summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_log_recover.c
Commit message (Collapse)AuthorAgeFilesLines
* xfs: Inode create item recoveryDave Chinner2013-06-271-5/+109
| | | | | | | | | | | | | | | | When we find a icreate transaction, we need to get and initialise the buffers in the range that has been passed. Extract and verify the information in the item record, then loop over the range initialising and issuing the buffer writes delayed. Support an arbitrary size range to initialise so that in future when we allocate inodes in much larger chunks all kernels that understand this transaction can still recover them. Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: don't shutdown log recovery on validation errorsDave Chinner2013-06-141-2/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Unfortunately, we cannot guarantee that items logged multiple times and replayed by log recovery do not take objects back in time. When they are taken back in time, the go into an intermediate state which is corrupt, and hence verification that occurs on this intermediate state causes log recovery to abort with a corruption shutdown. Instead of causing a shutdown and unmountable filesystem, don't verify post-recovery items before they are written to disk. This is less than optimal, but there is no way to detect this issue for non-CRC filesystems If log recovery successfully completes, this will be undone and the object will be consistent by subsequent transactions that are replayed, so in most cases we don't need to take drastic action. For CRC enabled filesystems, leave the verifiers in place - we need to call them to recalculate the CRCs on the objects anyway. This recovery problem can be solved for such filesystems - we have a LSN stamped in all metadata at writeback time that we can to determine whether the item should be replayed or not. This is a separate piece of work, so is not addressed by this patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: inode unlinked list needs to recalculate the inode CRCDave Chinner2013-06-051-0/+9
| | | | | | | | | | | | | | | The inode unlinked list manipulations operate directly on the inode buffer, and so bypass the inode CRC calculation mechanisms. Hence an inode on the unlinked list has an invalid CRC. Fix this by recalculating the CRC whenever we modify an unlinked list pointer in an inode, ncluding during log recovery. This is trivial to do and results in unlinked list operations always leaving a consistent inode in the buffer. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: fix log recovery transaction item reorderingDave Chinner2013-06-051-7/+58
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are several constraints that inode allocation and unlink logging impose on log recovery. These all stem from the fact that inode alloc/unlink are logged in buffers, but all other inode changes are logged in inode items. Hence there are ordering constraints that recovery must follow to ensure the correct result occurs. As it turns out, this ordering has been working mostly by chance than good management. The existing code moves all buffers except cancelled buffers to the head of the list, and everything else to the tail of the list. The problem with this is that is interleaves inode items with the buffer cancellation items, and hence whether the inode item in an cancelled buffer gets replayed is essentially left to chance. Further, this ordering causes problems for log recovery when inode CRCs are enabled. It typically replays the inode unlink buffer long before it replays the inode core changes, and so the CRC recorded in an unlink buffer is going to be invalid and hence any attempt to validate the inode in the buffer is going to fail. Hence we really need to enforce the ordering that the inode alloc/unlink code has expected log recovery to have since inode chunk de-allocation was introduced back in 2003... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: rework dquot CRCsDave Chinner2013-06-041-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Calculating dquot CRCs when the backing buffer is written back just doesn't work reliably. There are several places which manipulate dquots directly in the buffers, and they don't calculate CRCs appropriately, nor do they always set the buffer up to calculate CRCs appropriately. Firstly, if we log a dquot buffer (e.g. during allocation) it gets logged without valid CRC, and so on recovery we end up with a dquot that is not valid. Secondly, if we recover/repair a dquot, we don't have a verifier attached to the buffer and hence CRCs are not calculated on the way down to disk. Thirdly, calculating the CRC after we've changed the contents means that if we re-read the dquot from the buffer, we cannot verify the contents of the dquot are valid, as the CRC is invalid. So, to avoid all the dquot CRC errors that are being detected by the read verifier, change to using the same model as for inodes. That is, dquot CRCs are calculated and written to the backing buffer at the time the dquot is flushed to the backing buffer. If we modify the dquot directly in the backing buffer, calculate the CRC immediately after the modification is complete. Hence the dquot in the on-disk buffer should always have a valid CRC. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: fix split buffer vector log recovery supportDave Chinner2013-05-301-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A long time ago in a galaxy far away.... .. the was a commit made to fix some ilinux specific "fragmented buffer" log recovery problem: http://oss.sgi.com/cgi-bin/gitweb.cgi?p=archive/xfs-import.git;a=commitdiff;h=b29c0bece51da72fb3ff3b61391a391ea54e1603 That problem occurred when a contiguous dirty region of a buffer was split across across two pages of an unmapped buffer. It's been a long time since that has been done in XFS, and the changes to log the entire inode buffers for CRC enabled filesystems has re-introduced that corner case. And, of course, it turns out that the above commit didn't actually fix anything - it just ensured that log recovery is guaranteed to fail when this situation occurs. And now for the gory details. xfstest xfs/085 is failing with this assert: XFS (vdb): bad number of regions (0) in inode log format XFS: Assertion failed: 0, file: fs/xfs/xfs_log_recover.c, line: 1583 Largely undocumented factoid #1: Log recovery depends on all log buffer format items starting with this format: struct foo_log_format { __uint16_t type; __uint16_t size; .... As recoery uses the size field and assumptions about 32 bit alignment in decoding format items. So don't pay much attention to the fact log recovery thinks that it decoding an inode log format item - it just uses them to determine what the size of the item is. But why would it see a log format item with a zero size? Well, luckily enough xfs_logprint uses the same code and gives the same error, so with a bit of gdb magic, it turns out that it isn't a log format that is being decoded. What logprint tells us is this: Oper (130): tid: a0375e1a len: 28 clientid: TRANS flags: none BUF: #regs: 2 start blkno: 144 (0x90) len: 16 bmap size: 2 flags: 0x4000 Oper (131): tid: a0375e1a len: 4096 clientid: TRANS flags: none BUF DATA ---------------------------------------------------------------------------- Oper (132): tid: a0375e1a len: 4096 clientid: TRANS flags: none xfs_logprint: unknown log operation type (4e49) ********************************************************************** * ERROR: data block=2 * ********************************************************************** That we've got a buffer format item (oper 130) that has two regions; the format item itself and one dirty region. The subsequent region after the buffer format item and it's data is them what we are tripping over, and the first bytes of it at an inode magic number. Not a log opheader like there is supposed to be. That means there's a problem with the buffer format item. It's dirty data region is 4096 bytes, and it contains - you guessed it - initialised inodes. But inode buffers are 8k, not 4k, and we log them in their entirety. So something is wrong here. The buffer format item contains: (gdb) p /x *(struct xfs_buf_log_format *)in_f $22 = {blf_type = 0x123c, blf_size = 0x2, blf_flags = 0x4000, blf_len = 0x10, blf_blkno = 0x90, blf_map_size = 0x2, blf_data_map = {0xffffffff, 0xffffffff, .... }} Two regions, and a signle dirty contiguous region of 64 bits. 64 * 128 = 8k, so this should be followed by a single 8k region of data. And the blf_flags tell us that the type of buffer is a XFS_BLFT_DINO_BUF. It contains inodes. And because it doesn't have the XFS_BLF_INODE_BUF flag set, that means it's an inode allocation buffer. So, it should be followed by 8k of inode data. But we know that the next region has a header of: (gdb) p /x *ohead $25 = {oh_tid = 0x1a5e37a0, oh_len = 0x100000, oh_clientid = 0x69, oh_flags = 0x0, oh_res2 = 0x0} and so be32_to_cpu(oh_len) = 0x1000 = 4096 bytes. It's simply not long enough to hold all the logged data. There must be another region. There is - there's a following opheader for another 4k of data that contains the other half of the inode cluster data - the one we assert fail on because it's not a log format header. So why is the second part of the data not being accounted to the correct buffer log format structure? It took a little more work with gdb to work out that the buffer log format structure was both expecting it to be there but hadn't accounted for it. It was at that point I went to the kernel code, as clearly this wasn't a bug in xfs_logprint and the kernel was writing bad stuff to the log. First port of call was the buffer item formatting code, and the discontiguous memory/contiguous dirty region handling code immediately stood out. I've wondered for a long time why the code had this comment in it: vecp->i_addr = xfs_buf_offset(bp, buffer_offset); vecp->i_len = nbits * XFS_BLF_CHUNK; vecp->i_type = XLOG_REG_TYPE_BCHUNK; /* * You would think we need to bump the nvecs here too, but we do not * this number is used by recovery, and it gets confused by the boundary * split here * nvecs++; */ vecp++; And it didn't account for the extra vector pointer. The case being handled here is that a contiguous dirty region lies across a boundary that cannot be memcpy()d across, and so has to be split into two separate operations for xlog_write() to perform. What this code assumes is that what is written to the log is two consecutive blocks of data that are accounted in the buf log format item as the same contiguous dirty region and so will get decoded as such by the log recovery code. The thing is, xlog_write() knows nothing about this, and so just does it's normal thing of adding an opheader for each vector. That means the 8k region gets written to the log as two separate regions of 4k each, but because nvecs has not been incremented, the buf log format item accounts for only one of them. Hence when we come to log recovery, we process the first 4k region and then expect to come across a new item that starts with a log format structure of some kind that tells us whenteh next data is going to be. Instead, we hit raw buffer data and things go bad real quick. So, the commit from 2002 that commented out nvecs++ is just plain wrong. It breaks log recovery completely, and it would seem the only reason this hasn't been since then is that we don't log large contigous regions of multi-page unmapped buffers very often. Never would be a closer estimate, at least until the CRC code came along.... So, lets fix that by restoring the nvecs accounting for the extra region when we hit this case..... .... and there's the problemin log recovery it is apparently working around: XFS: Assertion failed: i == item->ri_total, file: fs/xfs/xfs_log_recover.c, line: 2135 Yup, xlog_recover_do_reg_buffer() doesn't handle contigous dirty regions being broken up into multiple regions by the log formatting code. That's an easy fix, though - if the number of contiguous dirty bits exceeds the length of the region being copied out of the log, only account for the number of dirty bits that region covers, and then loop again and copy more from the next region. It's a 2 line fix. Now xfstests xfs/085 passes, we have one less piece of mystery code, and one more important piece of knowledge about how to structure new log format items.. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: fix da node magic number mismatchesDave Chinner2013-05-011-2/+1
| | | | | | | Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: Teach dquot recovery about CONFIG_XFS_QUOTADave Chinner2013-04-301-0/+6
| | | | | | | | | | | | | | Fix a build error when CONFIG_XFS_QUOTA=n: fs/built-in.o: In function `xlog_recovery_validate_buf_type': /home/dave/src/build/x86-64/xfsdev/fs/xfs/xfs_log_recover.c:1948: undefined reference to `xfs_dquot_buf_ops' Reported-by: Michael L. Semon <mlsemon35@gmail.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: implement extended feature masksDave Chinner2013-04-271-0/+19
| | | | | | | | | | | The version 5 superblock has extended feature masks for compatible, incompatible and read-only compatible feature sets. Implement the masking and mount-time checking for these feature masks. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: add CRC checks to the superblockDave Chinner2013-04-271-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | With the addition of CRCs, there is such a wide and varied change to the on disk format that it makes sense to bump the superblock version number rather than try to use feature bits for all the new functionality. This commit introduces all the new superblock fields needed for all the new functionality: feature masks similar to ext4, separate project quota inodes, a LSN field for recovery and the CRC field. This commit does not bump the superblock version number, however. That will be done as a separate commit at the end of the series after all the new functionality is present so we switch it all on in one commit. This means that we can slowly introduce the changes without them being active and hence maintain bisectability of the tree. This patch is based on a patch originally written by myself back from SGI days, which was subsequently modified by Christoph Hellwig. There is relatively little of that patch remaining, but the history of the patch still should be acknowledged here. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: buffer type overruns blf_flags fieldDave Chinner2013-04-271-18/+20
| | | | | | | | | | | | | | | | | The buffer type passed to log recvoery in the buffer log item overruns the blf_flags field. I had assumed that flags field was a 32 bit value, and it turns out it is a unisgned short. Therefore having 19 flags doesn't really work. Convert the buffer type field to numeric value, and use the top 5 bits of the flags field for it. We currently have 17 types of buffers, so using 5 bits gives us plenty of room for expansion in future.... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: add buffer types to directory and attribute buffersDave Chinner2013-04-271-74/+180
| | | | | | | | | | | Add buffer types to the buffer log items so that log recovery can validate the buffers and calculate CRCs correctly after the buffers are recovered. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: add CRC checks to remote symlinksDave Chinner2013-04-271-0/+9
| | | | | | | | | | | | | | | Add a header to the remote symlink block, containing location and owner information, as well as CRCs and LSN fields. This requires verifiers to be added to the remote symlink buffers for CRC enabled filesystems. This also fixes a bug reading multiple block symlinks, where the second block overwrites the first block when copying out the link name. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: add version 3 inode format with CRCsChristoph Hellwig2013-04-211-7/+25
| | | | | | | | | | | | | | | | | | | | | | | | Add a new inode version with a larger core. The primary objective is to allow for a crc of the inode, and location information (uuid and ino) to verify it was written in the right place. We also extend it by: a creation time (for Samba); a changecount (for NFSv4); a flush sequence (in LSN format for recovery); an additional inode flags field; and some additional padding. These additional fields are not implemented yet, but already laid out in the structure. [dchinner@redhat.com] Added LSN and flags field, some factoring and rework to capture all the necessary information in the crc calculation. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: add CRC checks for quota blocksChristoph Hellwig2013-04-211-0/+10
| | | | | | | | | | | | | | Use the reserved space in struct xfs_dqblk to store a UUID and a crc for the quota blocks. [dchinner@redhat.com] Add a LSN field and update for current verifier infrastructure. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: add CRC checks to the AGIDave Chinner2013-04-211-0/+8
| | | | | | | | | | | | | Same set of changes made to the AGF need to be made to the AGI. This patch has a similar history to the AGF, hence a similar sign-off chain. Signed-off-by: Dave Chinner <dgc@sgi.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <dgc@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: add CRC checks to the AGFLChristoph Hellwig2013-04-211-0/+10
| | | | | | | | | | | | | | | | | | | Add CRC checks, location information and a magic number to the AGFL. Previously the AGFL was just a block containing nothing but the free block pointers. The new AGFL has a real header with the usual boilerplate instead, so that we can verify it's not corrupted and written into the right place. [dchinner@redhat.com] Added LSN field, reworked significantly to fit into new verifier structure and growfs structure, enabled full verifier functionality now there is a header to verify and we can guarantee an initialised AGFL. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: add CRC checks to the AGFDave Chinner2013-04-211-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | The AGF already has some self identifying fields (e.g. the sequence number) so we only need to add the uuid to it to identify the filesystem it belongs to. The location is fixed based on the sequence number, so there's no need to add a block number, either. Hence the only additional fields are the CRC and LSN fields. These are unlogged, so place some space between the end of the logged fields and them so that future expansion of the AGF for logged fields can be placed adjacent to the existing logged fields and hence not complicate the field-derived range based logging we currently have. Based originally on a patch from myself, modified further by Christoph Hellwig and then modified again to fit into the verifier structure with additional fields by myself. The multiple signed-off-by tags indicate the age and history of this patch. Signed-off-by: Dave Chinner <dgc@sgi.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: add support for large btree blocksChristoph Hellwig2013-04-211-0/+28
| | | | | | | | | | | | | | | | | | | | | | | Add support for larger btree blocks that contains a CRC32C checksum, a filesystem uuid and block number for detecting filesystem consistency and out of place writes. [dchinner@redhat.com] Also include an owner field to allow reverse mappings to be implemented for improved repairability and a LSN field to so that log recovery can easily determine the last modification that made it to disk for each buffer. [dchinner@redhat.com] Add buffer log format flags to indicate the type of buffer to recovery so that we don't have to do blind magic number tests to determine what the buffer is. [dchinner@redhat.com] Modified to fit into the verifier structure. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: don't free EFIs before the EFDs are committedDave Chinner2013-04-051-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Filesystems are occasionally being shut down with this error: xfs_trans_ail_delete_bulk: attempting to delete a log item that is not in the AIL. It was diagnosed to be related to the EFI/EFD commit order when the EFI and EFD are in different checkpoints and the EFD is committed before the EFI here: http://oss.sgi.com/archives/xfs/2013-01/msg00082.html The real problem is that a single bit cannot fully describe the states that the EFI/EFD processing can be in. These completion states are: EFI EFI in AIL EFD Result committed/unpinned Yes committed OK committed/pinned No committed Shutdown uncommitted No committed Shutdown Note that the "result" field is what should happen, not what does happen. The current logic is broken and handles the first two cases correctly by luck. That is, the code will free the EFI if the XFS_EFI_COMMITTED bit is *not* set, rather than if it is set. The inverted logic "works" because if both EFI and EFD are committed, then the first __xfs_efi_release() call clears the XFS_EFI_COMMITTED bit, and the second frees the EFI item. Hence as long as xfs_efi_item_committed() has been called, everything appears to be fine. It is the third case where the logic fails - where xfs_efd_item_committed() is called before xfs_efi_item_committed(), and that results in the EFI being freed before it has been committed. That is the bug that triggered the shutdown, and hence keeping track of whether the EFI has been committed or not is insufficient to correctly order the EFI/EFD operations w.r.t. the AIL. What we really want is this: the EFI is always placed into the AIL before the last reference goes away. The only way to guarantee that is that the EFI is not freed until after it has been unpinned *and* the EFD has been committed. That is, restructure the logic so that the only case that can occur is the first case. This can be done easily by replacing the XFS_EFI_COMMITTED with an EFI reference count. The EFI is initialised with it's own count, and that is not released until it is unpinned. However, there is a complication to this method - the high level EFI/EFD code in xfs_bmap_finish() does not hold direct references to the EFI structure, and runs a transaction commit between the EFI and EFD processing. Hence the EFI can be freed even before the EFD is created using such a method. Further, log recovery uses the AIL for tracking EFI/EFDs that need to be recovered, but it uses the AIL *differently* to the EFI transaction commit. Hence log recovery never pins or unpins EFIs, so we can't drop the EFI reference count indirectly to free the EFI. However, this doesn't prevent us from using a reference count here. There is a 1:1 relationship between EFIs and EFDs, so when we initialise the EFI we can take a reference count for the EFD as well. This solves the xfs_bmap_finish() issue - the EFI will never be freed until the EFD is processed. In terms of log recovery, during the committing of the EFD we can look for the XFS_EFI_RECOVERED bit being set and drop the EFI reference as well, thereby ensuring everything works correctly there as well. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* hlist: drop the node parameter from iteratorsSasha Levin2013-02-271-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* xfs: fix sparse reported log CRC endian issueDave Chinner2012-12-031-3/+3
| | | | | | | | | | | | | | | | | | | | | | Not a bug as such, just warning noise from the xlog_cksum() returning a __be32 type when it should be returning a __le32 type. On Wed, Nov 28, 2012 at 08:30:59AM -0500, Christoph Hellwig wrote: > But why are we storing the crc field little endian while all other on > disk formats are big endian? (And yes I realize it might as well have > been me who did that back in the idea, but I still have no idea why) Because the CRC always returns the calcuation LE format, even on BE systems. So rather than always having to byte swap it everywhere and have all the force casts and anootations for sparse, it seems simpler to just make it a __le32 everywhere.... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: add CRC checks to the logChristoph Hellwig2012-11-191-69/+63
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Implement CRCs for the log buffers. We re-use a field in struct xlog_rec_header that was used for a weak checksum of the log buffer payload in debug builds before. The new checksumming uses the crc32c checksum we will use elsewhere in XFS, and also protects the record header and addition cycle data. Due to this there are some interesting changes in xlog_sync, as we need to do the cycle wrapping for the split buffer case much earlier, as we would touch the buffer after generating the checksum otherwise. The CRC calculation is always enabled, even for non-CRC filesystems, as adding this CRC does not change the log format. On non-CRC filesystems, only issue an alert if a CRC mismatch is found and allow recovery to continue - this will act as an indicator that log recovery problems are a result of log corruption. On CRC enabled filesystems, however, log recovery will fail. Note that existing debug kernels will write a simple checksum value to the log, so the first time this is run on a filesystem taht was last used on a debug kernel it will through CRC mismatch warning errors. These can be ignored. Initially based on a patch from Dave Chinner, then modified significantly by Christoph Hellwig. Modified again by Dave Chinner to get to this version. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: convert buffer verifiers to an ops structure.Dave Chinner2012-11-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | To separate the verifiers from iodone functions and associate read and write verifiers at the same time, introduce a buffer verifier operations structure to the xfs_buf. This avoids the need for assigning the write verifier, clearing the iodone function and re-running ioend processing in the read verifier, and gets rid of the nasty "b_pre_io" name for the write verifier function pointer. If we ever need to, it will also be easier to add further content specific callbacks to a buffer with an ops structure in place. We also avoid needing to export verifier functions, instead we can simply export the ops structures for those that are needed outside the function they are defined in. This patch also fixes a directory block readahead verifier issue it exposed. This patch also adds ops callbacks to the inode/alloc btree blocks initialised by growfs. These will need more work before they will work with CRCs. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Phil White <pwhite@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: verify superblocks as they are read from diskDave Chinner2012-11-151-2/+3
| | | | | | | | | | | | | | | | | Add a superblock verify callback function and pass it into the buffer read functions. Remove the now redundant verification code that is currently in use. Adding verification shows that secondary superblocks never have their "sb_inprogress" flag cleared by mkfs.xfs, so when validating the secondary superblocks during a grow operation we have to avoid checking this field. Even if we fix mkfs, we will still have to ignore this field for verification purposes unless a version of mkfs that does not have this bug was used. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Phil White <pwhite@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: make buffer read verication an IO completion functionDave Chinner2012-11-151-3/+5
| | | | | | | | | | | | | | | | | | | | | | | | | Add a verifier function callback capability to the buffer read interfaces. This will be used by the callers to supply a function that verifies the contents of the buffer when it is read from disk. This patch does not provide callback functions, but simply modifies the interfaces to allow them to be called. The reason for adding this to the read interfaces is that it is very difficult to tell fom the outside is a buffer was just read from disk or whether we just pulled it out of cache. Supplying a callbck allows the buffer cache to use it's internal knowledge of the buffer to execute it only when the buffer is read from disk. It is intended that the verifier functions will mark the buffer with an EFSCORRUPTED error when verification fails. This allows the reading context to distinguish a verification error from an IO error, and potentially take further actions on the buffer (e.g. attempt repair) based on the error reported. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Phil White <pwhite@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: fix reading of wrapped log dataDave Chinner2012-11-071-1/+1
| | | | | | | | | | | | | | | | | | Commit 4439647 ("xfs: reset buffer pointers before freeing them") in 3.0-rc1 introduced a regression when recovering log buffers that wrapped around the end of log. The second part of the log buffer at the start of the physical log was being read into the header buffer rather than the data buffer, and hence recovery was seeing garbage in the data buffer when it got to the region of the log buffer that was incorrectly read. Cc: <stable@vger.kernel.org> # 3.0.x, 3.2.x, 3.4.x 3.6.x Reported-by: Torsten Kaiser <just.for.lkml@googlemail.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: remove xfs_iget.cDave Chinner2012-10-171-0/+1
| | | | | | | | | | | | | | | | The inode cache functions remaining in xfs_iget.c can be moved to xfs_icache.c along with the other inode cache functions. This removes all functionality from xfs_iget.c, so the file can simply be removed. This move results in various functions now only having the scope of a single file (e.g. xfs_inode_free()), so clean up all the definitions and exported prototypes in xfs_icache.[ch] and xfs_inode.h appropriately. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: merge xfs_itobp into xfs_imap_to_bpChristoph Hellwig2012-07-221-1/+1
| | | | | | | | | | | All callers of xfs_imap_to_bp want the dinode pointer, so let's calculate it inside xfs_imap_to_bp. Once that is done xfs_itobp becomes a fairly pointless wrapper which can be replaced with direct calls to xfs_imap_to_bp. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: remove xlog_t typedefMark Tinguely2012-06-211-66/+74
| | | | | | | | Remove the xlog_t type definitions. Signed-off-by: Mark Tinguely <tinguely@sgi.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: rename log structure to xlogMark Tinguely2012-06-211-19/+19
| | | | | | | | | | Rename the XFS log structure to xlog to help crash distinquish it from the other logs in Linux. Signed-off-by: Mark Tinguely <tinguely@sgi.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: make XBF_MAPPED the default behaviourDave Chinner2012-05-141-2/+2
| | | | | | | | | | Rather than specifying XBF_MAPPED for almost all buffers, introduce XBF_UNMAPPED for the couple of users that use unmapped buffers. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: move xfs_get_extsz_hint() and kill xfs_rw.hDave Chinner2012-05-141-1/+0
| | | | | | | | | | | | | The only thing left in xfs_rw.h is a function prototype for an inode function. Move that to xfs_inode.h, and kill xfs_rw.h. Also move the function implementing the prototype from xfs_rw.c to xfs_inode.c so we only have one function left in xfs_rw.c Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: kill xfs_read_buf()Dave Chinner2012-05-141-7/+4
| | | | | | | | | | | | | | | | xfs_read_buf() is effectively the same as xfs_trans_read_buf() when called outside a transaction context. The error handling is slightly different in that xfs_read_buf stales the errored buffer it gets back, but there is probably good reason for xfs_trans_read_buf() for doing this. Hence update xfs_trans_read_buf() to the same error handling as xfs_read_buf(), and convert all the callers of xfs_read_buf() to use the former function. We can then remove xfs_read_buf(). Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: kill XBF_LOCKDave Chinner2012-05-141-4/+3
| | | | | | | | | | | | Buffers are always returned locked from the lookup routines. Hence we don't need to tell the lookup routines to return locked buffers, on to try and lock them. Remove XBF_LOCK from all the callers and from internal buffer cache usage. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: use blocks for storing the desired IO sizeDave Chinner2012-05-141-7/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | Now that we pass block counts everywhere, and index buffers by block number and length in units of blocks, convert the desired IO size into block counts rather than bytes. Convert the code to use block counts, and those that need byte counts get converted at the time of use. Rename the b_desired_count variable to something closer to it's purpose - b_io_length - as it is only used to specify the length of an IO for a subset of the buffer. The only time this is used is for log IO - both writing iclogs and during log recovery. In all other cases, the b_io_length matches b_length, and hence a lot of code confuses the two. e.g. the buf item code uses the io count exclusively when it should be using the buffer length. Fix these apprpriately as they are found. Also, remove the XFS_BUF_{SET_}COUNT() macros that are just wrappers around the desired IO length. They only serve to make the code shouty loud, don't actually add any real value, and are often used incorrectly. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: use blocks for counting length of buffersDave Chinner2012-05-141-4/+4
| | | | | | | | | | | | | | | | Now that we pass block counts everywhere, and index buffers by block number, track the length of the buffer in units of blocks rather than bytes. Convert the code to use block counts, and those that need byte counts get converted at the time of use. Also, remove the XFS_BUF_{SET_}SIZE() macros that are just wrappers around the buffer length. They only serve to make the code shouty loud and don't actually add any real value. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: clean up buffer get/read call APIDave Chinner2012-05-141-1/+1
| | | | | | | | | | | | | | | | | | | | | The xfs_buf_get/read API is not consistent in the units it uses, and does not use appropriate or consistent units/types for the variables. Convert the API to use disk addresses and block counts for all buffer get and read calls. Use consistent naming for all the functions and their declarations, and convert the internal functions to use disk addresses and block counts to avoid need to convert them from one type to another and back again. Fix all the callers to use disk addresses and block counts. In many cases, this removes an additional conversion from the function call as the callers already have a block count. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: check for buffer errors before waitingDave Chinner2012-05-141-0/+2
| | | | | | | | | | | | | | | | | | If we call xfs_buf_iowait() on a buffer that failed dispatch due to an IO error, it will wait forever for an Io that does not exist. This is hndled in xfs_buf_read, but there is other code that calls xfs_buf_iowait directly that doesn't. Rather than make the call sites have to handle checking for dispatch errors and then checking for completion errors, make xfs_buf_iowait() check for dispatch errors on the buffer before waiting. This means we handle both dispatch and completion errors with one set of error handling at the caller sites. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: prevent needless mount warning causing test failuresDave Chinner2012-05-141-0/+4
| | | | | | | | | | | | | | | | | | | | | Often mounting small filesystem with small logs will emit a warning such as: XFS (vdb): Invalid block length (0x2000) for buffer during log recovery. This causes tests to randomly fail because this output causes the clean filesystem checks on test completion to think the filesystem is inconsistent. The cause of the error is simply that log recovery is asking for a buffer size that is larger than the log when zeroing the tail. This is because the buffer size is rounded up, and if the right head and tail conditions exist then the buffer size can be larger than the log. Limit the variable size xlog_get_bp() callers to requesting buffers smaller than the log. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: pass shutdown method into xfs_trans_ail_delete_bulkDave Chinner2012-05-141-1/+2
| | | | | | | | | | | | xfs_trans_ail_delete_bulk() can be called from different contexts so if the item is not in the AIL we need different shutdown for each context. Pass in the shutdown method needed so the correct action can be taken. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: on-stack delayed write buffer listsChristoph Hellwig2012-05-141-17/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: Fix oops on IO error during xlog_recover_process_iunlinks()Jan Kara2012-03-271-22/+11
| | | | | | | | | | | | | | | | | | | When an IO error happens during inode deletion run from xlog_recover_process_iunlinks() filesystem gets shutdown. Thus any subsequent attempt to read buffers fails. Code in xlog_recover_process_iunlinks() does not count with the fact that read of a buffer which was read a while ago can really fail which results in the oops on agi = XFS_BUF_TO_AGI(agibp); Fix the problem by cleaning up the buffer handling in xlog_recover_process_iunlinks() as suggested by Dave Chinner. We release buffer lock but keep buffer reference to AG buffer. That is enough for buffer to stay pinned in memory and we don't have to call xfs_read_agi() all the time. CC: stable@kernel.org Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: add the xlog_grant_head structureChristoph Hellwig2012-02-221-2/+2
| | | | | | | | | | | Add a new data structure to allow sharing code between the log grant and regrant code. Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: change available ranges of softlimit and hardlimit in quota checkMitsuo Hayasaka2012-02-211-3/+3
| | | | | | | | | | | | | | | | | In general, quota allows us to use disk blocks and inodes up to each limit, that is, they are available if they don't exceed their limitations. Current xfs sets their available ranges to lower than them except disk inode quota check. So, this patch changes the ranges to not beyond them. Signed-off-by: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com> Cc: Ben Myers <bpm@sgi.com> Cc: Alex Elder <elder@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com> (cherry picked from commit 20f12d8ac01917d96860f352f67eddd912df0afb)
* Change xfs_sb_from_disk() interface to take a mount pointerChandra Seetharaman2012-02-031-1/+1
| | | | | | | | | | | | | Change xfs_sb_from_disk() interface to take a mount pointer instead of a superblock pointer. This is to print mount point specific error messages in future fixes. Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: pass KM_SLEEP flag to kmem_realloc() in xlog_recover_add_to_cnt_trans()Mitsuo Hayasaka2012-01-311-1/+1
| | | | | | | | | | | | | | | | | The kmem_realloc() in xfs is given KM_* memory allocation flags. And it allocates memory using kmalloc() after they are converted to gfp_mask flags. In xlog_recover_add_to_cont_trans(), 0u is passed to kmem_realloc(), instead of them. I guess it is preferred to use them, and here memory must be allocated but don't have to be done with GFP_ATOMIC. So, this patch changes it to KM_SLEEP. Signed-off-by: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com> Cc: Ben Myers <bpm@sgi.com> Cc: Alex Elder <elder@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: remove XFS_bflushChristoph Hellwig2011-10-111-1/+1
| | | | | | | | Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Alex Elder <aelder@sgi.com>
* xfs: clean up xfs_ioerror_alertChristoph Hellwig2011-10-111-17/+8
| | | | | | | | | | | | | | | | | Instead of passing the block number and mount structure explicitly get them off the bp and fix make the argument order more natural. Also move it to xfs_buf.c and stop printing the device name given that we already get the fs name as part of xfs_alert, and we know what device is operates on because of the caller that gets printed, finally rename it to xfs_buf_ioerror_alert and pass __func__ as argument where it makes sense. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Alex Elder <aelder@sgi.com>
* xfs: remove XFS_BUF_STALE and XFS_BUF_SUPER_STALEChristoph Hellwig2011-10-111-1/+1
| | | | | | | | Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Alex Elder <aelder@sgi.com>