| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In idpf_remove we need to tear down the virtchnl core with
idpf_vc_core_deinit so we can free up resources and leave things in a
good state. However, in the case where we failed to establish VC
communications we may not have ever actually successfully initialized
the virtchnl core.
This fixes it by setting a bit once we successfully init the virtchnl
core. Then, in deinit, we'll check for it before going on further,
otherwise we just return. Also clear the bit at the end of deinit so we
know it's gone now.
Tested-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Signed-off-by: Alan Brady <alan.brady@intel.com>
Tested-by: Krishneil Singh <krishneil.k.singh@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We can now remove a bunch of gross code we don't need anymore like the
vc state bits and vc_buf_lock since everything is using transaction API
now.
Tested-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com>
Reviewed-by: Igor Bagnucki <igor.bagnucki@intel.com>
Signed-off-by: Alan Brady <alan.brady@intel.com>
Tested-by: Krishneil Singh <krishneil.k.singh@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reworks queue specific virtchnl messages to use the added
transaction API. It is fairly mechanical and generally makes the
functions using it more simple. Functions using transaction API no
longer need to take the vc_buf_lock since it's not using it anymore.
After filling out an idpf_vc_xn_params struct, idpf_vc_xn_exec takes
care of the send and recv handling.
This also converts those functions where appropriate to use
auto-variables instead of manually calling kfree. This greatly
simplifies the memory alloc paths and makes them less prone memory
leaks.
Tested-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com>
Reviewed-by: Igor Bagnucki <igor.bagnucki@intel.com>
Signed-off-by: Alan Brady <alan.brady@intel.com>
Tested-by: Krishneil Singh <krishneil.k.singh@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This starts refactoring how virtchnl messages are handled by adding a
transaction manager (idpf_vc_xn_manager).
There are two primary motivations here which are to enable handling of
multiple messages at once and to make it more robust in general. As it
is right now, the driver may only have one pending message at a time and
there's no guarantee that the response we receive was actually intended
for the message we sent prior.
This works by utilizing a "cookie" field of the message descriptor. It
is arbitrary what data we put in the cookie and the response is required
to have the same cookie the original message was sent with. Then using a
"transaction" abstraction that uses the completion API to pair responses
to the message it belongs to.
The cookie works such that the first half is the index to the
transaction in our array, and the second half is a "salt" that gets
incremented every message. This enables quick lookups into the array and
also ensuring we have the correct message. The salt is necessary because
after, for example, a message times out and we deem the response was
lost for some reason, we could theoretically reuse the same index but
using a different salt ensures that when we do actually get a response
it's not the old message that timed out previously finally coming in.
Since the number of transactions allocated is U8_MAX and the salt is 8
bits, we can never have a conflict because we can't roll over the salt
without using more transactions than we have available.
This starts by only converting the VIRTCHNL2_OP_VERSION message to use
this new transaction API. Follow up patches will convert all virtchnl
messages to use the API.
Tested-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com>
Reviewed-by: Igor Bagnucki <igor.bagnucki@intel.com>
Co-developed-by: Joshua Hay <joshua.a.hay@intel.com>
Signed-off-by: Joshua Hay <joshua.a.hay@intel.com>
Signed-off-by: Alan Brady <alan.brady@intel.com>
Tested-by: Krishneil Singh <krishneil.k.singh@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
idpf.h is quite heavy. We can reduce the burden a fair bit by
introducing an idpf_virtchnl.h file. This mostly just moves function
declarations but there are many of them. This also makes an attempt to
group those declarations in a way that makes some sense instead of
mishmashed.
Suggested-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Signed-off-by: Alan Brady <alan.brady@intel.com>
Tested-by: Krishneil Singh <krishneil.k.singh@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
idpf supports the header split feature and that feature is always
enabled by default.
However, for flexibility reasons and to simplify some scenarios, it
would be useful to have the support for switching the header split
off (and on) from the userspace.
Address that need by adding the user config parameter, the functions
for disabling (or enabling) the header split feature, and calls to
them from the Ethtool ringparam callbacks.
It still is enabled by default if supported by the hardware.
Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com>
Signed-off-by: Michal Kubiak <michal.kubiak@intel.com>
Co-developed-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Signed-off-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Link: https://lore.kernel.org/r/20231212142752.935000-3-aleksander.lobakin@intel.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support for SRIOV: send the requested number of VFs
to the device Control Plane, via the virtchnl message
and then enable the VFs using 'pci_enable_sriov'.
Add other ndo ops supported by the driver such as features_check,
set_rx_mode, validate_addr, set_mac_address, change_mtu, get_stats64,
set_features, and tx_timeout. Initialize the statistics task which
requests the queue related statistics to the CP. Add loopback
and promiscuous mode support and the respective virtchnl messages.
Finally, add documentation and build support for the driver.
Signed-off-by: Joshua Hay <joshua.a.hay@intel.com>
Co-developed-by: Alan Brady <alan.brady@intel.com>
Signed-off-by: Alan Brady <alan.brady@intel.com>
Co-developed-by: Madhu Chittim <madhu.chittim@intel.com>
Signed-off-by: Madhu Chittim <madhu.chittim@intel.com>
Co-developed-by: Phani Burra <phani.r.burra@intel.com>
Signed-off-by: Phani Burra <phani.r.burra@intel.com>
Reviewed-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Co-developed-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Initialize all the ethtool ops that are supported by the driver and
add the necessary support for the ethtool callbacks. Also add
asynchronous link notification virtchnl support where the device
Control Plane sends the link status and link speed as an
asynchronous event message. Driver report the link speed on
ethtool .idpf_get_link_ksettings query.
Introduce soft reset function which is used by some of the ethtool
callbacks such as .set_channels, .set_ringparam etc. to change the
existing queue configuration. It deletes the existing queues by sending
delete queues virtchnl message to the CP and calls the 'vport_stop' flow
which disables the queues, vport etc. New set of queues are requested to
the CP and reconfigure the queue context by calling the 'vport_open'
flow. Soft reset flow also adjusts the number of vectors associated to a
vport if .set_channels is called.
Signed-off-by: Alan Brady <alan.brady@intel.com>
Co-developed-by: Alice Michael <alice.michael@intel.com>
Signed-off-by: Alice Michael <alice.michael@intel.com>
Co-developed-by: Joshua Hay <joshua.a.hay@intel.com>
Signed-off-by: Joshua Hay <joshua.a.hay@intel.com>
Co-developed-by: Phani Burra <phani.r.burra@intel.com>
Signed-off-by: Phani Burra <phani.r.burra@intel.com>
Reviewed-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Co-developed-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add the start_xmit, TX and RX napi poll support for the single queue
model. Unlike split queue model, single queue uses same queue to post
buffer descriptors and completed descriptors.
Signed-off-by: Joshua Hay <joshua.a.hay@intel.com>
Co-developed-by: Alan Brady <alan.brady@intel.com>
Signed-off-by: Alan Brady <alan.brady@intel.com>
Co-developed-by: Madhu Chittim <madhu.chittim@intel.com>
Signed-off-by: Madhu Chittim <madhu.chittim@intel.com>
Co-developed-by: Phani Burra <phani.r.burra@intel.com>
Signed-off-by: Phani Burra <phani.r.burra@intel.com>
Reviewed-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Co-developed-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support to handle interrupts for the RX completion queue and
RX buffer queue. When the interrupt fires on RX completion queue,
process the RX descriptors that are received. Allocate and prepare
the SKB with the RX packet info, for both data and header buffer.
IDPF uses software maintained refill queues to manage buffers between
RX queue producer and the buffer queue consumer. They are required in
order to maintain a lockless buffer management system and are strictly
software only constructs. Instead of updating the RX buffer queue tail
with available buffers right after the clean routine, it posts the
buffer ids to the refill queues, only to post them to the HW later.
If the generic receive offload (GRO) is enabled in the capabilities
and turned on by default or via ethtool, then HW performs the
packet coalescing if certain criteria are met by the incoming
packets and updates the RX descriptor. Similar to GRO, if generic
checksum is enabled, HW computes the checksum and updates the
respective fields in the descriptor. Add support to update the
SKB fields with the GRO and the generic checksum received.
Signed-off-by: Alan Brady <alan.brady@intel.com>
Co-developed-by: Joshua Hay <joshua.a.hay@intel.com>
Signed-off-by: Joshua Hay <joshua.a.hay@intel.com>
Co-developed-by: Madhu Chittim <madhu.chittim@intel.com>
Signed-off-by: Madhu Chittim <madhu.chittim@intel.com>
Co-developed-by: Phani Burra <phani.r.burra@intel.com>
Signed-off-by: Phani Burra <phani.r.burra@intel.com>
Reviewed-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Co-developed-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support to handle the interrupts for the TX completion queue and
process the various completion types.
In the flow scheduling mode, the driver processes primarily buffer
completions as well as descriptor completions occasionally. This mode
supports out of order TX completions. To do so, HW generates one buffer
completion per packet. Each of those completions contains the unique tag
provided during the TX encoding which is used to locate the packet either
on the TX buffer ring or in a hash table. The hash table is used to track
TX buffer information so the descriptor(s) for a given packet can be
reused while the driver is still waiting on the buffer completion(s).
Packets end up in the hash table in one of 2 ways: 1) a packet was
stashed during descriptor completion cleaning, or 2) because an out of
order buffer completion was processed. A descriptor completion arrives
only every so often and is primarily used to guarantee the TX descriptor
ring can be reused without having to wait on the individual buffer
completions. E.g. a descriptor completion for N+16 guarantees HW read all
of the descriptors for packets N through N+15, therefore all of the
buffers for packets N through N+15 are stashed into the hash table and the
descriptors can be reused for more TX packets. Similarly, a packet can be
stashed in the hash table because an out an order buffer completion was
processed. E.g. processing a buffer completion for packet N+3 implies that
HW read all of the descriptors for packets N through N+3 and they can be
reused. However, the HW did not do the DMA yet. The buffers for packets N
through N+2 cannot be freed, so they are stashed in the hash table.
In either case, the buffer completions will eventually be processed for
all of the stashed packets, and all of the buffers will be cleaned from
the hash table.
In queue based scheduling mode, the driver processes primarily descriptor
completions and cleans the TX ring the conventional way.
Finally, the driver triggers a TX queue drain after sending the disable
queues virtchnl message. When the HW completes the queue draining, it
sends the driver a queue marker packet completion. The driver determines
when all TX queues have been drained and proceeds with the disable flow.
With this, the driver can send TX packets and clean up the resources
properly.
Signed-off-by: Joshua Hay <joshua.a.hay@intel.com>
Co-developed-by: Alan Brady <alan.brady@intel.com>
Signed-off-by: Alan Brady <alan.brady@intel.com>
Co-developed-by: Madhu Chittim <madhu.chittim@intel.com>
Signed-off-by: Madhu Chittim <madhu.chittim@intel.com>
Co-developed-by: Phani Burra <phani.r.burra@intel.com>
Signed-off-by: Phani Burra <phani.r.burra@intel.com>
Reviewed-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Co-developed-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add start_xmit support for split queue model. To start with, add the
necessary checks to linearize the skb if it uses more number of
buffers than the hardware supported limit. Stop the transmit queue
if there are no enough descriptors available for the skb to use or
if there we're going to potentially overrun the completion queue.
Finally prepare the descriptor with all the required
information and update the tail.
Signed-off-by: Joshua Hay <joshua.a.hay@intel.com>
Co-developed-by: Alan Brady <alan.brady@intel.com>
Signed-off-by: Alan Brady <alan.brady@intel.com>
Co-developed-by: Madhu Chittim <madhu.chittim@intel.com>
Signed-off-by: Madhu Chittim <madhu.chittim@intel.com>
Co-developed-by: Phani Burra <phani.r.burra@intel.com>
Signed-off-by: Phani Burra <phani.r.burra@intel.com>
Reviewed-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Co-developed-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To further continue 'vport open', initialize all the resources
required for the interrupts. To start with, initialize the
queue vector indices with the ones received from the device
Control Plane. Now that all the TX and RX queues are initialized,
map the RX descriptor and buffer queues as well as TX completion
queues to the allocated vectors. Initialize and enable the napi
handler for the napi polling. Finally, request the IRQs for the
interrupt vectors from the stack and setup the interrupt handler.
Once the interrupt init is done, send 'map queue vector', 'enable
queues' and 'enable vport' virtchnl messages to the CP to complete
the 'vport open' flow.
Co-developed-by: Alan Brady <alan.brady@intel.com>
Signed-off-by: Alan Brady <alan.brady@intel.com>
Co-developed-by: Joshua Hay <joshua.a.hay@intel.com>
Signed-off-by: Joshua Hay <joshua.a.hay@intel.com>
Co-developed-by: Madhu Chittim <madhu.chittim@intel.com>
Signed-off-by: Madhu Chittim <madhu.chittim@intel.com>
Co-developed-by: Phani Burra <phani.r.burra@intel.com>
Signed-off-by: Phani Burra <phani.r.burra@intel.com>
Reviewed-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Similar to the TX, RX also supports both single and split queue models.
In single queue model, the same descriptor queue is used by SW to post
buffer descriptors to HW and by HW to post completed descriptors
to SW. In split queue model, "RX buffer queues" are used to pass
descriptor buffers from SW to HW whereas "RX queues" are used to
post the descriptor completions i.e. descriptors that point to
completed buffers, from HW to SW. "RX queue group" is a set of
RX queues grouped together and will be serviced by a "RX buffer queue
group". IDPF supports 2 buffer queues i.e. large buffer (4KB) queue
and small buffer (2KB) queue per buffer queue group. HW uses large
buffers for 'hardware gro' feature and also if the packet size is
more than 2KB, if not 2KB buffers are used.
Add all the resources required for the RX queues initialization.
Allocate memory for the RX queue and RX buffer queue groups. Initialize
the software maintained refill queues for buffer management algorithm.
Same like the TX queues, initialize the queue parameters for the RX
queues and send the config RX queue virtchnl message to the device
Control Plane.
Signed-off-by: Alan Brady <alan.brady@intel.com>
Co-developed-by: Alice Michael <alice.michael@intel.com>
Signed-off-by: Alice Michael <alice.michael@intel.com>
Co-developed-by: Joshua Hay <joshua.a.hay@intel.com>
Signed-off-by: Joshua Hay <joshua.a.hay@intel.com>
Co-developed-by: Madhu Chittim <madhu.chittim@intel.com>
Signed-off-by: Madhu Chittim <madhu.chittim@intel.com>
Co-developed-by: Phani Burra <phani.r.burra@intel.com>
Signed-off-by: Phani Burra <phani.r.burra@intel.com>
Reviewed-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Co-developed-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
IDPF supports two queue models i.e. single queue which is a traditional
queueing model as well as split queue model. In single queue model,
the same descriptor queue is used by SW to post descriptors to the HW,
HW to post completed descriptors to SW. In split queue model, "TX Queues"
are used to pass buffers from SW to HW and "TX Completion Queues"
are used to post descriptor completions from HW to SW. Device supports
asymmetric ratio of TX queues to TX completion queues. Considering
this, queue group mechanism is used i.e. some TX queues are grouped
together which will be serviced by only one TX completion queue
per TX queue group.
Add all the resources required for the TX queues initialization.
To start with, allocate memory for the TX queue groups, TX queues and
TX completion queues. Then, allocate the descriptors for both TX and
TX completion queues, and bookkeeping buffers for TX queues alone.
Also, allocate queue vectors for the vport and initialize the TX queue
related fields for each queue vector.
Initialize the queue parameters such as q_id, q_type and tail register
offset with the info received from the device control plane (CP).
Once all the TX queues are configured, send config TX queue virtchnl
message to the CP with all the TX queue context information.
Signed-off-by: Alan Brady <alan.brady@intel.com>
Co-developed-by: Alice Michael <alice.michael@intel.com>
Signed-off-by: Alice Michael <alice.michael@intel.com>
Co-developed-by: Joshua Hay <joshua.a.hay@intel.com>
Signed-off-by: Joshua Hay <joshua.a.hay@intel.com>
Co-developed-by: Phani Burra <phani.r.burra@intel.com>
Signed-off-by: Phani Burra <phani.r.burra@intel.com>
Reviewed-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Co-developed-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add the virtchnl support to request the packet types. Parse the responses
received from CP and based on the protocol headers, populate the packet
type structure with necessary information. Initialize the MAC address
and add the virtchnl support to add and del MAC address.
Co-developed-by: Alan Brady <alan.brady@intel.com>
Signed-off-by: Alan Brady <alan.brady@intel.com>
Co-developed-by: Joshua Hay <joshua.a.hay@intel.com>
Signed-off-by: Joshua Hay <joshua.a.hay@intel.com>
Co-developed-by: Madhu Chittim <madhu.chittim@intel.com>
Signed-off-by: Madhu Chittim <madhu.chittim@intel.com>
Co-developed-by: Phani Burra <phani.r.burra@intel.com>
Signed-off-by: Phani Burra <phani.r.burra@intel.com>
Co-developed-by: Shailendra Bhatnagar <shailendra.bhatnagar@intel.com>
Signed-off-by: Shailendra Bhatnagar <shailendra.bhatnagar@intel.com>
Reviewed-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add the required support to create a vport by spawning
the init task. Once the vport is created, initialize and
allocate the resources needed for it. Configure and register
a netdev for each vport with all the features supported
by the device based on the capabilities received from the
device Control Plane. Spawn the init task till all the default
vports are created.
Co-developed-by: Alan Brady <alan.brady@intel.com>
Signed-off-by: Alan Brady <alan.brady@intel.com>
Co-developed-by: Joshua Hay <joshua.a.hay@intel.com>
Signed-off-by: Joshua Hay <joshua.a.hay@intel.com>
Co-developed-by: Madhu Chittim <madhu.chittim@intel.com>
Signed-off-by: Madhu Chittim <madhu.chittim@intel.com>
Co-developed-by: Phani Burra <phani.r.burra@intel.com>
Signed-off-by: Phani Burra <phani.r.burra@intel.com>
Co-developed-by: Shailendra Bhatnagar <shailendra.bhatnagar@intel.com>
Signed-off-by: Shailendra Bhatnagar <shailendra.bhatnagar@intel.com>
Reviewed-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As the mailbox is setup, add the necessary send and receive
mailbox message framework to support the virtchnl communication
between the driver and device Control Plane (CP).
Add the core initialization. To start with, driver confirms the
virtchnl version with the CP. Once that is done, it requests
and gets the required capabilities and resources needed such as
max vectors, queues etc.
Based on the vector information received in 'VIRTCHNL2_OP_GET_CAPS',
request the stack to allocate the required vectors. Finally add
the interrupt handling mechanism for the mailbox queue and enable
the interrupt.
Note: Checkpatch issues a warning about IDPF_FOREACH_VPORT_VC_STATE and
IDPF_GEN_STRING being complex macros and should be enclosed in parentheses
but it's not the case. They are never used as a statement and instead only
used to define the enum and array.
Co-developed-by: Alan Brady <alan.brady@intel.com>
Signed-off-by: Alan Brady <alan.brady@intel.com>
Co-developed-by: Emil Tantilov <emil.s.tantilov@intel.com>
Signed-off-by: Emil Tantilov <emil.s.tantilov@intel.com>
Co-developed-by: Joshua Hay <joshua.a.hay@intel.com>
Signed-off-by: Joshua Hay <joshua.a.hay@intel.com>
Co-developed-by: Madhu Chittim <madhu.chittim@intel.com>
Signed-off-by: Madhu Chittim <madhu.chittim@intel.com>
Co-developed-by: Phani Burra <phani.r.burra@intel.com>
Signed-off-by: Phani Burra <phani.r.burra@intel.com>
Co-developed-by: Shailendra Bhatnagar <shailendra.bhatnagar@intel.com>
Signed-off-by: Shailendra Bhatnagar <shailendra.bhatnagar@intel.com>
Reviewed-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
At the end of the probe, initialize and schedule the event workqueue.
It calls the hard reset function where reset checks are done to find
if the device is out of the reset. Control queue initialization and
the necessary control queue support is added.
Introduce function pointers for the register operations which are
different between PF and VF devices.
Signed-off-by: Joshua Hay <joshua.a.hay@intel.com>
Co-developed-by: Alan Brady <alan.brady@intel.com>
Signed-off-by: Alan Brady <alan.brady@intel.com>
Co-developed-by: Madhu Chittim <madhu.chittim@intel.com>
Signed-off-by: Madhu Chittim <madhu.chittim@intel.com>
Co-developed-by: Phani Burra <phani.r.burra@intel.com>
Signed-off-by: Phani Burra <phani.r.burra@intel.com>
Co-developed-by: Shailendra Bhatnagar <shailendra.bhatnagar@intel.com>
Signed-off-by: Shailendra Bhatnagar <shailendra.bhatnagar@intel.com>
Reviewed-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Co-developed-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|
|
Add the required support to register IDPF PCI driver, as well as
probe and remove call backs. Enable the PCI device and request
the kernel to reserve the memory resources that will be used by the
driver. Finally map the BAR0 address space.
Signed-off-by: Phani Burra <phani.r.burra@intel.com>
Co-developed-by: Alan Brady <alan.brady@intel.com>
Signed-off-by: Alan Brady <alan.brady@intel.com>
Co-developed-by: Madhu Chittim <madhu.chittim@intel.com>
Signed-off-by: Madhu Chittim <madhu.chittim@intel.com>
Co-developed-by: Shailendra Bhatnagar <shailendra.bhatnagar@intel.com>
Signed-off-by: Shailendra Bhatnagar <shailendra.bhatnagar@intel.com>
Reviewed-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Co-developed-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Pavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
|