summaryrefslogtreecommitdiffstats
path: root/fs/fscache
Commit message (Collapse)AuthorAgeFilesLines
* fscache: Fix out of bound read in long cookie keysEric Sandeen2018-10-181-3/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | fscache_set_key() can incur an out-of-bounds read, reported by KASAN: BUG: KASAN: slab-out-of-bounds in fscache_alloc_cookie+0x5b3/0x680 [fscache] Read of size 4 at addr ffff88084ff056d4 by task mount.nfs/32615 and also reported by syzbot at https://lkml.org/lkml/2018/7/8/236 BUG: KASAN: slab-out-of-bounds in fscache_set_key fs/fscache/cookie.c:120 [inline] BUG: KASAN: slab-out-of-bounds in fscache_alloc_cookie+0x7a9/0x880 fs/fscache/cookie.c:171 Read of size 4 at addr ffff8801d3cc8bb4 by task syz-executor907/4466 This happens for any index_key_len which is not divisible by 4 and is larger than the size of the inline key, because the code allocates exactly index_key_len for the key buffer, but the hashing loop is stepping through it 4 bytes (u32) at a time in the buf[] array. Fix this by calculating how many u32 buffers we'll need by using DIV_ROUND_UP, and then using kcalloc() to allocate a precleared allocation buffer to hold the index_key, then using that same count as the hashing index limit. Fixes: ec0328e46d6e ("fscache: Maintain a catalogue of allocated cookies") Reported-by: syzbot+a95b989b2dde8e806af8@syzkaller.appspotmail.com Signed-off-by: Eric Sandeen <sandeen@redhat.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* fscache: Fix incomplete initialisation of inline key spaceDavid Howells2018-10-183-23/+5
| | | | | | | | | | | | | | | | | | | | | | | | | The inline key in struct rxrpc_cookie is insufficiently initialized, zeroing only 3 of the 4 slots, therefore an index_key_len between 13 and 15 bytes will end up hashing uninitialized memory because the memcpy only partially fills the last buf[] element. Fix this by clearing fscache_cookie objects on allocation rather than using the slab constructor to initialise them. We're going to pretty much fill in the entire struct anyway, so bringing it into our dcache writably shouldn't incur much overhead. This removes the need to do clearance in fscache_set_key() (where we aren't doing it correctly anyway). Also, we don't need to set cookie->key_len in fscache_set_key() as we already did it in the only caller, so remove that. Fixes: ec0328e46d6e ("fscache: Maintain a catalogue of allocated cookies") Reported-by: syzbot+a95b989b2dde8e806af8@syzkaller.appspotmail.com Reported-by: Eric Sandeen <sandeen@redhat.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* fscache: Fix reference overput in fscache_attach_object() error handlingKiran Kumar Modukuri2018-07-253-4/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When a cookie is allocated that causes fscache_object structs to be allocated, those objects are initialised with the cookie pointer, but aren't blessed with a ref on that cookie unless the attachment is successfully completed in fscache_attach_object(). If attachment fails because the parent object was dying or there was a collision, fscache_attach_object() returns without incrementing the cookie counter - but upon failure of this function, the object is released which then puts the cookie, whether or not a ref was taken on the cookie. Fix this by taking a ref on the cookie when it is assigned in fscache_object_init(), even when we're creating a root object. Analysis from Kiran Kumar: This bug has been seen in 4.4.0-124-generic #148-Ubuntu kernel BugLink: https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1776277 fscache cookie ref count updated incorrectly during fscache object allocation resulting in following Oops. kernel BUG at /build/linux-Y09MKI/linux-4.4.0/fs/fscache/internal.h:321! kernel BUG at /build/linux-Y09MKI/linux-4.4.0/fs/fscache/cookie.c:639! [Cause] Two threads are trying to do operate on a cookie and two objects. (1) One thread tries to unmount the filesystem and in process goes over a huge list of objects marking them dead and deleting the objects. cookie->usage is also decremented in following path: nfs_fscache_release_super_cookie -> __fscache_relinquish_cookie ->__fscache_cookie_put ->BUG_ON(atomic_read(&cookie->usage) <= 0); (2) A second thread tries to lookup an object for reading data in following path: fscache_alloc_object 1) cachefiles_alloc_object -> fscache_object_init -> assign cookie, but usage not bumped. 2) fscache_attach_object -> fails in cant_attach_object because the cookie's backing object or cookie's->parent object are going away 3) fscache_put_object -> cachefiles_put_object ->fscache_object_destroy ->fscache_cookie_put ->BUG_ON(atomic_read(&cookie->usage) <= 0); [NOTE from dhowells] It's unclear as to the circumstances in which (2) can take place, given that thread (1) is in nfs_kill_super(), however a conflicting NFS mount with slightly different parameters that creates a different superblock would do it. A backtrace from Kiran seems to show that this is a possibility: kernel BUG at/build/linux-Y09MKI/linux-4.4.0/fs/fscache/cookie.c:639! ... RIP: __fscache_cookie_put+0x3a/0x40 [fscache] Call Trace: __fscache_relinquish_cookie+0x87/0x120 [fscache] nfs_fscache_release_super_cookie+0x2d/0xb0 [nfs] nfs_kill_super+0x29/0x40 [nfs] deactivate_locked_super+0x48/0x80 deactivate_super+0x5c/0x60 cleanup_mnt+0x3f/0x90 __cleanup_mnt+0x12/0x20 task_work_run+0x86/0xb0 exit_to_usermode_loop+0xc2/0xd0 syscall_return_slowpath+0x4e/0x60 int_ret_from_sys_call+0x25/0x9f [Fix] Bump up the cookie usage in fscache_object_init, when it is first being assigned a cookie atomically such that the cookie is added and bumped up if its refcount is not zero. Remove the assignment in fscache_attach_object(). [Testcase] I have run ~100 hours of NFS stress tests and not seen this bug recur. [Regression Potential] - Limited to fscache/cachefiles. Fixes: ccc4fc3d11e9 ("FS-Cache: Implement the cookie management part of the netfs API") Signed-off-by: Kiran Kumar Modukuri <kiran.modukuri@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com>
* fscache: Allow cancelled operations to be enqueuedKiran Kumar Modukuri2018-07-251-2/+4
| | | | | | | | | | | | Alter the state-check assertion in fscache_enqueue_operation() to allow cancelled operations to be given processing time so they can be cleaned up. Also fix a debugging statement that was requiring such operations to have an object assigned. Fixes: 9ae326a69004 ("CacheFiles: A cache that backs onto a mounted filesystem") Reported-by: Kiran Kumar Modukuri <kiran.modukuri@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com>
* proc: introduce proc_create_single{,_data}Christoph Hellwig2018-05-163-19/+4
| | | | | | | | | Variants of proc_create{,_data} that directly take a seq_file show callback and drastically reduces the boilerplate code in the callers. All trivial callers converted over. Signed-off-by: Christoph Hellwig <hch@lst.de>
* proc: introduce proc_create_seq{,_data}Christoph Hellwig2018-05-163-19/+5
| | | | | | | | | Variants of proc_create{,_data} that directly take a struct seq_operations argument and drastically reduces the boilerplate code in the callers. All trivial callers converted over. Signed-off-by: Christoph Hellwig <hch@lst.de>
* fscache: use appropriate radix tree accessorsMatthew Wilcox2018-04-112-2/+2
| | | | | | | | | | | | | | Don't open-code accesses to data structure internals. Link: http://lkml.kernel.org/r/20180313132639.17387-7-willy@infradead.org Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Reviewed-by: Jeff Layton <jlayton@redhat.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* fscache: Maintain a catalogue of allocated cookiesDavid Howells2018-04-063-117/+265
| | | | | | | | | | | | | | | | | | | Maintain a catalogue of allocated cookies so that cookie collisions can be handled properly. For the moment, this just involves printing a warning and returning a NULL cookie to the caller of fscache_acquire_cookie(), but in future it might make sense to wait for the old cookie to finish being cleaned up. This requires the cookie key to be stored attached to the cookie so that we still have the key available if the netfs relinquishes the cookie. This is done by an earlier patch. The catalogue also renders redundant fscache_netfs_list (used for checking for duplicates), so that can be removed. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Anna Schumaker <anna.schumaker@netapp.com> Tested-by: Steve Dickson <steved@redhat.com>
* fscache: Pass object size in rather than calling back for itDavid Howells2018-04-064-13/+21
| | | | | | | | | | | | | | Pass the object size in to fscache_acquire_cookie() and fscache_write_page() rather than the netfs providing a callback by which it can be received. This makes it easier to update the size of the object when a new page is written that extends the object. The current object size is also passed by fscache to the check_aux function, obviating the need to store it in the aux data. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Anna Schumaker <anna.schumaker@netapp.com> Tested-by: Steve Dickson <steved@redhat.com>
* fscache: Attach the index key and aux data to the cookieDavid Howells2018-04-048-89/+140
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Attach copies of the index key and auxiliary data to the fscache cookie so that: (1) The callbacks to the netfs for this stuff can be eliminated. This can simplify things in the cache as the information is still available, even after the cache has relinquished the cookie. (2) Simplifies the locking requirements of accessing the information as we don't have to worry about the netfs object going away on us. (3) The cache can do lazy updating of the coherency information on disk. As long as the cache is flushed before reboot/poweroff, there's no need to update the coherency info on disk every time it changes. (4) Cookies can be hashed or put in a tree as the index key is easily available. This allows: (a) Checks for duplicate cookies can be made at the top fscache layer rather than down in the bowels of the cache backend. (b) Caching can be added to a netfs object that has a cookie if the cache is brought online after the netfs object is allocated. A certain amount of space is made in the cookie for inline copies of the data, but if it won't fit there, extra memory will be allocated for it. The downside of this is that live cache operation requires more memory. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Anna Schumaker <anna.schumaker@netapp.com> Tested-by: Steve Dickson <steved@redhat.com>
* fscache: Add more tracepointsDavid Howells2018-04-044-7/+76
| | | | | | | | | | | | | | | | | | | | | Add more tracepoints to fscache, including: (*) fscache_page - Tracks netfs pages known to fscache. (*) fscache_check_page - Tracks the netfs querying whether a page is pending storage. (*) fscache_wake_cookie - Tracks cookies being woken up after a page completes/aborts storage in the cache. (*) fscache_op - Tracks operations being initialised. (*) fscache_wrote_page - Tracks return of the backend write_page op. (*) fscache_gang_lookup - Tracks lookup of pages to be stored in the write operation. Signed-off-by: David Howells <dhowells@redhat.com>
* fscache: Add tracepointsDavid Howells2018-04-045-39/+63
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add some tracepoints to fscache: (*) fscache_cookie - Tracks a cookie's usage count. (*) fscache_netfs - Logs registration of a network filesystem, including the pointer to the cookie allocated. (*) fscache_acquire - Logs cookie acquisition. (*) fscache_relinquish - Logs cookie relinquishment. (*) fscache_enable - Logs enablement of a cookie. (*) fscache_disable - Logs disablement of a cookie. (*) fscache_osm - Tracks execution of states in the object state machine. and cachefiles: (*) cachefiles_ref - Tracks a cachefiles object's usage count. (*) cachefiles_lookup - Logs result of lookup_one_len(). (*) cachefiles_mkdir - Logs result of vfs_mkdir(). (*) cachefiles_create - Logs result of vfs_create(). (*) cachefiles_unlink - Logs calls to vfs_unlink(). (*) cachefiles_rename - Logs calls to vfs_rename(). (*) cachefiles_mark_active - Logs an object becoming active. (*) cachefiles_wait_active - Logs a wait for an old object to be destroyed. (*) cachefiles_mark_inactive - Logs an object becoming inactive. (*) cachefiles_mark_buried - Logs the burial of an object. Signed-off-by: David Howells <dhowells@redhat.com>
* fscache: Fix hanging wait on page discarded by writebackDavid Howells2018-04-041-4/+9
| | | | | | | | | | | | | | | | If the fscache asynchronous write operation elects to discard a page that's pending storage to the cache because the page would be over the store limit then it needs to wake the page as someone may be waiting on completion of the write. The problem is that the store limit may be updated by a different asynchronous operation - and so may miss the write - and that the store limit may not even get updated until later by the netfs. Fix the kernel hang by making fscache_write_op() mark as written any pages that are over the limit. Signed-off-by: David Howells <dhowells@redhat.com>
* fscache: Detect multiple relinquishment of a cookieDavid Howells2018-04-041-1/+2
| | | | | | Report if an fscache cookie is relinquished multiple times by the netfs. Signed-off-by: David <dhowells@redhat.com>
* fscache: Pass the correct cancelled indications to fscache_op_complete()David Howells2018-04-041-6/+9
| | | | | | | | The last parameter to fscache_op_complete() is a bool indicating whether or not the operation was cancelled. A lot of the time the inverse value is given or no differentiation is made. Fix this. Signed-off-by: David Howells <dhowells@redhat.com>
* fscache, cachefiles: Fix checker warningsDavid Howells2018-04-041-1/+0
| | | | | | | | | | | Fix a couple of checker warnings in fscache and cachefiles: (1) fscache_n_op_requeue is never used, so get rid of it. (2) cachefiles_uncache_page() is passed in a lock that it releases, so this needs annotating. Signed-off-by: David Howells <dhowells@redhat.com>
* sched/wait, fs/fscache: Convert wait_on_atomic_t() usage to the new ↵Peter Zijlstra2018-03-201-3/+4
| | | | | | | | | | | | | | | | | | wait_var_event() API The old wait_on_atomic_t() is going to get removed, use the more flexible wait_var_event() API instead. No change in functionality. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David Howells <dhowells@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Merge tag 'afs-next-20171113' of ↵Linus Torvalds2017-11-163-12/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull AFS updates from David Howells: "kAFS filesystem driver overhaul. The major points of the overhaul are: (1) Preliminary groundwork is laid for supporting network-namespacing of kAFS. The remainder of the namespacing work requires some way to pass namespace information to submounts triggered by an automount. This requires something like the mount overhaul that's in progress. (2) sockaddr_rxrpc is used in preference to in_addr for holding addresses internally and add support for talking to the YFS VL server. With this, kAFS can do everything over IPv6 as well as IPv4 if it's talking to servers that support it. (3) Callback handling is overhauled to be generally passive rather than active. 'Callbacks' are promises by the server to tell us about data and metadata changes. Callbacks are now checked when we next touch an inode rather than actively going and looking for it where possible. (4) File access permit caching is overhauled to store the caching information per-inode rather than per-directory, shared over subordinate files. Whilst older AFS servers only allow ACLs on directories (shared to the files in that directory), newer AFS servers break that restriction. To improve memory usage and to make it easier to do mass-key removal, permit combinations are cached and shared. (5) Cell database management is overhauled to allow lighter locks to be used and to make cell records autonomous state machines that look after getting their own DNS records and cleaning themselves up, in particular preventing races in acquiring and relinquishing the fscache token for the cell. (6) Volume caching is overhauled. The afs_vlocation record is got rid of to simplify things and the superblock is now keyed on the cell and the numeric volume ID only. The volume record is tied to a superblock and normal superblock management is used to mediate the lifetime of the volume fscache token. (7) File server record caching is overhauled to make server records independent of cells and volumes. A server can be in multiple cells (in such a case, the administrator must make sure that the VL services for all cells correctly reflect the volumes shared between those cells). Server records are now indexed using the UUID of the server rather than the address since a server can have multiple addresses. (8) File server rotation is overhauled to handle VMOVED, VBUSY (and similar), VOFFLINE and VNOVOL indications and to handle rotation both of servers and addresses of those servers. The rotation will also wait and retry if the server says it is busy. (9) Data writeback is overhauled. Each inode no longer stores a list of modified sections tagged with the key that authorised it in favour of noting the modified region of a page in page->private and storing a list of keys that made modifications in the inode. This simplifies things and allows other keys to be used to actually write to the server if a key that made a modification becomes useless. (10) Writable mmap() is implemented. This allows a kernel to be build entirely on AFS. Note that Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998)" * tag 'afs-next-20171113' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: (35 commits) afs: Protect call->state changes against signals afs: Trace page dirty/clean afs: Implement shared-writeable mmap afs: Get rid of the afs_writeback record afs: Introduce a file-private data record afs: Use a dynamic port if 7001 is in use afs: Fix directory read/modify race afs: Trace the sending of pages afs: Trace the initiation and completion of client calls afs: Fix documentation on # vs % prefix in mount source specification afs: Fix total-length calculation for multiple-page send afs: Only progress call state at end of Tx phase from rxrpc callback afs: Make use of the YFS service upgrade to fully support IPv6 afs: Overhaul volume and server record caching and fileserver rotation afs: Move server rotation code into its own file afs: Add an address list concept afs: Overhaul cell database management afs: Overhaul permit caching afs: Overhaul the callback handling afs: Rename struct afs_call server member to cm_server ...
| * Pass mode to wait_on_atomic_t() action funcs and provide default actionsDavid Howells2017-11-133-12/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make wait_on_atomic_t() pass the TASK_* mode onto its action function as an extra argument and make it 'unsigned int throughout. Also, consolidate a bunch of identical action functions into a default function that can do the appropriate thing for the mode. Also, change the argument name in the bit_wait*() function declarations to reflect the fact that it's the mode and not the bit number. [Peter Z gives this a grudging ACK, but thinks that the whole atomic_t wait should be done differently, though he's not immediately sure as to how] Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> cc: Ingo Molnar <mingo@kernel.org>
* | mm, pagevec: remove cold parameter for pagevecsMel Gorman2017-11-151-1/+1
|/ | | | | | | | | | | | | | | | | | | | | | Every pagevec_init user claims the pages being released are hot even in cases where it is unlikely the pages are hot. As no one cares about the hotness of pages being released to the allocator, just ditch the parameter. No performance impact is expected as the overhead is marginal. The parameter is removed simply because it is a bit stupid to have a useless parameter copied everywhere. Link: http://lkml.kernel.org/r/20171018075952.10627-6-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman2017-11-021-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* FS-Cache: fix dereference of NULL user_key_payloadEric Biggers2017-10-121-0/+7
| | | | | | | | | | | | | | | | | | When the file /proc/fs/fscache/objects (available with CONFIG_FSCACHE_OBJECT_LIST=y) is opened, we request a user key with description "fscache:objlist", then access its payload. However, a revoked key has a NULL payload, and we failed to check for this. request_key() *does* skip revoked keys, but there is still a window where the key can be revoked before we access its payload. Fix it by checking for a NULL payload, treating it like a key which was already revoked at the time it was requested. Fixes: 4fbf4291aa15 ("FS-Cache: Allow the current state of all objects to be dumped") Reviewed-by: James Morris <james.l.morris@oracle.com> Cc: <stable@vger.kernel.org> [v2.6.32+] Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com>
* fscache: fix fscache_objlist_show format processingArnd Bergmann2017-09-131-1/+2
| | | | | | | | | | | | | | | | | | | | | gcc points out a minor bug in the handling of unknown cookie types, which could result in a string overflow when the integer is copied into a 3-byte string: fs/fscache/object-list.c: In function 'fscache_objlist_show': fs/fscache/object-list.c:265:19: error: 'sprintf' may write a terminating nul past the end of the destination [-Werror=format-overflow=] sprintf(_type, "%02u", cookie->def->type); ^~~~~~ fs/fscache/object-list.c:265:4: note: 'sprintf' output between 3 and 4 bytes into a destination of size 3 This is currently harmless as no code sets a type other than 0 or 1, but it makes sense to use snprintf() here to avoid overflowing the array if that changes. Link: http://lkml.kernel.org/r/20170714120720.906842-22-arnd@arndb.de Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove nr_pages argument from pagevec_lookup{,_range}()Jan Kara2017-09-061-1/+1
| | | | | | | | | | | | All users of pagevec_lookup() and pagevec_lookup_range() now pass PAGEVEC_SIZE as a desired number of pages. Just drop the argument. Link: http://lkml.kernel.org/r/20170726114704.7626-11-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: make pagevec_lookup() update indexJan Kara2017-09-061-3/+2
| | | | | | | | | | | Make pagevec_lookup() (and underlying find_get_pages()) update index to the next page where iteration should continue. Most callers want this and also pagevec_lookup_tag() already does this. Link: http://lkml.kernel.org/r/20170726114704.7626-3-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* KEYS: Differentiate uses of rcu_dereference_key() and user_key_payload()David Howells2017-03-021-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | rcu_dereference_key() and user_key_payload() are currently being used in two different, incompatible ways: (1) As a wrapper to rcu_dereference() - when only the RCU read lock used to protect the key. (2) As a wrapper to rcu_dereference_protected() - when the key semaphor is used to protect the key and the may be being modified. Fix this by splitting both of the key wrappers to produce: (1) RCU accessors for keys when caller has the key semaphore locked: dereference_key_locked() user_key_payload_locked() (2) RCU accessors for keys when caller holds the RCU read lock: dereference_key_rcu() user_key_payload_rcu() This should fix following warning in the NFS idmapper =============================== [ INFO: suspicious RCU usage. ] 4.10.0 #1 Tainted: G W ------------------------------- ./include/keys/user-type.h:53 suspicious rcu_dereference_protected() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 0 1 lock held by mount.nfs/5987: #0: (rcu_read_lock){......}, at: [<d000000002527abc>] nfs_idmap_get_key+0x15c/0x420 [nfsv4] stack backtrace: CPU: 1 PID: 5987 Comm: mount.nfs Tainted: G W 4.10.0 #1 Call Trace: dump_stack+0xe8/0x154 (unreliable) lockdep_rcu_suspicious+0x140/0x190 nfs_idmap_get_key+0x380/0x420 [nfsv4] nfs_map_name_to_uid+0x2a0/0x3b0 [nfsv4] decode_getfattr_attrs+0xfac/0x16b0 [nfsv4] decode_getfattr_generic.constprop.106+0xbc/0x150 [nfsv4] nfs4_xdr_dec_lookup_root+0xac/0xb0 [nfsv4] rpcauth_unwrap_resp+0xe8/0x140 [sunrpc] call_decode+0x29c/0x910 [sunrpc] __rpc_execute+0x140/0x8f0 [sunrpc] rpc_run_task+0x170/0x200 [sunrpc] nfs4_call_sync_sequence+0x68/0xa0 [nfsv4] _nfs4_lookup_root.isra.44+0xd0/0xf0 [nfsv4] nfs4_lookup_root+0xe0/0x350 [nfsv4] nfs4_lookup_root_sec+0x70/0xa0 [nfsv4] nfs4_find_root_sec+0xc4/0x100 [nfsv4] nfs4_proc_get_rootfh+0x5c/0xf0 [nfsv4] nfs4_get_rootfh+0x6c/0x190 [nfsv4] nfs4_server_common_setup+0xc4/0x260 [nfsv4] nfs4_create_server+0x278/0x3c0 [nfsv4] nfs4_remote_mount+0x50/0xb0 [nfsv4] mount_fs+0x74/0x210 vfs_kern_mount+0x78/0x220 nfs_do_root_mount+0xb0/0x140 [nfsv4] nfs4_try_mount+0x60/0x100 [nfsv4] nfs_fs_mount+0x5ec/0xda0 [nfs] mount_fs+0x74/0x210 vfs_kern_mount+0x78/0x220 do_mount+0x254/0xf70 SyS_mount+0x94/0x100 system_call+0x38/0xe0 Reported-by: Jan Stancek <jstancek@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Jan Stancek <jstancek@redhat.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
* fscache: Fix dead object requeueDavid Howells2017-01-311-2/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Under some circumstances, an fscache object can become queued such that it fscache_object_work_func() can be called once the object is in the OBJECT_DEAD state. This results in the kernel oopsing when it tries to invoke the handler for the state (which is hard coded to 0x2). The way this comes about is something like the following: (1) The object dispatcher is processing a work state for an object. This is done in workqueue context. (2) An out-of-band event comes in that isn't masked, causing the object to be queued, say EV_KILL. (3) The object dispatcher finishes processing the current work state on that object and then sees there's another event to process, so, without returning to the workqueue core, it processes that event too. It then follows the chain of events that initiates until we reach OBJECT_DEAD without going through a wait state (such as WAIT_FOR_CLEARANCE). At this point, object->events may be 0, object->event_mask will be 0 and oob_event_mask will be 0. (4) The object dispatcher returns to the workqueue processor, and in due course, this sees that the object's work item is still queued and invokes it again. (5) The current state is a work state (OBJECT_DEAD), so the dispatcher jumps to it - resulting in an OOPS. When I'm seeing this, the work state in (1) appears to have been either LOOK_UP_OBJECT or CREATE_OBJECT (object->oob_table is fscache_osm_lookup_oob). The window for (2) is very small: (A) object->event_mask is cleared whilst the event dispatch process is underway - though there's no memory barrier to force this to the top of the function. The window, therefore is from the time the object was selected by the workqueue processor and made requeueable to the time the mask was cleared. (B) fscache_raise_event() will only queue the object if it manages to set the event bit and the corresponding event_mask bit was set. The enqueuement is then deferred slightly whilst we get a ref on the object and get the per-CPU variable for workqueue congestion. This slight deferral slightly increases the probability by allowing extra time for the workqueue to make the item requeueable. Handle this by giving the dead state a processor function and checking the for the dead state address rather than seeing if the processor function is address 0x2. The dead state processor function can then set a flag to indicate that it's occurred and give a warning if it occurs more than once per object. If this race occurs, an oops similar to the following is seen (note the RIP value): BUG: unable to handle kernel NULL pointer dereference at 0000000000000002 IP: [<0000000000000002>] 0x1 PGD 0 Oops: 0010 [#1] SMP Modules linked in: ... CPU: 17 PID: 16077 Comm: kworker/u48:9 Not tainted 3.10.0-327.18.2.el7.x86_64 #1 Hardware name: HP ProLiant DL380 Gen9/ProLiant DL380 Gen9, BIOS P89 12/27/2015 Workqueue: fscache_object fscache_object_work_func [fscache] task: ffff880302b63980 ti: ffff880717544000 task.ti: ffff880717544000 RIP: 0010:[<0000000000000002>] [<0000000000000002>] 0x1 RSP: 0018:ffff880717547df8 EFLAGS: 00010202 RAX: ffffffffa0368640 RBX: ffff880edf7a4480 RCX: dead000000200200 RDX: 0000000000000002 RSI: 00000000ffffffff RDI: ffff880edf7a4480 RBP: ffff880717547e18 R08: 0000000000000000 R09: dfc40a25cb3a4510 R10: dfc40a25cb3a4510 R11: 0000000000000400 R12: 0000000000000000 R13: ffff880edf7a4510 R14: ffff8817f6153400 R15: 0000000000000600 FS: 0000000000000000(0000) GS:ffff88181f420000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000002 CR3: 000000000194a000 CR4: 00000000001407e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Stack: ffffffffa0363695 ffff880edf7a4510 ffff88093f16f900 ffff8817faa4ec00 ffff880717547e60 ffffffff8109d5db 00000000faa4ec18 0000000000000000 ffff8817faa4ec18 ffff88093f16f930 ffff880302b63980 ffff88093f16f900 Call Trace: [<ffffffffa0363695>] ? fscache_object_work_func+0xa5/0x200 [fscache] [<ffffffff8109d5db>] process_one_work+0x17b/0x470 [<ffffffff8109e4ac>] worker_thread+0x21c/0x400 [<ffffffff8109e290>] ? rescuer_thread+0x400/0x400 [<ffffffff810a5acf>] kthread+0xcf/0xe0 [<ffffffff810a5a00>] ? kthread_create_on_node+0x140/0x140 [<ffffffff816460d8>] ret_from_fork+0x58/0x90 [<ffffffff810a5a00>] ? kthread_create_on_node+0x140/0x140 Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeremy McNicoll <jeremymc@redhat.com> Tested-by: Frank Sorenson <sorenson@redhat.com> Tested-by: Benjamin Coddington <bcodding@redhat.com> Reviewed-by: Benjamin Coddington <bcodding@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* fscache: Clear outstanding writes when disabling a cookieDavid Howells2017-01-312-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | fscache_disable_cookie() needs to clear the outstanding writes on the cookie it's disabling because they cannot be completed after. Without this, fscache_nfs_open_file() gets stuck because it disables the cookie when the file is opened for writing but can't uncache the pages till afterwards - otherwise there's a race between the open routine and anyone who already has it open R/O and is still reading from it. Looking in /proc/pid/stack of the offending process shows: [<ffffffffa0142883>] __fscache_wait_on_page_write+0x82/0x9b [fscache] [<ffffffffa014336e>] __fscache_uncache_all_inode_pages+0x91/0xe1 [fscache] [<ffffffffa01740fa>] nfs_fscache_open_file+0x59/0x9e [nfs] [<ffffffffa01ccf41>] nfs4_file_open+0x17f/0x1b8 [nfsv4] [<ffffffff8117350e>] do_dentry_open+0x16d/0x2b7 [<ffffffff811743ac>] vfs_open+0x5c/0x65 [<ffffffff81184185>] path_openat+0x785/0x8fb [<ffffffff81184343>] do_filp_open+0x48/0x9e [<ffffffff81174710>] do_sys_open+0x13b/0x1cb [<ffffffff811747b9>] SyS_open+0x19/0x1b [<ffffffff81001c44>] do_syscall_64+0x80/0x17a [<ffffffff8165c2da>] return_from_SYSCALL_64+0x0/0x7a [<ffffffffffffffff>] 0xffffffffffffffff Reported-by: Jianhong Yin <jiyin@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* FS-Cache: Initialise stores_lock in netfs cookieDavid Howells2017-01-311-0/+1
| | | | | | | | | | | Initialise the stores_lock in fscache netfs cookies. Technically, it shouldn't be necessary, since the netfs cookie is an index and stores no data, but initialising it anyway adds insignificant overhead. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* Merge branch 'd_real' of ↵Al Viro2016-06-301-0/+2
|\ | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs into work.misc
| * FS-Cache: wake write waiter after invalidating writesYan, Zheng2016-06-011-0/+2
| | | | | | | | | | Signed-off-by: Yan, Zheng <zyan@redhat.com> Acked-by: David Howells <dhowells@redhat.com>
* | drop redundant ->owner initializationsAl Viro2016-05-293-3/+0
|/ | | | | | | it's not needed for file_operations of inodes located on fs defined in the hosting module and for file_operations that go into procfs. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macrosKirill A. Shutemov2016-04-041-5/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* FS-Cache: Handle a write to the page immediately beyond the EOF markerDavid Howells2015-11-111-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Handle a write being requested to the page immediately beyond the EOF marker on a cache object. Currently this gets an assertion failure in CacheFiles because the EOF marker is used there to encode information about a partial page at the EOF - which could lead to an unknown blank spot in the file if we extend the file over it. The problem is actually in fscache where we check the index of the page being written against store_limit. store_limit is set to the number of pages that we're allowed to store by fscache_set_store_limit() - which means it's one more than the index of the last page we're allowed to store. The problem is that we permit writing to a page with an index _equal_ to the store limit - when we should reject that case. Whilst we're at it, change the triggered assertion in CacheFiles to just return -ENOBUFS instead. The assertion failure looks something like this: CacheFiles: Assertion failed 1000 < 7b1 is false ------------[ cut here ]------------ kernel BUG at fs/cachefiles/rdwr.c:962! ... RIP: 0010:[<ffffffffa02c9e83>] [<ffffffffa02c9e83>] cachefiles_write_page+0x273/0x2d0 [cachefiles] Cc: stable@vger.kernel.org # v2.6.31+; earlier - that + backport of a17754f (at least) Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* FS-Cache: Don't override netfs's primary_index if registering failedKinglong Mee2015-11-111-18/+17
| | | | | | | | | Only override netfs->primary_index when registering success. Cc: stable@vger.kernel.org # v2.6.30+ Signed-off-by: Kinglong Mee <kinglongmee@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* FS-Cache: Increase reference of parent after registering, netfs successKinglong Mee2015-11-111-5/+4
| | | | | | | | | | | | | | | | If netfs exist, fscache should not increase the reference of parent's usage and n_children, otherwise, never be decreased. v2: thanks David's suggest, move increasing reference of parent if success use kmem_cache_free() freeing primary_index directly v3: don't move "netfs->primary_index->parent = &fscache_fsdef_index;" Cc: stable@vger.kernel.org # v2.6.30+ Signed-off-by: Kinglong Mee <kinglongmee@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* mm, page_alloc: distinguish between being unable to sleep, unwilling to ↵Mel Gorman2015-11-062-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* KEYS: Merge the type-specific data with the payload dataDavid Howells2015-10-211-2/+2
| | | | | | | | | | | | | | | | | Merge the type-specific data with the payload data into one four-word chunk as it seems pointless to keep them separate. Use user_key_payload() for accessing the payloads of overloaded user-defined keys. Signed-off-by: David Howells <dhowells@redhat.com> cc: linux-cifs@vger.kernel.org cc: ecryptfs@vger.kernel.org cc: linux-ext4@vger.kernel.org cc: linux-f2fs-devel@lists.sourceforge.net cc: linux-nfs@vger.kernel.org cc: ceph-devel@vger.kernel.org cc: linux-ima-devel@lists.sourceforge.net
* FS-Cache: Retain the netfs context in the retrieval op earlierDavid Howells2015-04-022-11/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that the retrieval operation may be disposed of by fscache_put_operation() before we actually set the context, the retrieval-specific cleanup operation can produce a NULL-pointer dereference when it tries to unconditionally clean up the netfs context. Given that it is expected that we'll get at least as far as the place where we currently set the context pointer and it is unlikely we'll go through the error handling paths prior to that point, retain the context right from the point that the retrieval op is allocated. Concomitant to this, we need to retain the cookie pointer in the retrieval op also so that we can call the netfs to release its context in the release method. In addition, we might now get into fscache_release_retrieval_op() with the op only initialised. To this end, set the operation to DEAD only after the release method has been called and skip the n_pages test upon cleanup if the op is still in the INITIALISED state. Without these changes, the following oops might be seen: BUG: unable to handle kernel NULL pointer dereference at 00000000000000b8 ... RIP: 0010:[<ffffffffa0089c98>] fscache_release_retrieval_op+0xae/0x100 ... Call Trace: [<ffffffffa0088560>] fscache_put_operation+0x117/0x2e0 [<ffffffffa008b8f5>] __fscache_read_or_alloc_pages+0x351/0x3ac [<ffffffffa00b761f>] __nfs_readpages_from_fscache+0x59/0xbf [nfs] [<ffffffffa00b06c5>] nfs_readpages+0x10c/0x185 [nfs] [<ffffffff81124925>] ? alloc_pages_current+0x119/0x13e [<ffffffff810ee5fd>] ? __page_cache_alloc+0xfb/0x10a [<ffffffff810f87f8>] __do_page_cache_readahead+0x188/0x22c [<ffffffff810f8b3a>] ondemand_readahead+0x29e/0x2af [<ffffffff810f8c92>] page_cache_sync_readahead+0x38/0x3a [<ffffffff810ef337>] generic_file_read_iter+0x1a2/0x55a [<ffffffffa00a9dff>] ? nfs_revalidate_mapping+0xd6/0x288 [nfs] [<ffffffffa00a6a23>] nfs_file_read+0x49/0x70 [nfs] [<ffffffff811363be>] new_sync_read+0x78/0x9c [<ffffffff81137164>] __vfs_read+0x13/0x38 [<ffffffff8113721e>] vfs_read+0x95/0x121 [<ffffffff811372f6>] SyS_read+0x4c/0x8a [<ffffffff81557a52>] system_call_fastpath+0x12/0x17 Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jeff.layton@primarydata.com>
* FS-Cache: The operation cancellation method needs calling in more placesDavid Howells2015-04-025-40/+52
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Any time an incomplete operation is cancelled, the operation cancellation function needs to be called to clean up. This is currently being passed directly to some of the functions that might want to call it, but not all. Instead, pass the cancellation method pointer to the fscache_operation_init() and have that cache it in the operation struct. Further, plug in a dummy cancellation handler if the caller declines to set one as this allows us to call the function unconditionally (the extra overhead isn't worth bothering about as we don't expect to be calling this typically). The cancellation method must thence be called everywhere the CANCELLED state is set. Note that we call it *before* setting the CANCELLED state such that the method can use the old state value to guide its operation. fscache_do_cancel_retrieval() needs moving higher up in the sources so that the init function can use it now. Without this, the following oops may be seen: FS-Cache: Assertion failed FS-Cache: 3 == 0 is false ------------[ cut here ]------------ kernel BUG at ../fs/fscache/page.c:261! ... RIP: 0010:[<ffffffffa0089c1b>] fscache_release_retrieval_op+0x77/0x100 [<ffffffffa008853d>] fscache_put_operation+0x114/0x2da [<ffffffffa008b8c2>] __fscache_read_or_alloc_pages+0x358/0x3b3 [<ffffffffa00b761f>] __nfs_readpages_from_fscache+0x59/0xbf [nfs] [<ffffffffa00b06c5>] nfs_readpages+0x10c/0x185 [nfs] [<ffffffff81124925>] ? alloc_pages_current+0x119/0x13e [<ffffffff810ee5fd>] ? __page_cache_alloc+0xfb/0x10a [<ffffffff810f87f8>] __do_page_cache_readahead+0x188/0x22c [<ffffffff810f8b3a>] ondemand_readahead+0x29e/0x2af [<ffffffff810f8c92>] page_cache_sync_readahead+0x38/0x3a [<ffffffff810ef337>] generic_file_read_iter+0x1a2/0x55a [<ffffffffa00a9dff>] ? nfs_revalidate_mapping+0xd6/0x288 [nfs] [<ffffffffa00a6a23>] nfs_file_read+0x49/0x70 [nfs] [<ffffffff811363be>] new_sync_read+0x78/0x9c [<ffffffff81137164>] __vfs_read+0x13/0x38 [<ffffffff8113721e>] vfs_read+0x95/0x121 [<ffffffff811372f6>] SyS_read+0x4c/0x8a [<ffffffff81557a52>] system_call_fastpath+0x12/0x17 The assertion is showing that the remaining number of pages (n_pages) is not 0 when the operation is being released. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jeff.layton@primarydata.com>
* FS-Cache: Put an aborted initialised op so that it is accounted correctlyDavid Howells2015-04-022-33/+35
| | | | | | | | | | | | | | | | | Call fscache_put_operation() or a wrapper on any op that has gone through fscache_operation_init() so that the accounting shown in /proc is done correctly, specifically fscache_n_op_release. fscache_put_operation() therefore now allows an op in the INITIALISED state as well as in the CANCELLED and COMPLETE states. Note that this means that an operation can get put that doesn't have its ->object pointer filled in, so anything that depends on the object needs to be conditional in fscache_put_operation(). Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jeff.layton@primarydata.com>
* FS-Cache: Fix cancellation of in-progress operationDavid Howells2015-04-021-0/+7
| | | | | | | | | Cancellation of an in-progress operation needs to update the relevant counters and start any operations that are pending waiting on this one. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jeff.layton@primarydata.com>
* FS-Cache: Count the number of initialised operationsDavid Howells2015-04-023-1/+5
| | | | | | | | | Count and display through /proc/fs/fscache/stats the number of initialised operations. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jeff.layton@primarydata.com>
* FS-Cache: Out of line fscache_operation_init()David Howells2015-04-021-0/+22
| | | | | | | | | Out of line fscache_operation_init() so that it can access internal FS-Cache features, such as stats, in a later commit. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jeff.layton@primarydata.com>
* FS-Cache: Permit fscache_cancel_op() to cancel in-progress operations tooDavid Howells2015-04-023-6/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, fscache_cancel_op() only cancels pending operations - attempts to cancel in-progress operations are ignored. This leads to a problem in fscache_wait_for_operation_activation() whereby the wait is terminated, but the object has been killed. The check at the end of the function now triggers because it's no longer contingent on the cache having produced an I/O error since the commit that fixed the logic error in fscache_object_is_dead(). The result of the check is that it tries to cancel the operation - but since the object may not be pending by this point, the cancellation request may be ignored - with the result that the the object is just put by the caller and fscache_put_operation has an assertion failure because the operation isn't in either the COMPLETE or the CANCELLED states. To fix this, we permit in-progress ops to be cancelled under some circumstances. The bug results in an oops that looks something like this: FS-Cache: fscache_wait_for_operation_activation() = -ENOBUFS [obj dead 3] FS-Cache: FS-Cache: Assertion failed FS-Cache: 3 == 5 is false ------------[ cut here ]------------ kernel BUG at ../fs/fscache/operation.c:432! ... RIP: 0010:[<ffffffffa0088574>] fscache_put_operation+0xf2/0x2cd Call Trace: [<ffffffffa008b92a>] __fscache_read_or_alloc_pages+0x2ec/0x3b3 [<ffffffffa00b761f>] __nfs_readpages_from_fscache+0x59/0xbf [nfs] [<ffffffffa00b06c5>] nfs_readpages+0x10c/0x185 [nfs] [<ffffffff81124925>] ? alloc_pages_current+0x119/0x13e [<ffffffff810ee5fd>] ? __page_cache_alloc+0xfb/0x10a [<ffffffff810f87f8>] __do_page_cache_readahead+0x188/0x22c [<ffffffff810f8b3a>] ondemand_readahead+0x29e/0x2af [<ffffffff810f8c92>] page_cache_sync_readahead+0x38/0x3a [<ffffffff810ef337>] generic_file_read_iter+0x1a2/0x55a [<ffffffffa00a9dff>] ? nfs_revalidate_mapping+0xd6/0x288 [nfs] [<ffffffffa00a6a23>] nfs_file_read+0x49/0x70 [nfs] [<ffffffff811363be>] new_sync_read+0x78/0x9c [<ffffffff81137164>] __vfs_read+0x13/0x38 [<ffffffff8113721e>] vfs_read+0x95/0x121 [<ffffffff811372f6>] SyS_read+0x4c/0x8a [<ffffffff81557a52>] system_call_fastpath+0x12/0x17 Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jeff.layton@primarydata.com>
* FS-Cache: fscache_object_is_dead() has wrong logic, kill itDavid Howells2015-04-022-3/+6
| | | | | | | | | | | | | fscache_object_is_dead() returns true only if the object is marked dead and the cache got an I/O error. This should be a logical OR instead. Since two of the callers got split up into handling for separate subcases, expand the other callers and kill the function. This is probably the right thing to do anyway since one of the subcases isn't about the object at all, but rather about the cache. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jeff.layton@primarydata.com>
* FS-Cache: Synchronise object death state change vs operation submissionDavid Howells2015-04-021-3/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When an object is being marked as no longer live, do this under the object spinlock to prevent a race with operation submission targeted on that object. The problem occurs due to the following pair of intertwined sequences when the cache tries to create an object that would take it over the hard available space limit: NETFS INTERFACE =============== (A) The netfs calls fscache_acquire_cookie(). object creation is deferred to the object state machine and the netfs is allowed to continue. OBJECT STATE MACHINE KTHREAD ============================ (1) The object is looked up on disk by fscache_look_up_object() calling cachefiles_walk_to_object(). The latter finds that the object is not yet represented on disk and calls fscache_object_lookup_negative(). (2) fscache_object_lookup_negative() sets FSCACHE_COOKIE_NO_DATA_YET and clears FSCACHE_COOKIE_LOOKING_UP, thus allowing the netfs to start queuing read operations. (B) The netfs calls fscache_read_or_alloc_pages(). This calls fscache_wait_for_deferred_lookup() which sees FSCACHE_COOKIE_LOOKING_UP become clear, allowing the read to begin. (C) A read operation is set up and passed to fscache_submit_op() to deal with. (3) cachefiles_walk_to_object() calls cachefiles_has_space(), which fails (or one of the file operations to create stuff fails). cachefiles returns an error to fscache. (4) fscache_look_up_object() transits to the LOOKUP_FAILURE state, (5) fscache_lookup_failure() sets FSCACHE_OBJECT_LOOKED_UP and FSCACHE_COOKIE_UNAVAILABLE and clears FSCACHE_COOKIE_LOOKING_UP then transits to the KILL_OBJECT state. (6) fscache_kill_object() clears FSCACHE_OBJECT_IS_LIVE in an attempt to reject any further requests from the netfs. (7) object->n_ops is examined and found to be 0. fscache_kill_object() transits to the DROP_OBJECT state. (D) fscache_submit_op() locks the object spinlock, sees if it can dispatch the op immediately by calling fscache_object_is_active() - which fails since FSCACHE_OBJECT_IS_AVAILABLE has not yet been set. (E) fscache_submit_op() then tests FSCACHE_OBJECT_LOOKED_UP - which is set. It then queues the object and increments object->n_ops. (8) fscache_drop_object() releases the object and eventually fscache_put_object() calls cachefiles_put_object() which suffers an assertion failure here: ASSERTCMP(object->fscache.n_ops, ==, 0); Locking the object spinlock in step (6) around the clearance of FSCACHE_OBJECT_IS_LIVE ensures that the the decision trees in fscache_submit_op() and fscache_submit_exclusive_op() don't see the IS_LIVE flag being cleared mid-decision: either the op is queued before step (7) - in which case fscache_kill_object() will see n_ops>0 and will deal with the op - or the op will be rejected. This, combined with rejecting op submission if the target object is dying, fix the problem. The problem shows up as the following oops: CacheFiles: Assertion failed CacheFiles: 1 == 0 is false ------------[ cut here ]------------ kernel BUG at ../fs/cachefiles/interface.c:339! ... RIP: 0010:[<ffffffffa014fd9c>] [<ffffffffa014fd9c>] cachefiles_put_object+0x2a4/0x301 [cachefiles] ... Call Trace: [<ffffffffa008674b>] fscache_put_object+0x18/0x21 [fscache] [<ffffffffa00883e6>] fscache_object_work_func+0x3ba/0x3c9 [fscache] [<ffffffff81054dad>] process_one_work+0x226/0x441 [<ffffffff81055d91>] worker_thread+0x273/0x36b [<ffffffff81055b1e>] ? rescuer_thread+0x2e1/0x2e1 [<ffffffff81059b9d>] kthread+0x10e/0x116 [<ffffffff81059a8f>] ? kthread_create_on_node+0x1bb/0x1bb [<ffffffff815579ac>] ret_from_fork+0x7c/0xb0 [<ffffffff81059a8f>] ? kthread_create_on_node+0x1bb/0x1bb Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jeff.layton@primarydata.com>
* FS-Cache: Handle a new operation submitted against a killed objectDavid Howells2015-04-022-0/+8
| | | | | | | | | | Reject new operations that are being submitted against an object if that object has failed its lookup or creation states or has been killed by the cache backend for some other reason, such as having been culled. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jeff.layton@primarydata.com>
* FS-Cache: When submitting an op, cancel it if the target object is dyingDavid Howells2015-04-021-17/+30
| | | | | | | | | | | | | | When submitting an operation, prefer to cancel the operation immediately rather than queuing it for later processing if the object is marked as dying (ie. the object state machine has reached the KILL_OBJECT state). Whilst we're at it, change the series of related test_bit() calls into a READ_ONCE() and bitwise-AND operators to reduce the number of load instructions (test_bit() has a volatile address). Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jeff.layton@primarydata.com>
* FS-Cache: Move fscache_report_unexpected_submission() to make it more availableDavid Howells2015-04-021-37/+37
| | | | | | | | | Move fscache_report_unexpected_submission() up within operation.c so that it can be called from fscache_submit_exclusive_op() too. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jeff.layton@primarydata.com>