summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_bmap_util.h
Commit message (Collapse)AuthorAgeFilesLines
* xfs: refine the allocation stack switchDave Chinner2014-07-151-8/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The allocation stack switch at xfs_bmapi_allocate() has served it's purpose, but is no longer a sufficient solution to the stack usage problem we have in the XFS allocation path. Whilst the kernel stack size is now 16k, that is not a valid reason for undoing all our "keep stack usage down" modifications. What it does allow us to do is have the freedom to refine and perfect the modifications knowing that if we get it wrong it won't blow up in our faces - we have a safety net now. This is important because we still have the issue of older kernels having smaller stacks and that they are still supported and are demonstrating a wide range of different stack overflows. Red Hat has several open bugs for allocation based stack overflows from directory modifications and direct IO block allocation and these problems still need to be solved. If we can solve them upstream, then distro's won't need to bake their own unique solutions. To that end, I've observed that every allocation based stack overflow report has had a specific characteristic - it has happened during or directly after a bmap btree block split. That event requires a new block to be allocated to the tree, and so we effectively stack one allocation stack on top of another, and that's when we get into trouble. A further observation is that bmap btree block splits are much rarer than writeback allocation - over a range of different workloads I've observed the ratio of bmap btree inserts to splits ranges from 100:1 (xfstests run) to 10000:1 (local VM image server with sparse files that range in the hundreds of thousands to millions of extents). Either way, bmap btree split events are much, much rarer than allocation events. Finally, we have to move the kswapd state to the allocation workqueue work when allocation is done on behalf of kswapd. This is proving to cause significant perturbation in performance under memory pressure and appears to be generating allocation deadlock warnings under some workloads, so avoiding the use of a workqueue for the majority of kswapd writeback allocation will minimise the impact of such behaviour. Hence it makes sense to move the stack switch to xfs_btree_split() and only do it for bmap btree splits. Stack switches during allocation will be much rarer, so there won't be significant performacne overhead caused by switching stacks. The worse case stack from all allocation paths will be split, not just writeback. And the majority of memory allocations will be done in the correct context (e.g. kswapd) without causing additional latency, and so we simplify the memory reclaim interactions between processes, workqueues and kswapd. The worst stack I've been able to generate with this patch in place is 5600 bytes deep. It's very revealing because we exit XFS at: 37) 1768 64 kmem_cache_alloc+0x13b/0x170 about 1800 bytes of stack consumed, and the remaining 3800 bytes (and 36 functions) is memory reclaim, swap and the IO stack. And this occurs in the inode allocation from an open(O_CREAT) syscall, not writeback. The amount of stack being used is much less than I've previously be able to generate - fs_mark testing has been able to generate stack usage of around 7k without too much trouble; with this patch it's only just getting to 5.5k. This is primarily because the metadata allocation paths (e.g. directory blocks) are no longer causing double splits on the same stack, and hence now stack tracing is showing swapping being the worst stack consumer rather than XFS. Performance of fs_mark inode create workloads is unchanged. Performance of fs_mark async fsync workloads is consistently good with context switches reduced by around 150,000/s (30%). Performance of dbench, streaming IO and postmark is unchanged. Allocation deadlock warnings have not been seen on the workloads that generated them since adding this patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* Revert "xfs: block allocation work needs to be kswapd aware"Dave Chinner2014-07-151-7/+6
| | | | | | | | | | | | | | | | | | This reverts commit 1f6d64829db78a7e1d63e15c9f48f0a5d2b5a679. This commit resulted in regressions in performance in low memory situations where kswapd was doing writeback of delayed allocation blocks. It resulted in significant parallelism of the kswapd work and with the special kswapd flags meant that hundreds of active allocation could dip into kswapd specific memory reserves and avoid being throttled. This cause a large amount of performance variation, as well as random OOM-killer invocations that didn't previously exist. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: block allocation work needs to be kswapd awareDave Chinner2014-06-061-6/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Upon memory pressure, kswapd calls xfs_vm_writepage() from shrink_page_list(). This can result in delayed allocation occurring and that gets deferred to the the allocation workqueue. The allocation then runs outside kswapd context, which means if it needs memory (and it does to demand page metadata from disk) it can block in shrink_inactive_list() waiting for IO congestion. These blocking waits are normally avoiding in kswapd context, so under memory pressure writeback from kswapd can be arbitrarily delayed by memory reclaim. To avoid this, pass the kswapd context to the allocation being done by the workqueue, so that memory reclaim understands correctly that the work is being done for kswapd and therefore it is not blocked and does not delay memory reclaim. To avoid issues with int->char conversion of flag fields (as noticed in v1 of this patch) convert the flag fields in the struct xfs_bmalloca to bool types. pahole indicates these variables are still single byte variables, so no extra space is consumed by this change. cc: <stable@vger.kernel.org> Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: Add support FALLOC_FL_COLLAPSE_RANGE for fallocateNamjae Jeon2014-02-241-0/+2
| | | | | | | | | | | | | | | | | | | | This patch implements fallocate's FALLOC_FL_COLLAPSE_RANGE for XFS. The semantics of this flag are following: 1) It collapses the range lying between offset and length by removing any data blocks which are present in this range and than updates all the logical offsets of extents beyond "offset + len" to nullify the hole created by removing blocks. In short, it does not leave a hole. 2) It should be used exclusively. No other fallocate flag in combination. 3) Offset and length supplied to fallocate should be fs block size aligned in case of xfs and ext4. 4) Collaspe range does not work beyond i_size. Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com> Signed-off-by: Ashish Sangwan <a.sangwan@samsung.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: fold xfs_change_file_space into xfs_ioc_spaceChristoph Hellwig2013-10-211-3/+2
| | | | | | | | | | Now that only one caller of xfs_change_file_space is left it can be merged into said caller. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: simplify the fallocate pathChristoph Hellwig2013-10-211-0/+4
| | | | | | | | | | | | | | Call xfs_alloc_file_space or xfs_free_file_space directly from xfs_file_fallocate instead of going through xfs_change_file_space. This simplified the code by removing the unessecary marshalling of the arguments into an xfs_flock64_t structure and allows removing checks that are already done in the VFS code. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: consolidate extent swap codeDave Chinner2013-08-121-0/+3
| | | | | | | | | | | | | | | | | So we don't need xfs_dfrag.h in userspace anymore, move the extent swap ioctl structure definition to xfs_fs.h where most of the other ioctl structure definitions are. Now that we don't need separate files for extent swapping, separate the basic file descriptor checking code to xfs_ioctl.c, and the code that does the extent swap operation to xfs_bmap_util.c. This cleanly separates the user interface code from the physical mechanism used to do the extent swap. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: kill xfs_vnodeops.[ch]Dave Chinner2013-08-121-0/+11
| | | | | | | | | | | | | | | | | | | | | | | Now we have xfs_inode.c for holding kernel-only XFS inode operations, move all the inode operations from xfs_vnodeops.c to this new file as it holds another set of kernel-only inode operations. The name of this file traces back to the days of Irix and it's vnodes which we don't have anymore. Essentially this move consolidates the inode locking functions and a bunch of XFS inode operations into the one file. Eventually the high level functions will be merged into the VFS interface functions in xfs_iops.c. This leaves only internal preallocation, EOF block manipulation and hole punching functions in vnodeops.c. Move these to xfs_bmap_util.c where we are already consolidating various in-kernel physical extent manipulation and querying functions. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: create xfs_bmap_util.[ch]Dave Chinner2013-08-121-0/+96
There is a bunch of code in xfs_bmap.c that is kernel specific and not shared with userspace. To minimise the difference between the kernel and userspace code, shift this unshared code to xfs_bmap_util.c, and the declarations to xfs_bmap_util.h. The biggest issue here is xfs_bmap_finish() - userspace has it's own definition of this function, and so we need to move it out of xfs_bmap.[ch]. This means several other files need to include xfs_bmap_util.h as well. It also introduces and interesting dance for the stack switching code in xfs_bmapi_allocate(). The stack switching/workqueue code is actually moved to xfs_bmap_util.c, so that userspace can simply use a #define in a header file to connect the dots without needing to know about the stack switch code at all. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>