summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/locking.c
Commit message (Collapse)AuthorAgeFilesLines
* Btrfs: Fix checkpatch.pl warningsChris Mason2009-01-051-2/+3
| | | | | | | There were many, most are fixed now. struct-funcs.c generates some warnings but these are bogus. Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Btrfs: add and improve commentsChris Mason2008-09-291-0/+13
| | | | | | | | | | | This improves the comments at the top of many functions. It didn't dive into the guts of functions because I was trying to avoid merging problems with the new allocator and back reference work. extent-tree.c and volumes.c were both skipped, and there is definitely more work todo in cleaning and commenting the code. Signed-off-by: Chris Mason <chris.mason@oracle.com>
* btrfs_search_slot: reduce lock contention by cowing in two stagesChris Mason2008-09-251-0/+16
| | | | | | | | | | | | | | | | A btree block cow has two parts, the first is to allocate a destination block and the second is to copy the old bock over. The first part needs locks in the extent allocation tree, and may need to do IO. This changeset splits that into a separate function that can be called without any tree locks held. btrfs_search_slot is changed to drop its path and start over if it has to COW a contended block. This often means that many writers will pre-alloc a new destination for a the same contended block, but they cache their prealloc for later use on lower levels in the tree. Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Btrfs: implement memory reclaim for leaf reference cacheYan2008-09-251-1/+0
| | | | | | | | | | | | | | The memory reclaiming issue happens when snapshot exists. In that case, some cache entries may not be used during old snapshot dropping, so they will remain in the cache until umount. The patch adds a field to struct btrfs_leaf_ref to record create time. Besides, the patch makes all dead roots of a given snapshot linked together in order of create time. After a old snapshot was completely dropped, we check the dead root list and remove all cache entries created before the oldest dead root in the list. Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Btrfs: Fix some build problems on 2.6.18 based enterprise kernelsChris Mason2008-09-251-1/+1
| | | | Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Btrfs: Use mutex_lock_nested for tree lockingChris Mason2008-09-251-1/+1
| | | | | | | | | | | | Lockdep has the notion of locking subclasses so that you can identify locks you expect to be taken after other locks of the same class. This changes the per-extent buffer btree locking routines to use a subclass based on the level in the tree. Unfortunately, lockdep can only handle 8 total subclasses, and the btrfs max level is also 8. So when lockdep is on, use a lower max level. Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Btrfs: Use a mutex in the extent buffer for tree block lockingChris Mason2008-09-251-7/+6
| | | | | | | | | This replaces the use of the page cache lock bit for locking, which wasn't suitable for block size < page size and couldn't be used recursively. The mutexes alone don't fix either problem, but they are the first step. Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Btrfs: Reduce contention on the root nodeChris Mason2008-09-251-0/+10
| | | | | | | | | | | | | This calls unlock_up sooner in btrfs_search_slot in order to decrease the amount of work done with the higher level tree locks held. Also, it changes btrfs_tree_lock to spin for a big against the page lock before scheduling. This makes a big difference in context switch rate under highly contended workloads. Longer term, a better locking structure is needed than the page lock. Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Btrfs: Start btree concurrency work.Chris Mason2008-09-251-0/+50
The allocation trees and the chunk trees are serialized via their own dedicated mutexes. This means allocation location is still not very fine grained. The main FS btree is protected by locks on each block in the btree. Locks are taken top / down, and as processing finishes on a given level of the tree, the lock is released after locking the lower level. The end result of a search is now a path where only the lowest level is locked. Releasing or freeing the path drops any locks held. Signed-off-by: Chris Mason <chris.mason@oracle.com>