summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_mount.h
Commit message (Collapse)AuthorAgeFilesLines
...
* xfs: use super s_id instead of struct xfs_mount m_fsnameIan Kent2019-11-051-1/+0
| | | | | | | | | | Eliminate struct xfs_mount field m_fsname by using the super block s_id field directly. Signed-off-by: Ian Kent <raven@themaw.net> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: remove unused struct xfs_mount field m_fsname_lenIan Kent2019-11-051-1/+0
| | | | | | | | | The struct xfs_mount field m_fsname_len is not used anywhere, remove it. Signed-off-by: Ian Kent <raven@themaw.net> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: reverse the polarity of XFS_MOUNT_COMPAT_IOSIZEChristoph Hellwig2019-10-291-1/+1
| | | | | | | | | | Replace XFS_MOUNT_COMPAT_IOSIZE with an inverted XFS_MOUNT_LARGEIO flag that makes the usage more clear. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: rename the XFS_MOUNT_DFLT_IOSIZE option toChristoph Hellwig2019-10-291-1/+1
| | | | | | | | Make the flag match the mount option and usage. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: simplify parsing of allocsize mount optionChristoph Hellwig2019-10-291-6/+0
| | | | | | | | | | | | | | Rework xfs_parseargs to fill out the default value and then parse the option directly into the mount structure, similar to what we do for other updates, and open code the now trivial updates based on on the on-disk superblock directly into xfs_mountfs. Note that this change rejects the allocsize=0 mount option that has been documented as invalid for a long time instead of just ignoring it. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: rename the m_writeio_* fields in struct xfs_mountChristoph Hellwig2019-10-291-2/+2
| | | | | | | | Use the allocsize name to match the mount option and usage instead. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: remove the m_readio_* fields in struct xfs_mountChristoph Hellwig2019-10-291-4/+1
| | | | | | | | | | m_readio_blocks is entirely unused, and m_readio_blocks is only used in xfs_stat_blksize in a max statements that is a no-op as it always has the same value as m_writeio_log. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: don't use a different allocsice for -o wsyncChristoph Hellwig2019-10-291-7/+0
| | | | | | | | | | The -o wsync allocsize overwrite overwrite was part of a special hack for NFSv2 servers in IRIX and has no real purpose in modern Linux, so remove it. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: cleanup calculating the stat optimal I/O sizeChristoph Hellwig2019-10-291-24/+0
| | | | | | | | | | Move xfs_preferred_iosize to xfs_iops.c, unobsfucate it and also handle the realtime special case in the helper. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: add kmem allocation trace pointsDave Chinner2019-08-261-7/+0
| | | | | | | | | | | | | | | | | | | | | | When trying to correlate XFS kernel allocations to memory reclaim behaviour, it is useful to know what allocations XFS is actually attempting. This information is not directly available from tracepoints in the generic memory allocation and reclaim tracepoints, so these new trace points provide a high level indication of what the XFS memory demand actually is. There is no per-filesystem context in this code, so we just trace the type of allocation, the size and the allocation constraints. The kmem code also doesn't include much of the common XFS headers, so there are a few definitions that need to be added to the trace headers and a couple of types that need to be made common to avoid needing to include the whole world in the kmem code. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: move the log ioend workqueue to struct xlogChristoph Hellwig2019-06-281-1/+0
| | | | | | | | | | Move the workqueue used for log I/O completions from struct xfs_mount to struct xlog to keep it self contained in the log code. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> [darrick: destroy the log workqueue after ensuring log ios are done] Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: remove unused flags arg from getsb interfacesEric Sandeen2019-06-121-1/+1
| | | | | | | | | The flags value is always passed as 0 so remove the argument. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: separate inode geometryDarrick J. Wong2019-06-121-16/+3
| | | | | | | Separate the inode geometry information into a distinct structure. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com>
* xfs: track delayed allocation reservations across the filesystemDarrick J. Wong2019-04-261-0/+7
| | | | | | | | | | | | | Add a percpu counter to track the number of blocks directly reserved for delayed allocations on the data device. This counter (in contrast to i_delayed_blks) does not track allocated CoW staging extents or anything going on with the realtime device. It will be used in the upcoming summary counter scrub function to check the free block counts without having to freeze the filesystem or walk all the inodes to find the delayed allocations. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com>
* xfs: remove unused m_data_workqueueDarrick J. Wong2019-04-161-1/+0
| | | | | | | Now that we're no longer using m_data_workqueue, remove it. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
* xfs: replace the BAD_SUMMARY mount flag with the equivalent health codeDarrick J. Wong2019-04-141-1/+0
| | | | | | | | Replace the BAD_SUMMARY mount flag with calls to the equivalent health tracking code. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
* xfs: track metadata health statusDarrick J. Wong2019-04-141-0/+23
| | | | | | | | | | Add the necessary in-core metadata fields to keep track of which parts of the filesystem have been observed and which parts were observed to be unhealthy, and print a warning at unmount time if we have unfixed problems. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
* xfs: introduce an always_cow modeChristoph Hellwig2019-02-211-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a mode where XFS never overwrites existing blocks in place. This is to aid debugging our COW code, and also put infatructure in place for things like possible future support for zoned block devices, which can't support overwrites. This mode is enabled globally by doing a: echo 1 > /sys/fs/xfs/debug/always_cow Note that the parameter is global to allow running all tests in xfstests easily in this mode, which would not easily be possible with a per-fs sysfs file. In always_cow mode persistent preallocations are disabled, and fallocate will fail when called with a 0 mode (with our without FALLOC_FL_KEEP_SIZE), and not create unwritten extent for zeroed space when called with FALLOC_FL_ZERO_RANGE or FALLOC_FL_UNSHARE_RANGE. There are a few interesting xfstests failures when run in always_cow mode: - generic/392 fails because the bytes used in the file used to test hole punch recovery are less after the log replay. This is because the blocks written and then punched out are only freed with a delay due to the logging mechanism. - xfs/170 will fail as the already fragile file streams mechanism doesn't seem to interact well with the COW allocator - xfs/180 xfs/182 xfs/192 xfs/198 xfs/204 and xfs/208 will claim the file system is badly fragmented, but there is not much we can do to avoid that when always writing out of place - xfs/205 fails because overwriting a file in always_cow mode will require new space allocation and the assumption in the test thus don't work anymore. - xfs/326 fails to modify the file at all in always_cow mode after injecting the refcount error, leading to an unexpected md5sum after the remount, but that again is expected Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: rename m_inotbt_nores to m_finobt_noresDarrick J. Wong2019-02-141-1/+1
| | | | | | | | | Rename this flag variable to imply more strongly that it's related to the free inode btree (finobt) operation. No functional changes. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com>
* xfs: cache unlinked pointers in an rhashtableDarrick J. Wong2019-02-111-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Use a rhashtable to cache the unlinked list incore. This should speed up unlinked processing considerably when there are a lot of inodes on the unlinked list because iunlink_remove no longer has to traverse an entire bucket list to find which inode points to the one being removed. The incore list structure records "X.next_unlinked = Y" relations, with the rhashtable using Y to index the records. This makes finding the inode X that points to a inode Y very quick. If our cache fails to find anything we can always fall back on the old method. FWIW this drastically reduces the amount of time it takes to remove inodes from the unlinked list. I wrote a program to open a lot of O_TMPFILE files and then close them in the same order, which takes a very long time if we have to traverse the unlinked lists. With the ptach, I see: + /d/t/tmpfile/tmpfile Opened 193531 files in 6.33s. Closed 193531 files in 5.86s real 0m12.192s user 0m0.064s sys 0m11.619s + cd / + umount /mnt real 0m0.050s user 0m0.004s sys 0m0.030s And without the patch: + /d/t/tmpfile/tmpfile Opened 193588 files in 6.35s. Closed 193588 files in 751.61s real 12m38.853s user 0m0.084s sys 12m34.470s + cd / + umount /mnt real 0m0.086s user 0m0.000s sys 0m0.060s Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
* xfs: cache minimum realtime summary levelOmar Sandoval2018-12-121-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The realtime summary is a two-dimensional array on disk, effectively: u32 rsum[log2(number of realtime extents) + 1][number of blocks in the bitmap] rsum[log][bbno] is the number of extents of size 2**log which start in bitmap block bbno. xfs_rtallocate_extent_near() uses xfs_rtany_summary() to check whether rsum[log][bbno] != 0 for any log level. However, the summary array is stored in row-major order (i.e., like an array in C), so all of these entries are not adjacent, but rather spread across the entire summary file. In the worst case (a full bitmap block), xfs_rtany_summary() has to check every level. This means that on a moderately-used realtime device, an allocation will waste a lot of time finding, reading, and releasing buffers for the realtime summary. In particular, one of our storage services (which runs on servers with 8 very slow CPUs and 15 8 TB XFS realtime filesystems) spends almost 5% of its CPU cycles in xfs_rtbuf_get() and xfs_trans_brelse() called from xfs_rtany_summary(). One solution would be to also store the summary with the dimensions swapped. However, this would require a disk format change to a very old component of XFS. Instead, we can cache the minimum size which contains any extents. We do so lazily; rather than guaranteeing that the cache contains the precise minimum, it always contains a loose lower bound which we tighten when we read or update a summary block. This only uses a few kilobytes of memory and is already serialized via the realtime bitmap and summary inode locks, so the cost is minimal. With this change, the same workload only spends 0.2% of its CPU cycles in the realtime allocator. Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: precalculate cluster alignment in inodes and blocksDarrick J. Wong2018-12-121-0/+2
| | | | | | | | | Store the inode cluster alignment information in units of inodes and blocks in the mount data so that we don't have to keep recalculating them. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
* xfs: precalculate inodes and blocks per inode clusterDarrick J. Wong2018-12-121-0/+2
| | | | | | | | Store the number of inodes and blocks per inode cluster in the mount data so that we don't have to keep recalculating them. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
* xfs: remove deprecated barrier/nobarrier mountEric Sandeen2018-07-261-1/+0
| | | | | | | | | | | | | | The barrier mount options have been no-ops and deprecated since 4cf4573 xfs: deprecate barrier/nobarrier mount option i.e. kernel 4.10 / December 2016, with a stated deprecation schedule after v4.15. Should be fair game to remove them now. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: force summary counter recalc at next mountDarrick J. Wong2018-07-231-0/+1
| | | | | | | | | Use the "bad summary count" mount flag from the previous patch to skip writing the unmount record to force log recovery at the next mount, which will recalculate the summary counters for us. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
* xfs: detect and fix bad summary counts at mountDarrick J. Wong2018-07-231-0/+1
| | | | | | | | | | | | | | | | | Filippo Giunchedi complained that xfs doesn't even perform basic sanity checks of the fs summary counters at mount time. Therefore, recalculate the summary counters from the AGFs after log recovery if the counts were bad (or we had to recover the fs). Enhance the recalculation routine to fail the mount entirely if the new values are also obviously incorrect. We use a mount state flag to record the "bad summary count" state so that the (subsequent) online fsck patches can detect subtlely incorrect counts and set the flag; clear it userspace asks for a repair; or force a recalculation at the next mount if nobody fixes it by unmount time. Reported-by: Filippo Giunchedi <fgiunchedi@wikimedia.org> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
* xfs: clean up MIN/MAXDave Chinner2018-06-081-1/+1
| | | | | | | | | | | Get rid of the MIN/MAX macros and just use the native min/max macros directly in the XFS code. Signed-Off-By: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: convert to SPDX license tagsDave Chinner2018-06-061-13/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Remove the verbose license text from XFS files and replace them with SPDX tags. This does not change the license of any of the code, merely refers to the common, up-to-date license files in LICENSES/ This change was mostly scripted. fs/xfs/Makefile and fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected and modified by the following command: for f in `git grep -l "GNU General" fs/xfs/` ; do echo $f cat $f | awk -f hdr.awk > $f.new mv -f $f.new $f done And the hdr.awk script that did the modification (including detecting the difference between GPL-2.0 and GPL-2.0+ licenses) is as follows: $ cat hdr.awk BEGIN { hdr = 1.0 tag = "GPL-2.0" str = "" } /^ \* This program is free software/ { hdr = 2.0; next } /any later version./ { tag = "GPL-2.0+" next } /^ \*\// { if (hdr > 0.0) { print "// SPDX-License-Identifier: " tag print str print $0 str="" hdr = 0.0 next } print $0 next } /^ \* / { if (hdr > 1.0) next if (hdr > 0.0) { if (str != "") str = str "\n" str = str $0 next } print $0 next } /^ \*/ { if (hdr > 0.0) next print $0 next } // { if (hdr > 0.0) { if (str != "") str = str "\n" str = str $0 next } print $0 } END { } $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: detect agfl count corruption and reset agflBrian Foster2018-03-231-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The struct xfs_agfl v5 header was originally introduced with unexpected padding that caused the AGFL to operate with one less slot than intended. The header has since been packed, but the fix left an incompatibility for users who upgrade from an old kernel with the unpacked header to a newer kernel with the packed header while the AGFL happens to wrap around the end. The newer kernel recognizes one extra slot at the physical end of the AGFL that the previous kernel did not. The new kernel will eventually attempt to allocate a block from that slot, which contains invalid data, and cause a crash. This condition can be detected by comparing the active range of the AGFL to the count. While this detects a padding mismatch, it can also trigger false positives for unrelated flcount corruption. Since we cannot distinguish a size mismatch due to padding from unrelated corruption, we can't trust the AGFL enough to simply repopulate the empty slot. Instead, avoid unnecessarily complex detection logic and and use a solution that can handle any form of flcount corruption that slips through read verifiers: distrust the entire AGFL and reset it to an empty state. Any valid blocks within the AGFL are intentionally leaked. This requires xfs_repair to rectify (which was already necessary based on the state the AGFL was found in). The reset mitigates the side effect of the padding mismatch problem from a filesystem crash to a free space accounting inconsistency. The generic approach also means that this patch can be safely backported to kernels with or without a packed struct xfs_agfl. Check the AGF for an invalid freelist count on initial read from disk. If detected, set a flag on the xfs_perag to indicate that a reset is required before the AGFL can be used. In the first transaction that attempts to use a flagged AGFL, reset it to empty, warn the user about the inconsistency and allow the freelist fixup code to repopulate the AGFL with new blocks. The xfs_perag flag is cleared to eliminate the need for repeated checks on each block allocation operation. This allows kernels that include the packing fix commit 96f859d52bcb ("libxfs: pack the agfl header structure so XFS_AGFL_SIZE is correct") to handle older unpacked AGFL formats without a filesystem crash. Suggested-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by Dave Chiluk <chiluk+linuxxfs@indeed.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: account only rmapbt-used blocks against rmapbt perag resBrian Foster2018-03-111-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The rmapbt perag metadata reservation reserves blocks for the reverse mapping btree (rmapbt). Since the rmapbt uses blocks from the agfl and perag accounting is updated as blocks are allocated from the allocation btrees, the reservation actually accounts blocks as they are allocated to (or freed from) the agfl rather than the rmapbt itself. While this works for blocks that are eventually used for the rmapbt, not all agfl blocks are destined for the rmapbt. Blocks that are allocated to the agfl (and thus "reserved" for the rmapbt) but then used by another structure leads to a growing inconsistency over time between the runtime tracking of rmapbt usage vs. actual rmapbt usage. Since the runtime tracking thinks all agfl blocks are rmapbt blocks, it essentially believes that less future reservation is required to satisfy the rmapbt than what is actually necessary. The inconsistency is rectified across mount cycles because the perag reservation is initialized based on the actual rmapbt usage at mount time. The problem, however, is that the excessive drain of the reservation at runtime opens a window to allocate blocks for other purposes that might be required for the rmapbt on a subsequent mount. This problem can be demonstrated by a simple test that runs an allocation workload to consume agfl blocks over time and then observe the difference in the agfl reservation requirement across an unmount/mount cycle: mount ...: xfs_ag_resv_init: ... resv 3193 ask 3194 len 3194 ... ... : xfs_ag_resv_alloc_extent: ... resv 2957 ask 3194 len 1 umount...: xfs_ag_resv_free: ... resv 2956 ask 3194 len 0 mount ...: xfs_ag_resv_init: ... resv 3052 ask 3194 len 3194 As the above tracepoints show, the reservation requirement reduces from 3194 blocks to 2956 blocks as the workload runs. Without any other changes in the filesystem, the same reservation requirement jumps from 2956 to 3052 blocks over a umount/mount cycle. To address this divergence, update the RMAPBT reservation to account blocks used for the rmapbt only rather than all blocks filled into the agfl. This patch makes several high-level changes toward that end: 1.) Reintroduce an AGFL reservation type to serve as an accounting no-op for blocks allocated to (or freed from) the AGFL. 2.) Invoke RMAPBT usage accounting from the actual rmapbt block allocation path rather than the AGFL allocation path. The first change is required because agfl blocks are considered free blocks throughout their lifetime. The perag reservation subsystem is invoked unconditionally by the allocation subsystem, so we need a way to tell the perag subsystem (via the allocation subsystem) to not make any accounting changes for blocks filled into the AGFL. The second change causes the in-core RMAPBT reservation usage accounting to remain consistent with the on-disk state at all times and eliminates the risk of leaving the rmapbt reservation underfilled. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: rename agfl perag res type to rmapbtBrian Foster2018-03-111-5/+5
| | | | | | | | | | | | | | | | | | | | | | | | The AGFL perag reservation type accounts all allocations that feed into (or are released from) the allocation group free list (agfl). The purpose of the reservation is to support worst case conditions for the reverse mapping btree (rmapbt). As such, the agfl reservation usage accounting only considers rmapbt usage when the in-core counters are initialized at mount time. This implementation inconsistency leads to divergence of the in-core and on-disk usage accounting over time. In preparation to resolve this inconsistency and adjust the AGFL reservation into an rmapbt specific reservation, rename the AGFL reservation type and associated accounting fields to something more rmapbt-specific. Also fix up a couple tracepoints that incorrectly use the AGFL reservation type to pass the agfl state of the associated extent where the raw reservation type is expected. Note that this patch does not change perag reservation behavior. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: remove unused m_dmevmask from xfs_mount structEric Sandeen2018-03-111-1/+0
| | | | | | | | | | The dmevmask structure member is a dmapi leftover; it's set here and there but never actually used. Remove it. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: convert drop_writes to use the errortag mechanismDarrick J. Wong2017-06-271-24/+0
| | | | | | | | | We now have enhanced error injection that can control the frequency with which errors happen, so convert drop_writes to use this. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
* xfs: expose errortag knobs via sysfsDarrick J. Wong2017-06-271-0/+1
| | | | | | | | | | Creates a /sys/fs/xfs/$dev/errortag/ directory to control the errortag values directly. This enables us to control the randomness values, rather than having to accept the defaults. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
* xfs: make errortag a per-mountpoint structureDarrick J. Wong2017-06-271-0/+7
| | | | | | | | | | | | | Remove the xfs_etest structure in favor of a per-mountpoint structure. This will give us the flexibility to set as many error injection points as we want, and later enable us to set up sysfs knobs to set the trigger frequency as we wish. This comes at a cost of higher memory use, but unti we hit 1024 injection points (we're at 29) or a lot of mounts this shouldn't be a huge issue. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
* xfs: remove double-underscore integer typesDarrick J. Wong2017-06-191-17/+17
| | | | | | | | | | | | | | | | | | | | This is a purely mechanical patch that removes the private __{u,}int{8,16,32,64}_t typedefs in favor of using the system {u,}int{8,16,32,64}_t typedefs. This is the sed script used to perform the transformation and fix the resulting whitespace and indentation errors: s/typedef\t__uint8_t/typedef __uint8_t\t/g s/typedef\t__uint/typedef __uint/g s/typedef\t__int\([0-9]*\)_t/typedef int\1_t\t/g s/__uint8_t\t/__uint8_t\t\t/g s/__uint/uint/g s/__int\([0-9]*\)_t\t/__int\1_t\t\t/g s/__int/int/g /^typedef.*int[0-9]*_t;$/d Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
* xfs: more do_div cleanupsEric Sandeen2017-04-251-2/+2
| | | | | | | | | | | | | | | | | | | | | | | On some architectures do_div does the pointer compare trick to make sure that we've sent it an unsigned 64-bit number. (Why unsigned? I don't know.) Fix up the few places that squawk about this; in xfs_bmap_wants_extents() we just used a bare int64_t so change that to unsigned. In xfs_adjust_extent_unmap_boundaries() all we wanted was the mod, and we have an xfs-specific function to handle that w/o side effects, which includes proper casting for do_div. In xfs_daddr_to_ag[b]no, we were using the wrong type anyway; XFS_BB_TO_FSBT returns a block in the filesystem, so use xfs_rfsblock_t not xfs_daddr_t, and gain the unsignedness from that type as a bonus. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: use dedicated log worker wq to avoid deadlock with cil wqBrian Foster2017-04-031-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The log covering background task used to be part of the xfssyncd workqueue. That workqueue was removed as of commit 5889608df ("xfs: syncd workqueue is no more") and the associated work item scheduled to the xfs-log wq. The latter is used for log buffer I/O completion. Since xfs_log_worker() can invoke a log flush, a deadlock is possible between the xfs-log and xfs-cil workqueues. Consider the following codepath from xfs_log_worker(): xfs_log_worker() xfs_log_force() _xfs_log_force() xlog_cil_force() xlog_cil_force_lsn() xlog_cil_push_now() flush_work() The above is in xfs-log wq context and blocked waiting on the completion of an xfs-cil work item. Concurrently, the cil push in progress can end up blocked here: xlog_cil_push_work() xlog_cil_push() xlog_write() xlog_state_get_iclog_space() xlog_wait(&log->l_flush_wait, ...) The above is in xfs-cil context waiting on log buffer I/O completion, which executes in xfs-log wq context. In this scenario both workqueues are deadlocked waiting on eachother. Add a new workqueue specifically for the high level log covering and ail pushing worker, as was the case prior to commit 5889608df. Diagnosed-by: David Jeffery <djeffery@redhat.com> Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: resurrect debug mode drop buffered writes mechanismBrian Foster2017-02-161-7/+8
| | | | | | | | | | | | | | | | | | | | | | | | | A debug mode write failure mechanism was introduced to XFS in commit 801cc4e17a ("xfs: debug mode forced buffered write failure") to facilitate targeted testing of delalloc indirect reservation management from userspace. This code was subsequently rendered ineffective by the move to iomap based buffered writes in commit 68a9f5e700 ("xfs: implement iomap based buffered write path"). This likely went unnoticed because the associated userspace code had not made it into xfstests. Resurrect this mechanism to facilitate effective indlen reservation testing from xfstests. The move to iomap based buffered writes relocated the hook this mechanism needs to return write failure from XFS to generic code. The failure trigger must remain in XFS. Given that limitation, convert this from a write failure mechanism to one that simply drops writes without returning failure to userspace. Rename all "fail_writes" references to "drop_writes" to illustrate the point. This is more hacky than preferred, but still triggers the XFS error handling behavior required to drive the indlen tests. This is only available in DEBUG mode and for testing purposes only. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: improve handling of busy extents in the low-level allocatorChristoph Hellwig2017-02-091-0/+2
| | | | | | | | | | | | | | | | | Currently we force the log and simply try again if we hit a busy extent, but especially with online discard enabled it might take a while after the log force for the busy extents to disappear, and we might have already completed our second pass. So instead we add a new waitqueue and a generation counter to the pag structure so that we can do wakeups once we've removed busy extents, and we replace the single retry with an unconditional one - after all we hold the AGF buffer lock, so no other allocations or frees can be racing with us in this AG. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: use per-AG reservations for the finobtChristoph Hellwig2017-01-251-0/+1
| | | | | | | | | | | | | | | | | | | | | | | Currently we try to rely on the global reserved block pool for block allocations for the free inode btree, but I have customer reports (fairly complex workload, need to find an easier reproducer) where that is not enough as the AG where we free an inode that requires a new finobt block is entirely full. This causes us to cancel a dirty transaction and thus a file system shutdown. I think the right way to guard against this is to treat the finot the same way as the refcount btree and have a per-AG reservations for the possible worst case size of it, and the patch below implements that. Note that this could increase mount times with large finobt trees. In an ideal world we would have added a field for the number of finobt fields to the AGI, similar to what we did for the refcount blocks. We should do add it next time we rev the AGI or AGF format by adding new fields. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: use rhashtable to track buffer cacheLucas Stach2016-12-071-2/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On filesystems with a lot of metadata and in metadata intensive workloads xfs_buf_find() is showing up at the top of the CPU cycles trace. Most of the CPU time is spent on CPU cache misses while traversing the rbtree. As the buffer cache does not need any kind of ordering, but fast lookups a hashtable is the natural data structure to use. The rhashtable infrastructure provides a self-scaling hashtable implementation and allows lookups to proceed while the table is going through a resize operation. This reduces the CPU-time spent for the lookups to 1/3 even for small filesystems with a relatively small number of cached buffers, with possibly much larger gains on higher loaded filesystems. [dchinner: reduce minimum hash size to an acceptable size for large filesystems with many AGs with no active use.] [dchinner: remove stale rbtree asserts.] [dchinner: use xfs_buf_map for compare function argument.] [dchinner: make functions static.] [dchinner: remove redundant comments.] Signed-off-by: Lucas Stach <dev@lynxeye.de> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: garbage collect old cowextsz reservationsDarrick J. Wong2016-10-051-0/+2
| | | | | | | | | | | | | | | | | | Trim CoW reservations made on behalf of a cowextsz hint if they get too old or we run low on quota, so long as we don't have dirty data awaiting writeback or directio operations in progress. Garbage collection of the cowextsize extents are kept separate from prealloc extent reaping because setting the CoW prealloc lifetime to a (much) higher value than the regular prealloc extent lifetime has been useful for combatting CoW fragmentation on VM hosts where the VMs experience bursty write behaviors and we can keep the utilization ratios low enough that we don't start to run out of space. IOWs, it benefits us to keep the CoW fork reservations around for as long as we can unless we run out of blocks or hit inode reclaim. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
* xfs: define the on-disk refcount btree formatDarrick J. Wong2016-10-031-0/+3
| | | | | | | | | | Start constructing the refcount btree implementation by establishing the on-disk format and everything needed to read, write, and manipulate the refcount btree blocks. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de>
* xfs: introduce refcount btree definitionsDarrick J. Wong2016-10-031-0/+3
| | | | | | | | Add new per-AG refcount btree definitions to the per-AG structures. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de>
* Merge branch 'xfs-4.9-reflink-prep' into for-nextDave Chinner2016-10-031-0/+36
|\
| * xfs: set up per-AG free space reservationsDarrick J. Wong2016-09-191-0/+36
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | One unfortunate quirk of the reference count and reverse mapping btrees -- they can expand in size when blocks are written to *other* allocation groups if, say, one large extent becomes a lot of tiny extents. Since we don't want to start throwing errors in the middle of CoWing, we need to reserve some blocks to handle future expansion. The transaction block reservation counters aren't sufficient here because we have to have a reserve of blocks in every AG, not just somewhere in the filesystem. Therefore, create two per-AG block reservation pools. One feeds the AGFL so that rmapbt expansion always succeeds, and the other feeds all other metadata so that refcountbt expansion never fails. Use the count of how many reserved blocks we need to have on hand to create a virtual reservation in the AG. Through selective clamping of the maximum length of allocation requests and of the length of the longest free extent, we can make it look like there's less free space in the AG unless the reservation owner is asking for blocks. In other words, play some accounting tricks in-core to make sure that we always have blocks available. On the plus side, there's nothing to clean up if we crash, which is contrast to the strategy that the rough draft used (actually removing extents from the freespace btrees). Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | xfs: normalize "infinite" retries in error configsEric Sandeen2016-09-141-1/+7
|/ | | | | | | | | | | | | | | | | | | | | | | | | | As it stands today, the "fail immediately" vs. "retry forever" values for max_retries and retry_timeout_seconds in the xfs metadata error configurations are not consistent. A retry_timeout_seconds of 0 means "retry forever," but a max_retries of 0 means "fail immediately." retry_timeout_seconds < 0 is disallowed, while max_retries == -1 means "retry forever." Make this consistent across the error configs, such that a value of 0 means "fail immediately" (i.e. wait 0 seconds, or retry 0 times), and a value of -1 always means "retry forever." This makes retry_timeout a signed long to accommodate the -1, even though it stores jiffies. Given our limit of a 1 day maximum timeout, this should be sufficient even at much higher HZ values than we have available today. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: rmap btree requires more reserved free spaceDarrick J. Wong2016-08-031-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | Originally-From: Dave Chinner <dchinner@redhat.com> The rmap btree is allocated from the AGFL, which means we have to ensure ENOSPC is reported to userspace before we run out of free space in each AG. The last allocation in an AG can cause a full height rmap btree split, and that means we have to reserve at least this many blocks *in each AG* to be placed on the AGFL at ENOSPC. Update the various space calculation functions to handle this. Also, because the macros are now executing conditional code and are called quite frequently, convert them to functions that initialise variables in the struct xfs_mount, use the new variables everywhere and document the calculations better. [darrick.wong@oracle.com: don't reserve blocks if !rmap] [dchinner@redhat.com: update m_ag_max_usable after growfs] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: define the on-disk rmap btree formatDarrick J. Wong2016-08-031-0/+3
| | | | | | | | | | | | | | | | | | | | | | | Originally-From: Dave Chinner <dchinner@redhat.com> Now we have all the surrounding call infrastructure in place, we can start filling out the rmap btree implementation. Start with the on-disk btree format; add everything needed to read, write and manipulate rmap btree blocks. This prepares the way for adding the btree operations implementation. [darrick: record owner and offset info in rmap btree] [darrick: fork, bmbt and unwritten state in rmap btree] [darrick: flags are a separate field in xfs_rmap_irec] [darrick: calculate maxlevels separately] [darrick: move the 'unwritten' bit into unused parts of rm_offset] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>