL H_PAGE_INIT which can be
used to zero or copy a guest page. The page is defined to be 4k and must
be 4k aligned.
The in-kernel handler halves the time to handle this H_CALL compared to
handling it in userspace for a radix guest.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
The RDPMC-exiting control is dependent on the existence of the RDPMC
instruction itself, i.e. is not tied to the "Architectural Performance
Monitoring" feature. For all intents and purposes, the control exists
on all CPUs with VMX support since RDPMC also exists on all VCPUs with
VMX supported. Per Intel's SDM:
The RDPMC instruction was introduced into the IA-32 Architecture in
the Pentium Pro processor and the Pentium processor with MMX technology.
The earlier Pentium processors have performance-monitoring counters, but
they must be read with the RDMSR instruction.
Because RDPMC-exiting always exists, KVM requires the control and refuses
to load if it's not available. As a result, hiding the PMU from a guest
breaks nested virtualization if the guest attemts to use KVM.
While it's not explicitly stated in the RDPMC pseudocode, the VM-Exit
check for RDPMC-exiting follows standard fault vs. VM-Exit prioritization
for privileged instructions, e.g. occurs after the CPL/CR0.PE/CR4.PCE
checks, but before the counter referenced in ECX is checked for validity.
In other words, the original KVM behavior of injecting a #GP was correct,
and the KVM unit test needs to be adjusted accordingly, e.g. eat the #GP
when the unit test guest (L3 in this case) executes RDPMC without
RDPMC-exiting set in the unit test host (L2).
This reverts commit e51bfdb68725dc052d16241ace40ea3140f938aa.
Fixes: e51bfdb68725 ("KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU")
Reported-by: David Hill <hilld@binarystorm.net>
Cc: Saar Amar <saaramar@microsoft.com>
Cc: Mihai Carabas <mihai.carabas@oracle.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Currently KVM sets 5 most significant bits of physical address bits
reported by CPUID (boot_cpu_data.x86_phys_bits) for nonpresent or
reserved bits SPTE to mitigate L1TF attack from guest when using shadow
MMU. However for some particular Intel CPUs the physical address bits
of internal cache is greater than physical address bits reported by
CPUID.
Use the kernel's existing boot_cpu_data.x86_cache_bits to determine the
five most significant bits. Doing so improves KVM's L1TF mitigation in
the unlikely scenario that system RAM overlaps the high order bits of
the "real" physical address space as reported by CPUID. This aligns with
the kernel's warnings regarding L1TF mitigation, e.g. in the above
scenario the kernel won't warn the user about lack of L1TF mitigation
if x86_cache_bits is greater than x86_phys_bits.
Also initialize shadow_nonpresent_or_rsvd_mask explicitly to make it
consistent with other 'shadow_{xxx}_mask', and opportunistically add a
WARN once if KVM's L1TF mitigation cannot be applied on a system that
is marked as being susceptible to L1TF.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
If L1 is using an MSR bitmap, unconditionally merge the MSR bitmaps from
L0 and L1 for MSR_{KERNEL,}_{FS,GS}_BASE. KVM unconditionally exposes
MSRs L1. If KVM is also running in L1 then it's highly likely L1 is
also exposing the MSRs to L2, i.e. KVM doesn't need to intercept L2
accesses.
Based on code from Jintack Lim.
Cc: Jintack Lim <jintack@xxxxxxxxxxxxxxx>
Signed-off-by: Sean Christopherson <sean.j.christopherson@xxxxxxxxx>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
nested_run_pending=1 implies we have successfully entered guest mode.
Move setting from external state in vmx_set_nested_state() until after
all other checks are complete.
Based on a patch by Aaron Lewis.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
new state
Move call to nested_enable_evmcs until after free_nested() is complete.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Use specific inline functions for RIP and RSP instead of
going through kvm_register_read and kvm_register_write,
which are quite a mouthful. kvm_rsp_read and kvm_rsp_write
did not exist, so add them.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
... now that there is no overhead when using dedicated accessors.
Opportunistically remove a bogus "FIXME" in handle_rdmsr() regarding
the upper 32 bits of RAX and RDX. Zeroing the upper 32 bits is
architecturally correct as 32-bit writes in 64-bit mode unconditionally
clear the upper 32 bits.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Except for RSP and RIP, which are held in VMX's VMCS, GPRs are always
treated "available and dirtly" on both VMX and SVM, i.e. are
unconditionally loaded/saved immediately before/after VM-Enter/VM-Exit.
Eliminating the unnecessary caching code reduces the size of KVM by a
non-trivial amount, much of which comes from the most common code paths.
E.g. on x86_64, kvm_emulate_cpuid() is reduced from 342 to 182 bytes and
kvm_emulate_hypercall() from 1362 to 1143, with the total size of KVM
dropping by ~1000 bytes. With CONFIG_RETPOLINE=y, the numbers are even
more pronounced, e.g.: 353->182, 1418->1172 and well over 2000 bytes.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
pfn_valid check is not sufficient because it only checks if a page has a struct
page or not, if "mem=" was passed to the kernel some valid pages won't have a
struct page. This means that if guests were assigned valid memory that lies
after the mem= boundary it will be passed uncached to the guest no matter what
the guest caching attributes are for this memory.
Introduce a new function e820__mapped_raw_any which is equivalent to
e820__mapped_any but uses the original e820 unmodified and use it to
identify real *RAM*.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Use page_address_valid in a few more locations that is already checking for
a page aligned address that does not cross the maximum physical address.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Use kvm_vcpu_map for accessing the enlightened VMCS since using
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Use kvm_vcpu_map for accessing the shadow VMCS since using
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzessutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Use the new mapping API for mapping guest memory to avoid depending on
"struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Use kvm_vcpu_map in emulator_cmpxchg_emulated since using
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <kjonrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Use kvm_vcpu_map when mapping the posted interrupt descriptor table since
using kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory
that has a "struct page".
One additional semantic change is that the virtual host mapping lifecycle
has changed a bit. It now has the same lifetime of the pinning of the
interrupt descriptor table page on the host side.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Use kvm_vcpu_map when mapping the virtual APIC page since using
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
One additional semantic change is that the virtual host mapping lifecycle
has changed a bit. It now has the same lifetime of the pinning of the
virtual APIC page on the host side.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Use kvm_vcpu_map when mapping the L1 MSR bitmap since using
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Use kvm_vcpu_map to the map the VMCS12 from guest memory because
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
cmpxchg_gpte() calls get_user_pages_fast() to retrieve the number of
pages and the respective struct page to map in the kernel virtual
address space.
This doesn't work if get_user_pages_fast() is invoked with a userspace
virtual address that's backed by PFNs outside of kernel reach (e.g., when
limiting the kernel memory with mem= in the command line and using
/dev/mem to map memory).
If get_user_pages_fast() fails, look up the VMA that back the userspace
virtual address, compute the PFN and the physical address, and map it in
the kernel virtual address space with memremap().
Signed-off-by: Filippo Sironi <sironi@amazon.de>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Update the PML table without mapping and unmapping the page. This also
avoids using kvm_vcpu_gpa_to_page(..) which assumes that there is a "struct
page" for guest memory.
As a side-effect of using kvm_write_guest_page the page is also properly
marked as dirty.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Read the data directly from guest memory instead of the map->read->unmap
sequence. This also avoids using kvm_vcpu_gpa_to_page() and kmap() which
assumes that there is a "struct page" for guest memory.
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
The hardware configuration register has some useful bits which can be
used by guests. Implement McStatusWrEn which can be used by guests when
injecting MCEs with the in-kernel mce-inject module.
For that, we need to set bit 18 - McStatusWrEn - first, before writing
the MCi_STATUS registers (otherwise we #GP).
Add the required machinery to do so.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: KVM <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
The capabilities header depends on asm/vmx.h but doesn't explicitly
include said file. This currently doesn't cause problems as all users
of capbilities.h first include asm/vmx.h, but the issue often results in
build errors if someone starts moving things around the VMX files.
Fixes: 3077c1910882 ("KVM: VMX: Move capabilities structs and helpers to dedicated file")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Smatch complains about this:
arch/x86/kvm/vmx/vmx.c:5730 dump_vmcs()
warn: KERN_* level not at start of string
The code should be using pr_cont() instead of pr_err().
Fixes: 9d609649bb29 ("KVM: vmx: print more APICv fields in dump_vmcs")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Ten percent of nothin' is... let me do the math here. Nothin' into
nothin', carry the nothin'...
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Checking for a pending non-periodic interrupt in start_hv_timer() leads
to restart_apic_timer() making an unnecessary call to start_sw_timer()
due to start_hv_timer() returning false.
Alternatively, start_hv_timer() could return %true when there is a
pending non-periodic interrupt, but that approach is less intuitive,
i.e. would require a beefy comment to explain an otherwise simple check.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Suggested-by: Liran Alon <liran.alon@oracle.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
Refactor kvm_x86_ops->set_hv_timer to use an explicit parameter for
stating that the timer has expired. Overloading the return value is
unnecessarily clever, e.g. can lead to confusion over the proper return
value from start_hv_timer() when r==1.
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|